纳米硒对齐口裂腹鱼生长、肌肉成分、血清生化及抗氧化指标的影响
作者:
作者单位:

四川农业大学食品学院, 四川 雅安 625014

作者简介:

李彦红(1993-),女,硕士研究生,主要研究方向为功能性食品.E-mail:2258110641@qq.com

中图分类号:

S963

基金项目:

四川省科技厅重点研发项目(2019YFN0048);四川农业大学“211”工程双支计划项目(2016)(03571650).


Influence of dietary nano-selenium on growth, muscle composition, and serum biochemical and antioxidant indices of Schizothorax prenanti
Author:
Affiliation:

College of Food Science, Sichuan Agricultural University, Ya'an 625014, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究纳米硒(nano-selenium,Nano-Se)对齐口裂腹鱼()生长性能、肌肉成分、血清生化指标及抗氧化性能的影响,在基础饲料中分别添加0.0 mg/kg、0.2 mg/kg、0.4 mg/kg、0.8 mg/kg纳米硒,分别饲喂体重为(98.75±5.74)g的齐口裂腹鱼8周。结果表明,与对照组相比,不同添加剂量纳米硒均增加齐口裂腹鱼的特定生长率和肠体指数,降低饵料系数(<0.05)。另外,纳米硒各剂量组鱼体血清球蛋白、总胆固醇和甘油三酯含量,超氧化物歧化酶活性均显著升高,丙二醛和葡萄糖含量显著降低(<0.05)。日粮添加0.4 mg/kg和0.8 mg/kg的纳米硒时,血清谷胱甘肽过氧化物酶活性显著增加;日粮添加0.8 mg/kg的纳米硒,血清一氧化氮合酶活性和肌肉硒含量显著增加(<0.05)。综上,在促进齐口裂腹鱼的生长发育、改善肌肉品质以及提高血清抗氧化性能方面,3种剂量的纳米硒均产生了一定的影响,基于特定生长率的二次回归模型拟合,获得齐口裂腹鱼饲料中纳米硒最适添加量为0.52 mg/kg,综合考虑对生长性能和抗氧化能力的影响,推荐齐口裂腹鱼饲料中纳米硒的添加量为0.5 mg/kg。

    Abstract:

    The present study aimed to determine the effects of dietary nano-selenium (0.0 mg/kg, 0.2 mg/kg, 0.4 mg/kg, 0.8 mg/kg) added to feed for eight weeks on growth, muscle composition, serum biochemical and antioxidant indices of individuals with similar body weight (98.75±5.74 g) were randomly assigned to four groups with three replicates per group and 30 fish per replicate. Fish were starved for 24 h before sampling, and body weight, length, and width were prepared for measurement of growth indicators. The head, kidneys, spleen, liver, mesonephros, and intestines were prepared for the immune organ index. Muscle was prepared for body composition analysis. Blood samples were collected from the caudal vein and were used directly to assay indicators in the serum of . The results were as follows. Compared with the control group (basal diet), specific growth rate (SGR) and intestinal weight index (IWI) were increased, and feed conversion ratio (FCR) was decreased, with the increasing of supplement of nano-selenium (<0.05). Weight gain rate (WGR) also increased when diets were supplemented with 0.2 mg/kg nano-selenium. The intestinal ratio (IR) of was significantly increased when 0.4 mg/kg and 0.8 mg/kg nano-selenium was added (<0.05). Additionally, the crude protein content of muscles was significantly increased when 0.4 mg/kg and 0.8 mg/kg nano-selenium was added (<0.05). Compared with the control group, the serum globulin (GLOB), triglyceride (TG), and cholesterol (TC) content of the fish were significantly increased when diets were supplemented with different doses of nano-selenium (<0.05). At the same time, the serum superoxide dismutase (SOD) activity of fish was significantly increased, and the serum malondialdehyde (MDA) and glucose (Glu) content of fish were significantly decreased (<0.05) in the Se supplemental group. The serum glutathione peroxidase (GSH-Px) activity of was significantly increased when 0.4 mg/kg and 0.8 mg/kg nano-selenium was added to the diet. Serum nitric oxide synthase (iNOS) activity and muscle selenium content was significantly increased when 0.8 mg/kg nano-selenium was added. Taken together, the results showed that nano-selenium had certain effects on the growth and development of the fish, and that it improved muscle quality and serum antioxidant performance. The optimal levels of dietary nano-selenium supplement in were estimated to be 0.52 mg/kg using quadratic regression analysis based on specific growth rate. Through comprehensive consideration of growth performance, antioxidant status, and lipid metabolism, the supplement level of 0.5 mg/kg nano-selenium is recommended in diets of . This study provides a new theoretical basis for the development of nutritional feed for .

