基于混合效应模型的印度洋大眼金枪鱼生长特征异质性分析
DOI:
CSTR:
作者:
作者单位:

1. 上海市水生野生动植物保护研究中心, 上海 200092;
2. 上海海洋大学海洋科学学院, 上海 201306;
3. 国家远洋渔业工程技术研究中心, 上海 201306;
4. 大洋渔业资源可持续开发教育部重点实验室, 上海 201306;
5. 农业农村部大洋渔业开发重点实验室, 上海 201306;
6. 农业农村部大洋渔业资源环境科学观测实验站, 上海 201306

作者简介:

陈锦辉(1974-),男,研究员,研究方向为水生野生动植物保护.E-mail:1114260882@qq.com

通讯作者:

中图分类号:

S931

基金项目:

国家重点研发计划“蓝色粮仓科技创新”项目(2019YFD0901404);国家自然科学基金项目(31902372);中国博士后科学基金面上项目(2019M651475);大洋渔业资源可持续开发教育部重点实验室开放基金(2019301101).


Growth heterogeneity of bigeye tuna (Thunnus obesus) in the Indian Ocean explored by the mixed effects model
Author:
Affiliation:

1. Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200092, China;
2. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
3. National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China;
4. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;
5. Key Laboratory of Oceanic Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China;
6. Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大眼金枪鱼()作为一种具有极高经济价值的公海金枪鱼捕捞对象,其资源状况和管理情况一直受到学者的高度关注,而对其生活史特征,尤其是生长特征的研究,是对大眼金枪鱼进行准确资源评估和合理养护管理的基础和关键部分。本研究基于中国科学观察员于2013-2018年收集的印度洋大眼金枪鱼生物学数据,通过体长-体重关系研究其生长特征,并运用线性混合效应模型分析其生长特征在不同年份、季度和海域间的差异。依据收集的8806尾大眼金枪鱼样本,求得其上颌叉长FL和加工重量GT(去掉鳃、尾鳍和内脏后的重量)之间的幂函数关系式,其中条件因子的估计值(95%置信区间)为3.08(3.07~3.10)。本研究构建了7个不同异质性组合的混合效应模型,AIC值和均方根误差值均表明同时考虑年份、季度和区域差异的模型拟合效果最佳。最佳模型的结果表明,印度洋15°S以南和以北海域的大眼金枪鱼个体生长特征差异极小,北部个体仅略重于南部个体;相比于第三和第四季度,相同体长的大眼金枪鱼在第一和第二季度具有更多的重量;2015年和2016年采集的个体在同样体长时体重更重,而2014年和2017年的大眼金枪鱼体重比其他年份更轻。本研究结果旨在为大眼金枪鱼的资源评估及渔业管理提供基础资料,异质性的研究方法也可以应用于其他近海、远洋渔业种类的生活史特征、种群特征和资源评估研究。

    Abstract:

    As a commercially important tuna in the high seas, bigeye tuna () has become one of the most important target species in Chinese distant-water fisheries. The research and management of is receiving more interest, especially for its life history, stock assessment, and fishery management. The fish life history traits including growth, is the fundamental and key process of population dynamics and stock assessment, with an increasing attention in recent years. Based on the data collected by Chinese observers onboard from 2013 to 2018, the growth of the bigeye tuna was analyzed, with the spatial-temporal variations. A total of 8806 individuals were measured, including the wet weight (kg; after removing gills, gut, and tail) and fork length (cm). The predicted power length-weight function indicated that the estimated condition factor , while the estimated allometric growth parameter is 3.08 (3.07-3.10). Mixed effects models were established to estimate the variations from different years, quarters, and regions, while 7 model candidates were considered with different random effect sources. AIC (Akaike Information Criterion) and Root Mean Square Error values revealed that the mixed effect model performed best with all variations from years, quarters, and regions. Results from the best model indicated that:(1) there were no substantial differences between bigeye tuna in the north or south Indian Ocean divided by 15°S; (2) individuals collected in the first and second quarters tended to gain more weight than those collected in the third and fourth quarters at the same longitude; and (3) individuals collected in 2015 and 2016 grew better, while those collected in 2014 and 2017 gained much less weight at the same fork length. The outcome from this study could assist the stock assessment and fishery management for this important tuna species in the Indian Ocean, and the methodology used in this paper can also be applied to the heterogeneity studies of other species in both coast water and far ocean.

    参考文献
    相似文献
    引证文献
引用本文

陈锦辉,王学昉,田思泉,高春霞,麻秋云,刘志豪.基于混合效应模型的印度洋大眼金枪鱼生长特征异质性分析[J].中国水产科学,2020,27(5):570-578
CHEN Jinhui, WANG Xuefang, TIAN Siquan, GAO Chunxia, MA Qiuyun, LIU Zhihao. Growth heterogeneity of bigeye tuna (Thunnus obesus) in the Indian Ocean explored by the mixed effects model[J]. Journal of Fishery Sciences of China,2020,27(5):570-578

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-15
  • 出版日期:
文章二维码