鳜仔稚鱼骨骼系统骨化发育
作者:
  • 曹晓颖 1,2,3

    曹晓颖

    农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306
    ;水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306
    ;水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵金良 1,2,3

    赵金良

    农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306
    ;水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306
    ;水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈晓武 1,2,3

    陈晓武

    农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306
    ;水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306
    ;水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周昊天 1,2,3

    周昊天

    农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306
    ;水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306
    ;水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郝月月 1,2,3

    郝月月

    农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306
    ;水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306
    ;水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵岩 1,2,3

    赵岩

    农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306
    ;水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306
    ;水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1. 农业农村部淡水水产种质资源重点实验室, 上海海洋大学, 上海 201306;
2. 水产动物遗传育种中心上海市协同创新中心, 上海海洋大学, 上海 201306;
3. 水产科学国家级实验教学示范中心, 上海海洋大学, 上海 201306

作者简介:

曹晓颖(1993-),女,硕士研究生,从事水产遗传育种与繁殖研究.E-mail:1322918309@qq.com

中图分类号:

S917;Q959

基金项目:

现代农业产业技术体系专项基金项目(CARS-46).


Early ossification of the skeletal system in larval and juvenile Siniperca chuatsi
Author:
  • CAO Xiaoying 1,2,3

    CAO Xiaoying

    Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural AffairsShanghai Ocean University, Shanghai 201306, China
    ;Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
    ;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Jinliang 1,2,3

    ZHAO Jinliang

    Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural AffairsShanghai Ocean University, Shanghai 201306, China
    ;Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
    ;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xiaowu 1,2,3

    CHEN Xiaowu

    Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural AffairsShanghai Ocean University, Shanghai 201306, China
    ;Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
    ;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Haotian 1,2,3

    ZHOU Haotian

    Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural AffairsShanghai Ocean University, Shanghai 201306, China
    ;Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
    ;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HAO Yueyue 1,2,3

    HAO Yueyue

    Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural AffairsShanghai Ocean University, Shanghai 201306, China
    ;Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
    ;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Yan 1,2,3

    ZHAO Yan

    Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural AffairsShanghai Ocean University, Shanghai 201306, China
    ;Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
    ;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs;Shanghai Ocean University, Shanghai 201306, China;
2. Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China;
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用软骨-硬骨双染色技术,描述了鳜()仔稚鱼(1~35日龄)头骨、脊柱、附肢骨骼的骨化发育特征。结果显示:(1)头骨前鳃盖骨于14日龄最先骨化,15日龄上下颌骨骨化,且上下颌骨相对长度呈现连续变化过程。17日龄后,颌齿、关节骨、舌颌骨骨化;19日龄,隅骨、间鳃盖骨、鳃盖骨、鳃条骨、额骨骨化。20日龄后,方骨、下鳃盖骨、辅上颌骨等骨化;35日龄,头骨骨化基本完成。(2)脊柱于15日龄由前向后骨化,20日龄背肋与腹肋由基部向末端骨化,29日龄骨化完成。脉弓与脉棘、髓弓与髓棘均由前向后、由基部向末端骨化,脉棘与髓棘骨化时间晚于相应的椎体。(3)附肢骨骼骨化顺序依次为胸鳍、背鳍、臀鳍、腹鳍、尾鳍。胸鳍匙骨于16日龄骨化,乌喙骨与肩胛骨于25日龄骨化;背鳍、臀鳍分别于18日龄、20日龄骨化,骨化方式相似;腹鳍于23日龄骨化,骨化方式与胸鳍相反;尾杆骨、尾下骨于25日龄骨化,附肢骨骼于35日龄基本骨化完成。结果表明,鳜骨骼骨化发育与其早期运动、摄食与御敌等行为密切相关。

    Abstract:

    is a freshwater fish with high economic value and is endemic to East Asia. Some studies have shown that mandarin fish exhibit different movement modes, feeding behavior, and nutritional demands during the larvae and juvenile stages. In this study, the morphological ossification characteristics of the skulls, vertebrae, and appendages of larvae[1-35 days post hatching (dph)] were described using a cartilage bone clearing and staining technique to provide information on the larval and juvenile organ structure development and functional adaption. The results showed that the preopercle of the skull began ossification at 14 dph. The upper and mandibular structure, which showed a relative length change, was ossified at 15 dph. At 17 dph, the jaw teeth, articular, and hyomandibular began to ossify, while the interopercle, angular, opercle, branchiostegal ray, and frontal structures were ossified at 19 dph. At 20 dph, the quadrate, subopercle, and supplementary maxilla were ossified; most of the skull was completely ossified by 35 dph. Ossification of the vertebrae began at 15 dph from the anterior to the posterior and was completely ossified by 29 dph. The dorsal rib and ventral rib began to ossify from the base to the outside at 20 dph. The haemal arch, haemal spine, neural arch, and neural spine from the front to back and the base to the distal end were ossified. Ossification of the haemal spine and neural spine occurred later than that of the corresponding vertebrae. The ossification order of the appendages was from the pectoral fin to the dorsal fin, anal fin, pelvic fin, and caudal fin. The cleithrum of the pectoral fin was ossified at 16 dph, while the coracoid and scapula were ossified at 25 dph. The dorsal fin and anal fin were ossified at 18 and 20 dph, respectively. The pelvic fins were ossified from the middle to both ends at 23 dph and the ossification pattern was opposite to that of the pectoral fin. The urostyle and hypural of the caudal fin began to ossify at 25 dph. The appendicular skeleton was fully ossified at 35 dph. The results showed that the early skull ossification of larvae and juveniles is closely related to their feeding and defense behavior, while ossification of the vertebrae and appendages are closely related to their movement and avoidance of the enemy.

