Aja-miR-22和Aja-miR-27及其靶基因在刺参盐度胁迫后的表达模式
作者:
作者单位:

大连海洋大学, 农业农村部北方海水增养殖重点实验室, 辽宁 大连 116223

作者简介:

郭然(1996-),女,硕士研究生,研究方向水产动物遗传育种与繁殖.E-mail:605966912@qq.com

中图分类号:

S94;S917

基金项目:

国家重点研发计划项目(2018YFD0901601).


Expression profiles of Aja-miR-22 and Aja-miR-27, and their target genes, in sea cucumber under salinity stress
Author:
Affiliation:

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs;Dalian Ocean University, Dalian 116223, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    盐度是影响刺参()生长发育最重要的环境因子之一,而microRNAs (miRNAs)可通过与靶基因的mRNA特异性结合,实现对其靶基因的表达调控。为探究Aja-miR-22和Aja-miR-27及对应的两个靶基因在刺参低盐海水胁迫下的表达情况,本实验将刺参放入盐度18低盐海水中进行胁迫,取盐度胁迫后的3 h、6 h、12 h、24 h、48 h和72 h不同时间点和正常盐度海水中刺参的体腔液,提取RNA和miRNA,利用qRT-PCR技术进行表达分析。结果表明Aja-miR-22和Aja-miR-27这两个miRNA在盐度胁迫后各时段均呈现出上调表达趋势,且都在胁迫后3 h达到最大值,分别为对照组的36倍和16倍。Aja-miR-22和Aja-miR-27在胁迫后各个表达量都均高于对照组,其中Aja-miR-22在胁迫后3 h、48 h与对照组差异极显著(<0.01)。靶基因棘皮动物微管相关蛋白(77 kD echinoderm microtubule-associated protein)与一般转录因子IIE亚基2(general transcription factor IIE subunit 2)的表达趋势基本一致,在胁迫后3 h降到最低值,其中棘皮动物微管相关蛋白(EMAP)在胁迫后各个时间点表达量均低于对照组,除胁迫后48 h外其余时间点均与对照组差异极显著(<0.01),而一般转录因子IIE亚基2(general transcription factor IIE subunit 2)在胁迫后48 h和胁迫后72 h的表达量与对照组差异极显著(<0.01)。Aja-miR-22和Aja-miR-27的表达趋势与其靶基因表达模式在24 h前均呈现负相关关系。上述研究结果说明Aja-miR-22和Aja-miR-27及其对应的靶基因在刺参的盐度适应调节机制中发挥作用。

    Abstract:

    Salinity is one of the most important environmental factors affecting the growth and development of sea cucumbers. microRNAs (miRNAs) can regulate the expression of their target genes by specifically binding to target mRNA. The expression profiles of Aja-miR-22 and Aja-miR-27, and two target genes, were detected in sea cucumbers that were under low salt stress. RNA and miRNA were extracted from coelomocytes of sea cucumbers in normal salinity seawater and were, after 3 h, 6 h, 12 h, 24 h, 48 h, and 72 h exposure to salinity stress, analyzed by qRT-PCR. The results showed that the expression profile of Aja-miR-22 was consistent with that of Aja-miR-27 at each time point after initial salinity stress. Two miRNAs were induced to up-regulate and reached maximum expression at 3 h after stress. The expression maximums of Aja-miR-22 and Aja-miR-27 were 36 times and 16 times more than in the control group, respectively. The expression levels of Aja-miR-22 and Aja-miR-27 were higher than those of the control group under salinity stress, and Aja-miR-22 was significantly different from the control group at 3 h and 48 h after initial stress exposure (<0.01). Aja-miR-27 was significantly different from the control group at 3 h, 48 h, and 72 h under salinity stress. The expression of the target gene echinoderm microtubule-associated protein (EMAP; 77 kD) was also consistent with the general transcription factor IIE subunit 2, which reached the minimum value at 3 h under salinity stress. The expression level of EMAP was lower than that of the control group at each time point after salinity stress. The general transcription factor IIE subunit 2 (General Transcription Factor IIE Subunit 2) was significantly different from the control group at 48 h and 72 h under salinity stress (<0.01). The expression trends of Aja-miR-22 and Aja-miR-27 were negatively correlated with their target gene expression patterns before 24 h. The above results indicated that Aja-miR-22 and Aja-miR-27, and their corresponding target genes, are involved in the salinity adaptation mechanism of sea cucumber.