    参考文献
    [1] Zhao J, Wang L. Changes in serum indices of Schizothorax prenanti challenged with Aeromonas hydrophila[J]. Fisheries Science, 2015, 34(3):178-181.[赵静, 王利. 齐口裂腹鱼感染嗜水气单胞菌后血清指标的变化[J]. 水产科学, 2015, 34(3):178-181.]
    [2] Yang Z F, Liu B, Xu P, et al. Effects of crowding stress on gene expression of antioxidant enzymes and Nrf2-Keap1 signaling pathway in different tissues of blunt snout bream (Megalobrama amblycephala) for in-pond raceway aquaculture systems[J]. Journal of Fishery Sciences of China, 2019, 26(2):232-241.[杨震飞, 刘波, 徐跑, 等. 池塘工业化跑道式循环水高密度应激对团头鲂组织抗氧化酶及其Nrf2-Keap1信号通路的影响[J]. 中国水产科学, 2019, 26(2):232-241.]
    [3] Lin Y H, Shiau S Y. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus[J]. Aquaculture, 2005, 250(1-2):356-363.
    [4] Küçükbay F Z, Yazlak H, Karaca I, et al. The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions[J]. Aquaculture Nutrition, 2009, 15(6):569-576.
    [5] Zhou X X, Wang Y B, Gu Q, et al. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio)[J]. Aquaculture, 2009, 291(1-2):78-81.
    [6] Zhang J S, Wang X F, Xu T W. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity:Comparison with Se-methylselenocysteine in mice[J]. Toxicological Sciences, 2008, 101(1):22-31.
    [7] Jia X, Li N, Chen J. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats[J]. Life Sciences, 2005, 76(17):1989-2003.
    [8] Forootanfar H, Adeli Sardou M, Nikkhoo M, et al. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide[J]. Journal of Trace Elements in Medicine and Biology, 2014, 28(1):75-79.
    [9] Zheng Q R, Wu Y L, Xu H L, et al. Immune responses to Aeromonas hydrophila infection in Schizothorax prenanti fed with oxidized konjac glucomannan and its acidolysis products[J]. Fish & Shellfish Immunology, 2016, 49:260-267.
    [10] Zhou B, Long Z H, He B. Study on reproductive biology of Schizothorax prenanti[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(2):811-813.[周波, 龙治海, 何斌. 齐口裂腹鱼繁殖生物学研究[J]. 西南农业学报, 2013, 26(2):811-813.]
    [11] Su C F, Luo L, Wen H, et al. Effects of dietary selenium on growth performance, quality and digestive enzyme activities of grass carp[J]. Journal of Shanghai Fisheries University, 2007, 16(2):124-129.[苏传福, 罗莉, 文华, 等. 硒对草鱼生长、营养组成和消化酶活性的影响[J]. 上海水产大学学报, 2007, 16(2):124-129.]
    [12] Ashouri S, Keyvanshokooh S, Salati A P, et al. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio)[J]. Aquaculture, 2015, 446:25-29.
    [13] Qin F J, Jin J, Gu H J, et al. Effect of nanometer selenium on nonspecific immunity and antioxidase of GIFT stressed by cadmium[J]. Journal of Agro-Environment Science, 2011, 30(6):1044-1050.[秦粉菊, 金琎, 顾华杰, 等. 纳米硒对镉胁迫下吉富罗非鱼非特异性免疫和抗氧化功能的影响[J]. 农业环境科学学报, 2011, 30(6):1044-1050.]
    [14] Chen J J, Cao J L, Luo Y J, et al. Effects of nano-selenium on antioxidant capacity and histopathology of Cyprinus carpio liver under fluoride stress[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2970-2976.[陈剑杰, 曹谨玲, 罗永巨, 等. 纳米硒对氟胁迫下鲤鱼肝抗氧化功能及组织结构的影响[J]. 应用生态学报, 2013, 24(10):2970-2976.]