    参考文献
    [1] Li Xia. Histology and Embryology of Aquatic Animals[M]. Beijing:China Agriculture Press, 2005:40-50.[李霞. 水产动物组织胚胎学[M]. 北京:中国农业出版社, 2005:40-50.]
    [2] Kulesa P M, Gammill L S. Neural crest migration:patterns, phases and signals[J]. Developmental Biology, 2010, 344(2):566-568.
    [3] Minoux M, Rijli F M. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development[J]. Development, 2010, 137(16):2605-2621.
    [4] Risau W. Mechanisms of angiogenesis[J]. Nature, 1997, 386(6626):671-674.
    [5] Evans D J, Noden D M. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells[J]. Developmental Dynamics, 2006, 235(5):1310-1325.
    [6] Karsenty G, Wagner E F. Reaching a genetic and molecular understanding of skeletal development[J]. Developmental Cell, 2002, 2(4):389-406.
    [7] Kendall A W, Ahlstrom E H, Moser H G. Early Life History Stages of Fishes and Their Characters[M]. Lawrence:Allen Press, 1984.
    [8] Boglione C, Marino G, Bertolini B, et al. Larval and postlarval monitoring in sea bass:morphological approach to evaluate finfish seed quality[J]. EAS Special Publication, 1993, 18:189-204.
    [9] Wang Q R, Ni Y Y, Lin L M, et al. Development of the vertebral column and the pectoral and caudal fins in larvae of the large yellow croaker Larimichthys crocea (Richardson)[J]. Acta Hydrobiologica Sinica, 2010, 34(3):467-472.[王秋荣, 倪玥莹, 林利民, 等. 大黄鱼仔稚鱼脊柱、胸鳍及尾鳍骨骼系统的发育观察[J]. 水生生物学报, 2010, 34(3):467-472.]
    [10] Tian W F. Study on the development of skeleton and feeding apparatus and their adaption to feeding in Siniperca chuatsi (Perciformes:Sinipercinae)[D]. Shanghai:Shanghai Ocean University, 2012:1-22.[田文斐. 鳜鱼骨骼早期发育以及主要摄食器官发育与摄食行为的适应性研究[D]. 上海:上海海洋大学, 2012:1-22.]
    [11] Cui G Q, Chen A Q, Lv W Q. Early development of the vertebral column and the appendicular skeleton in the Inimicus japonicus[J]. Journal of Fisheries of China, 2013, 37(2):230-238.[崔国强, 陈阿琴, 吕为群. 日本鬼鲉脊柱和附肢骨骼的早期发育[J]. 水产学报, 2013, 37(2):230-238.]
    [12] Luo X C, Xu T X, Wu Z X, et al. Observation on the development of embryo and juvenile of Siniperca chuatsi[J]. Fisheries Science & Technology Information, 1992, 19(6):165-168.[罗仙池, 徐田祥, 吴振兴, 等. 鳜鱼的胚胎、仔稚鱼发育观察[J]. 水产科技情报, 1992, 19(6):165-168.]
    [13] Cao W X. Early Resources of Fishes in the Yangtze River[M]. Beijing:China Water & Power Press, 2007:226-229.[曹文宣. 长江鱼类早期资源[M]. 北京:中国水利水电出版社, 2007:226-229.]
    [14] Xiong Y Y. The development of foraging behavior in Chinese perch, Siniperca chuatsi[D]. Beijing:University of Chinese Academy of Sciences, 2012:19-71. [熊玉宇. 鳜摄食行为发育[D]. 北京:中国科学院大学, 2012:19-71.]
    [15] Dingerkus G, Uhler L D. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage[J]. Stain Technology, 1977, 52:229-232.
    [16] Meng Q W. Comparative Anatomy of Fishes[M]. Beijing:Science Press, 1987:57-118.[孟庆闻. 鱼类比较解剖[M]. 北京:科学出版社, 1987:57-118.]
    [17] Harder W. Anatomy of Fishes, Unit 1[M]. Schweizerbart:University of Michigan Press, 1975:31-91.
    [18] Zhao J, Chen X L. Development of the skull of Megalobrama skolkovii and its adaptive significant[J]. Zoological Research, 1995, 16(4):307-314.[赵俊, 陈湘粦. 鲂鱼的头骨发育及其适应意义[J]. 动物学研究, 1995, 16(4):307-314.]
    [19] Kohno H, Taki Y, Ogasawara Y, et al. Development of swimming and feeding functions in larval Pagrus major[J]. Japanese Journal of Ichthyology, 1983, 30(1):47-60.