    参考文献
    [1] Chen M Y, Storey K B. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation[J]. Marine Genomics, 2014, 13:39-44.
    [2] Huo D, Sun L N, Li X N, et al. Differential expression of miRNAs in the respiratory tree of the Sea cucumber Apostichopus japonicus under hypoxia stress[J]. G3:Genes Genomes Genetics, 2017, 7(11):3681-3692.
    [3] Li C H, Feng W D, Qiu L H, et al. Characterization of skin ulceration syndrome associated microRNAs in sea cucumber Apostichopus japonicus by deep sequencing[J]. Fish & Shellfish Immunology, 2012, 33(2):436-441.
    [4] Sun L N, Sun J C, Li X N, et al. Understanding regulation of microRNAs on intestine regeneration in the sea cucumber Apostichopus japonicus using high-throughput sequencing[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2017, 22:1-9.
    [5] Zhong L, Zhang F, Zhai Y, et al. Identification and comparative analysis of complement C3-associated microRNAs in immune response of Apostichopus japonicus by high-throughput sequencing[J]. Scientific Reports, 2015, 5:17763.
    [6] Zhang P J, Li C H, Zhang R, et al. miR-137 and miR-2008 modulate ROS production in the bacterial-challenged sea cucumber Apostichopus japonicus via combinatorially targeting betaine-homocysteine S-methyltransferase in vitro and in vivo[J]. Genetics, 2015, 201(4):1397-1410.
    [7] Li C H, Zhao M R, Zhang C, et al. miR210 modulates respiratory burst in Apostichopus japonicus coelomocytes via targeting Toll-like receptor[J]. Developmental & Comparative Immunology, 2016, 65:377-381.
    [8] Lu M, Zhang P J, Li C H, et al. MiR-31 modulates coelomocytes ROS production via targeting p105 in Vibrio splendidus challenged sea cucumber Apostichopus japonicus in vitro and in vivo[J]. Fish & Shellfish Immunology, 2015, 45(2):293-299.
    [9] Shao Y N, Li C H, Xu W, et al. miR-31 links lipid metabolism and cell apoptosis in bacteria-challenged Apostichopus japonicus via targeting CTRP9[J]. Frontiers in Immunology, 2017, 8:263.
    [10] Lu M, Zhang P J, Li C H, et al. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1in vitro and in vivo[J]. Scientific Reports, 2015, 5:12608.
    [11] Lv M, Chen H H, Shao Y N, et al. miR-137 modulates coelomocyte apoptosis by targeting 14-3-3ζ in the sea cucumber Apostichopus japonicus[J]. Developmental & Comparative Immunology, 2017, 67:86-96.
    [12] Lv Z, Li C H, Zhang P J, et al. miR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2015, 45(2):431-436.
    [13] Zhang P J, Li C H, Shao Y N, et al. Identification and characterization of miR-92a and its targets modulating Vibrio splendidus challenged Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2014, 38(2):383-388.
    [14] Hu W, Li C L, Zhao B, et al. Effects of low salinity stress on survival, growth and feeding rate of sea cucumber Apostichopus japonicus[J]. Progress in Fishery Sciences, 2012, 33(2):92-96.[胡炜, 李成林, 赵斌, 等. 低盐胁迫对刺参存活、摄食和生长的影响[J]. 渔业科学进展, 2012, 33(2):92-96.]
    [15] Kim T I, Park M W, Cho J K, et al. Survival and histological change of integumentary system of the juvenile sea cucumber, Apostichopus japonicus exposed to various salinity concentrations[J]. Journal of Fisheries and Marine Sciences Education, 2013, 25(6):1360-1365.