    [15] Wang X F, Li X Q, Leng X J, et al. Effects of dietary cottonseed meal level on the growth, hematological indices, liver and gonad histology of juvenile common carp (Cyprinus carpio)[J]. Aquaculture, 2014, 428-429:79-87.
    [16] Hamilton S J. Review of selenium toxicity in the aquatic food chain[J]. Science of the Total Environment, 2004, 326(1-3):1-31.
    [17] Wang Y B, Song D F. Biological effect of basal diet supplemented with selenium from different sources on crucian carp (Carassius auratus gibelio)[J]. Feed Industry, 2011, 32(14):37-40.[王彦波, 宋达峰. 不同来源硒对异育银鲫的生物学效应研究[J]. 饲料工业, 2011, 32(14):37-40.]
    [18] Yang Y Z, Nie J Q, Tan B P, et al. Effects of selenium source and selenium level on growth performance, liver and serum antioxidant indices and selenium content in tissues of juvenile cobia (Rachycentron canadum)[J]. Chinese Journal of Animal Nutrition, 2016, 28(12):3894-3904.[杨原志, 聂家全, 谭北平, 等. 硒源与硒水平对军曹鱼幼鱼生长性能、肝脏和血清抗氧化指标及组织硒含量的影响[J].动物营养学报, 2016, 28(12):3894-3904.]
    [19] Nugroho R A, Fotedar R. Effects of dietary organic selenium on immune responses, total selenium accumulation and digestive system health of marron, Cherax cainii (Austin, 2002)[J]. Aquaculture Research, 2015, 46(7):1657-1667.
    [20] Zhang Q F, Li Y W, Liu Z H, et al. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae[J]. Aquatic Toxicology, 2016, 181:76-85.
    [21] Yuan S S, Lv Z M, Zhu A Y, et al. Negative effect of chronic cadmium exposure on growth, histology, ultrastructure, antioxidant and innate immune responses in the liver of zebrafish:Preventive role of blue light emitting diodes[J]. Ecotoxicology and Environmental Safety, 2017, 139:18-26.
    [22] Saffari S, Keyvanshokooh S, Zakeri M, et al. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio)[J]. Fish Physiology and Biochemistry, 2018, 44(4):1087-1097.
    [23] Zhao F, Zhuang P, Song C, et al. Amino acid and fatty acid compositions and nutritional quality of muscle in the pomfret, Pampus punctatissimus[J]. Food Chemistry, 2010, 118(2):224-227.
    [24] Chen C X, Shang X D, M C, et al. Effect of nano-selenium on growth performance, body composition and selenium content of Cynoglossus semilaevis Gunther[J]. Jiangsu Agricultural Sciences, 2018, 46(20):180-183.[陈春秀, 尚晓迪, 马超, 等. 纳米硒对半滑舌鳎幼鱼生长、体成分组成和硒含量的影响[J]. 江苏农业科学, 2018, 46(20):180-183.]
    [25] Shi M M, Qin F J, Yuan L X, et al. Effects of nano-Se on growth performance, selenium content and nutrient composition of Chinese mitten crabs (Eriocheir sinensis)[J]. Feed Industry, 2015, 36(10):21-25.[侍苗苗, 秦粉菊, 袁林喜, 等. 纳米硒对中华绒螯蟹生长性能、硒含量和营养组成的影响[J]. 饲料工业, 2015, 36(10):21-25.]
    [26] de Riu N, Lee J W, Huang S S Y, et al. Effect of dietary selenomethionine on growth performance, tissue burden, and histopathology in green and white sturgeon[J]. Aquatic Toxicology, 2014, 148:65-73.
    [27] Tashjian D H, Teh S J, Sogomonyan A, et al. Bioaccumulation and chronic toxicity of dietary l-selenomethionine in juvenile white sturgeon (Acipenser transmontanus)[J]. Aquatic Toxicology, 2006, 79(4):401-409.
    [28] Bunglavan S J, Garg A K, Dass R S, et al. Effect of supplementation of different levels of selenium as nanoparticles/sodium selenite on blood biochemical profile and humoral immunity in male Wistar rats[J]. Veterinary World, 2014, 7(12):1075-1081.