    [20] Mabee P M, Crotwell P L, Bird N C, et al. Evolution of median fin modules in the axial skeleton of fishes[J]. Journal of Experimental Zoology, 2010, 294(2):77-90.
    [21] Tang Y P, Fan E Y. A study on the development of digestive organs and feeding habit of Siniperca chuatsi (Basilewsky)[J]. Acta Hydrobiologica Sinica, 1993, 17(4):329-336.[唐宇平, 樊恩源. 鳜鱼消化器官的发育和食性的研究[J]. 水生生物学报, 1993, 17(4):329-336.]
    [22] Zhang F Y, Hu W. Histological observation of digestive organ tissue of Siniperca chuatsi[J]. Acta Hydrobiologica Sinica, 1998, 22(4):380-382.[张甫英, 胡炜. 鳜消化器官的组织学观察[J]. 水生生物学报, 1998, 22(4):380-382.]
    [23] Zhou C J, Pu D Y, Zhao H P, et al. Observation of early life habits of Siniperca kneri Garman[J]. Freshwater Fisheries, 2006, 36(3):44-46.[周传江, 蒲德永, 赵海鹏, 等. 大眼鳜早期生活习性的观察[J]. 淡水渔业, 2006, 36(3):44-46.]
    [24] Jiang Y G. Biology of Siniperca chuatsi in Liangzi Lake[J]. Acta Hydrobiologica Sinica, 1959, 5(3):375-384.[蒋一珪. 梁子湖鳜鱼的生物学[J]. 水生生物学报, 1959, 5(3):375-384.]
    [25] Doi T, Aoyama S, Kinoshita I. Ontogeny of the mandarinfish Siniperca chuatsi (Perciformes:Sinipercidae) reared in aquarium[J]. Ichthyological Research, 2004, 51(4):337-342.
    [26] Yang D Q, Chen F, Fang C Y, et al. Feeding habits and growth characteristics of Siniperca chuatsi in Yangqi Lake[J]. Reservoir Fisheries, 1999, 19(3):11-12, 24.[杨代勤, 陈芳, 方长琰, 等. 洋圻湖鳜鱼的食性及生长特性[J]. 水利渔业, 1999, 19(3):11-12, 24.]
    [27] Wu X F, Zhao J L, Qian Y Z, et al. Histological study of the digestive system organogenesis for the mandarin fish, Siniperca chuatsi[J]. Zoological Research, 2007, 28(5):511-518.[吴雪峰, 赵金良, 钱叶洲, 等. 鳜消化系统器官发生的组织学[J]. 动物学研究, 2007, 28(5):511-518.]
    [28] Wang M X. A comparative study on the development of early life stage and appendicular skeleton about Tanakia chii and Tanakia himantegus[D]. Shanghai:Shanghai Ocean University, 2014:7-16.[王明星. 齐氏田中鳑鲏与革条田中鳑鲏早期发育和附肢骨骼发育的比较研究[D]. 上海:上海海洋大学, 2014:7-16.]
    [29] Chen Y G, Xia D, Zhong J S, et al. Development of the vertebral column and the appendicular skeleton in the larvae andjuveniles of Coilia nasus[J]. Journal of Shanghai Ocean University, 2011, 20(2):217-223.[陈渊戈, 夏冬, 钟俊生, 等. 刀鲚仔稚鱼脊柱和附肢骨骼发育[J]. 上海海洋大学学报, 2011, 20(2):217-223.]
    [30] Deng P P, Shi Y H, Xu J B, et al. Early development of the vertebral column and appendicular skeleton of Alosa sapidissima[J]. Journal of Fishery Sciences of China, 2017, 24(1):73-81.[邓平平, 施永海, 徐嘉波, 等. 美洲鲥仔稚鱼脊柱及附肢骨骼系统的早期发育[J]. 中国水产科学, 2017, 24(1):73-81.]
    [31] Zhang Z F, Shi Y H, Zhang G Y, et al. Early development of the vertebral column and the appendicular skeleton in the Coilia nasus[J]. Fisheries Science & Technology Information, 2015, 42(4):175-178.[张宗锋, 施永海, 张根玉, 等. 刀鲚脊柱及附肢骨骼早期发育研究[J]. 水产科技情报, 2015, 42(4):175-178.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹晓颖,赵金良,陈晓武,周昊天,郝月月,赵岩.鳜仔稚鱼骨骼系统骨化发育[J].中国水产科学,2019,26(2):304-313
CAO Xiaoying, ZHAO Jinliang, CHEN Xiaowu, ZHOU Haotian, HAO Yueyue, ZHAO Yan. Early ossification of the skeletal system in larval and juvenile Siniperca chuatsi[J]. Journal of Fishery Sciences of China,2019,26(2):304-313

复制
分享
文章指标
  • 点击次数:706
  • 下载次数: 746
  • HTML阅读次数: 955
  • 引用次数: 0
历史
  • 在线发布日期: 2019-03-27
文章二维码