    [16] Yuan X T, Yang H S, Wang L L, et al. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinodermata:Holothuroidea)[J]. Acta Ecologica Sinica, 2007, 27(8):3155-3161.
    [17] Geng C F, Tian Y, Shang Y P, et al. Effect of acute salinity stress on Ion homeostasis, Na+/K+-ATPase and histological structure in Sea cucumber Apostichopus japonicus[J]. SpringerPlus, 2016, 5:1977.
    [18] Han X D, Yu S S, Liu Y Y, et al. Effects of salinity on protein intake and protease activity of Apostichopus japonicus[J]. Hubei Agricultural Sciences, 2017, 56(6):1096-1098.[韩晓弟, 于珊珊, 刘莹莹, 等. 盐度对仿刺参蛋白摄入量及蛋白酶活性的影响[J]. 湖北农业科学, 2017, 56(6):1096-1098.]
    [19] Wang G L, Zhu W X, Li Z Z, et al. Effects of water temperature and salinity on the growth of Apostichopus japonicus[J]. Shandong Science, 2007, 20(3):6-9.[王国利, 祝文兴, 李兆智, 等. 温度与盐度对刺参(Apostichopus japonicus)生长的影响[J]. 山东科学, 2007, 20(3):6-9.]
    [20] Dong X L. Ecological and physiological effects on low salt stress in sea cucumber (Apostichopus japonicus)[D]. Qingdao:Ocean University of China, 2013.[董晓亮. 低盐胁迫对刺参(Apostichopus japonicus)生理生态学影响的研究[D]. 青岛:中国海洋大学, 2013.]
    [21] Zhang L B, Feng Q M, Sun L N, et al. Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2018, 25:34-41.
    [22] Tian Y, Mo H B, Chang Y Q. Expression of DD104 gene in sea cucumber Apostichopus japonicus under salinity stress[J]. Journal of Dalian Ocean University, 2013, 28(3):236-240.[田燚, 莫海波, 常亚青. 低盐胁迫下仿刺参DD104基因的定量表达分析[J]. 大连海洋大学学报, 2013, 28(3):236-240.]
    [23] Fu Y R, Tian Y, Chang Y Q, et al. Expression of genes involved in salinity regulation in sea cucumber, Apostichopus japoninus under low salinity stress[J]. Journal of Fishery Sciences of China, 2014, 21(5):902-909.[傅意然, 田燚, 常亚青, 等. 低盐胁迫对刺参4个盐度调节相关基因表达丰度的影响[J]. 中国水产科学, 2014, 21(5):902-909.]
    [24] Tian Y, Jiang Y N, Shang Y P, et al. Establishment of lysozyme gene RNA interference system and its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus)[J]. Fish & Shellfish Immunology, 2017, 65:71-79.
    [25] Tian Y, Liang X W, Chang Y Q, et al. Expression of c-type lysozyme gene in sea cucumber (Apostichopus japonicus) is highly regulated and time dependent after salt stress[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2015, 180:68-78.
    [26] Geng C F. Analysis on salinity related genes expression and histological structure of Apostichopus japonicus[D]. Dalian:Dalian Ocean University, 2016.[庚宸帆. 刺参盐度调节相关基因的定量表达及组织学分析[D]. 大连:大连海洋大学, 2016.]
    [27] Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing[J]. Nature Reviews Genetics, 2015, 16(7):421-433.
    [28] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
    [29] Bartel D P. microRNAs:Target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
    [30] Tarver J E, Sperling E A, Nailor A, et al. miRNAs:small genes with big potential in metazoan phylogenetics[J]. Molecular Biology and Evolution, 2013, 30(11):2369-2382.
    [31] Taylor R S, Tarver J E, Hiscock S J, et al. Evolutionary history of plant microRNAs[J]. Trends in Plant Science, 2014, 19(3):175-182.