    [29] Kraugerud O F, Penn M, Storebakken T, et al. Nutrient digestibilities and gut function in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy[J]. Aquaculture, 2007, 273(1):96-107.
    [30] Ju W, Ji M, Li X, et al. Relationship between higher serum selenium level and adverse blood lipid profile[J]. Clinical Nutrition, 2018, 37(5):1512-1517.
    [31] Muñoz M, Cedeño R, Rodrı́guez J, et al. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei[J]. Aquaculture, 2000, 191(1-3):89-107.
    [32] Qin J F, Chen H G, Cai W G, et al. Effects of di-n-butyl phthalate on the antioxidant enzyme activities and lipid peroxidation level of Perna viridis[J]. Chinese Journal of Applied Ecology, 2011, 22(7):1878-1884.[秦洁芳, 陈海刚, 蔡文贵, 等. 邻苯二甲酸二丁酯对翡翠贻贝抗氧化酶及脂质过氧化水平的影响[J]. 应用生态学报, 2011, 22(7):1878-1884.]
    [33] Stohs S J, Bagchi D, Hassoun E, et al. Oxidative mechanisms in the toxicity of chromium and cadmium ions[J]. Journal of Environmental Pathology, Toxicology and Oncology, 2001, 20(2):77-88.
    [34] Murakami A. Chemoprevention with phytochemicals targeting inducible nitric oxide synthase[M]//Forum of Nutrition. Basel:KARGER, 2009:193-203.
    [35] Sarkar B, Bhattacharjee S, Daware A, et al. Selenium nanoparticles for stress-resilient fish and livestock[J]. Nanoscale Research Letters, 2015, 10:371.
    [36] HU J R, Wang G X, Sun Y P, et al. Effects of dietary sodium selenite and selenoyeast on growth performance, antioxidant responses and low temperature stress resistance of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Journal of Fisheries of China, 2019, 43(11):2394-2404.[胡俊茹, 王国霞, 孙育平, 等. 亚硒酸钠和酵母硒对黄颡鱼幼鱼生长性能、抗氧化能力及抗低温应激的影响[J]. 水产学报, 2019, 43(11):2394-2404.]
    [37] Huang B, Zhang J, Hou J, et al. Free radical scavenging efficiency of Nano-Se in vitro[J]. Free Radical Biology & Medicine, 2003, 35(7):805-813.
    [38] Hao X F, Ling Q F, Hong F S. Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus)[J]. Fish Physiology and Biochemistry, 2014, 40(5):1313-1323.
    [39] Kohshahi A J, Sourinejad I, Sarkheil M, et al. Dietary cosupplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium):Influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss)[J]. Fish Physiology and Biochemistry, 2019, 45(2):793-804.
    [40] Patrick L. Selenium biochemistry and cancer:A review of the literature[J]. Alternative Medicine Review, 2004, 9(3):239-258.
    [41] Han D, Xie S, Liu M, et al. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio)[J]. Aquaculture Nutrition, 2011, 17(3):e741-e749.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李彦红,张飞飞,黄丽娟,石艳平,王依,廖茂雯,邬应龙.纳米硒对齐口裂腹鱼生长、肌肉成分、血清生化及抗氧化指标的影响[J].中国水产科学,2020,27(6):682-691
LI Yanhong, ZHANG Feifei, HUANG Lijuan, SHI Yanping, WANG Yi, LIAO Maowen, WU Yinglong. Influence of dietary nano-selenium on growth, muscle composition, and serum biochemical and antioxidant indices of Schizothorax prenanti[J]. Journal of Fishery Sciences of China,2020,27(6):682-691

复制
分享
文章指标
  • 点击次数:461
  • 下载次数: 774
  • HTML阅读次数: 792
  • 引用次数: 0
历史
  • 在线发布日期: 2020-06-19
文章二维码