    [32] Wang X L, Yin D Q, Li P, et al. microRNA-sequence profiling reveals novel osmoregulatory microRNA expression patterns in catadromous eel Anguilla marmorata[J]. PLoS ONE, 2015, 10(8):e0136383.
    [33] Yan B, Zhao L H, Guo J T, et al. miR-429 regulation of osmotic stress transcription factor 1(OSTF1) in tilapia during osmotic stress[J]. Biochemical and Biophysical Research Communications, 2012, 426(3):294-298.
    [34] Yan B, Guo J T, Zhao L H, et al. MiR-30c:A novel regulator of salt tolerance in tilapia[J]. Biochemical and Biophysical Research Communications, 2012, 425(2):315-320.
    [35] Flynt A S, Thatcher E J, Burkewitz K, et al. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos[J]. The Journal of Cell Biology, 2009, 185(1):115-127.
    [36] Bartel D P. microRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
    [37] Ji W Y, Fu Y S, Shi Z Y, et al. Expression of miR-124 and Otx2 during metamorphosis and verification of their targeting relationship in Paralichthys olivaceusp[J]. Journal of Fishery Sciences of China, 2019, 26(6):1040-1048.[季文瑶, 付元帅, 施志仪, 等. miR-124和Otx2在牙鲆变态发育期间的表达调控及其靶向关系验证[J]. 中国水产科学, 2019, 26(6):1040-1048.]
    [38] Suprenant K A, Dean K, McKee J, et al. EMAP, an echinoderm microtubule-associated protein found in microtubule- ribosome complexes[J]. Journal of Cell Science, 1993, 104(2):445-450.
    [39] Brisch E, Daggett M A, Suprenant K A. Cell cycle-dependent phosphorylation of the 77 kDa echinoderm microtubule- associated protein (EMAP) in vivo and association with the p34cdc2 kinase[J]. Journal of Cell Science, 1996, 109(12):2885-2893.
    [40] Tabur S, Demir K. Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity[J]. Plant Growth Regulation, 2009, 58(1):119-123.
    [41] Kammerer B D, Sardella B A, Kültz D. Salinity stress results in rapid cell cycle changes of tilapia (Oreochromis mossambicus) gill epithelial cells[J]. Journal of Experimental Zoology Part A:Ecological Genetics and Physiology, 2009, 311A(2):80-90.
    [42] Zawel L, Reinberg D. Initiation of transcription by RNA polymerase II:A multi-step process[J]. Progress in Nucleic Acid Research and Molecular Biology, 1993, 44:67-108.
    [43] Drapkin R, Reinberg D. The multifunctional TFIIH complex and transcriptional control[J]. Trends in Biochemical Sciences, 1994, 19(11):504-508.
    [44] Guzder S N, Sung P, Bailly V, et al. RAD25 is a DMA helicase required for DNA repair and RNA polymerase II transcription[J]. Nature, 1994, 369(6481):578-581.
    [45] He Y N, Li W, Lv J, et al. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63(3):1511-1522.
    [46] Hu Y R, Chen L G, Wang H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance[J]. The Plant Journal, 2013, 74(5):730-745.
    引证文献
引用本文

郭然,吴玮杰,商艳鹏,仇雪梅,丁君,李翔,田燚. Aja-miR-22和Aja-miR-27及其靶基因在刺参盐度胁迫后的表达模式[J].中国水产科学,2020,27(4):375-382
GUO Ran, WU Weijie, SHANG Yanpeng, QIU Xuemei, DING Jun, LI Xiang, TIAN Yi. Expression profiles of Aja-miR-22 and Aja-miR-27, and their target genes, in sea cucumber under salinity stress[J]. Journal of Fishery Sciences of China,2020,27(4):375-382

复制
分享
文章指标
  • 点击次数:641
  • 下载次数: 808
  • HTML阅读次数: 849
  • 引用次数: 0
历史
  • 在线发布日期: 2020-04-20
文章二维码