中国水产科学  2018, Vol. 25 Issue (1): 53-59  DOI: 10.3724/SP.J.1118.2018.17034
0

引用本文 

张振忠, 马淑伟, 郑明驿, 王军, 汝少国. 鲫卵黄脂磷蛋白的纯化鉴定及其夹心ELISA的建立[J]. 中国水产科学, 2018, 25(1): 53-59. DOI: 10.3724/SP.J.1118.2018.17034.
ZHANG Zhenzhong, MA Shuwei, ZHENG Mingyi, WANG Jun, RU Shaoguo. Purification and characterization of lipovitellin from crucian carp (Carassius carassius) and establishment of a sandwich ELISA[J]. Journal of Fishery Sciences of China, 2018, 25(1): 53-59. DOI: 10.3724/SP.J.1118.2018.17034.

基金项目

国家自然科学基金项目(21607144)

作者简介

张振忠(1992-), 男, 硕士研究生, 专业方向为生态毒理学.E-mail:zhangzz178@126.com

通信作者

王军, 副教授, 硕士生导师, 研究方向为生态毒理学.E-mail:wangjun@ouc.edu.cn

文章历史

收稿日期:2017-01-23
修订日期:2017-04-01
鲫卵黄脂磷蛋白的纯化鉴定及其夹心ELISA的建立
张振忠 , 马淑伟 , 郑明驿 , 王军 , 汝少国     
中国海洋大学 海洋生命学院, 山东 青岛 266003
摘要:鲫(Carassius carassius)卵黄原蛋白(vitellogenin,Vtg)是检测水体环境雌激素活性常用的生物标志物。本研究利用凝胶过滤结合离子交换层析与选择性沉淀结合离子交换层析2种方法,从鲫卵巢匀浆液中纯化得到了卵黄脂磷蛋白(lipovitellin,Lv),经鉴定该蛋白含有糖、磷、脂基团,天然分子量约为521 kD,SDS变性电泳显示分子量为117 kD和103 kD的2个亚基。Western blot结果显示,金鱼(Carassius auratus)Lv抗体和斑马鱼(Danio rerio)Lv抗体都能与鲫Lv发生很好的交叉反应。利用纯化的鲫Lv与金鱼Lv抗体和斑马鱼Lv抗体建立了2种夹心ELISA,发现金鱼Lv和鲫Lv的结合曲线基本重合,并且利用鲫Lv与金鱼Lv抗体建立的夹心ELISA工作范围为15.6~1000 ng/mL,检出限约为6.8 ng/mL,显著低于利用斑马鱼Lv抗体建立的夹心ELISA,结合此前研究者建立的鲫Vtg竞争ELISA,为鲫Vtg指标的测定提供了可靠方法。
关键词    卵黄脂磷蛋白    纯化    性质鉴定    ELISA    
Purification and characterization of lipovitellin from crucian carp (Carassius carassius) and establishment of a sandwich ELISA
ZHANG Zhenzhong , MA Shuwei , ZHENG Mingyi , WANG Jun , RU Shaoguo     
Marine Life Science College, Ocean University of China, Qingdao 266003, China
Abstract: Crucian carp (Carassius carassius) vitellogenin (Vtg) is a commonly used biomarker for the detection of estrogenic activity in aquatic environments. In this study, gel filtration combined with ion-exchange chromatography and selective precipitation combined with ion-exchange chromatography were used to purify lipovitellin (Lv) from ovarian homogenates of crucian carp. Lv was identified as a phospholipogly coprotein with an apparent molecular weight of~521 kD and separated into two major polypeptides corresponding to~117 and~103 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results of the western blot showed that both anti-goldfish (Carassius auratus) Lv antibodies and anti-zebrafish (Danio rerio) Lv antibodies had good cross-reaction with crucian carp Lv. Using anti-goldfish Lv antibody, anti-zebrafish Lv antibody, and purified crucian carp Lv, two sandwich enzyme-linked immunosorbent assays (ELISAs) were established. The results showed that the binding curves of goldfish Lv and crucian carp Lv basically overlapped. The sandwich ELISA developed using anti-goldfish Lv antibodies and purified crucian carp Lv had a working range form 15.6 to 1000 ng/mL and a detection limit of 6.8 ng/mL, which was significantly lower than that of the anti-zebrafish Lv antibody-based ELISA and other ELISAs previously reported for crucian carp Vtg. Therefore, we suggest that it is a reliable tool for the quantification of crucian carp Vtg.
Key words: Carassius carassius    lipovitellin    purification    characterization    ELISA    

鱼类卵黄原蛋白(vitellogenin, Vtg)是国际上通用的环境雌激素生物标志物, 其测定通常采用酶联免疫吸附方法(ELISA)。Vtg在纯化和保存过程中容易发生降解[1], 会降低以Vtg抗原建立的ELISA的精确度, 从而给样品Vtg的定量结果造成误差[2-3]。最近, 有研究发现Vtg在卵巢中的主要酶解产物——卵黄脂磷蛋白(lipovitellin, Lv)非常稳定, 并且与Vtg具有相同的免疫原性, 以Lv代替Vtg用作抗原建立的ELISA能够更加准确地定量鱼类Vtg[4]

鲫(Carassius carassius)是野外水体环境雌激素检测常用的受试鱼种[5-6]。鲫Vtg指标被广泛用于评价河流、湖泊和污水处理厂排水等多种水体的雌激素污染状况[7-9], 但是这些研究都是利用以Vtg为抗原建立的ELISA方法。为准确定量鲫Vtg, 本研究对鲫Lv进行了分离纯化与性质鉴定, 并利用本实验室制备的斑马鱼(Danio rerio) Lv抗体和金鱼(Carassius auratus) Lv抗体开发了2种ELISA方法, 以期建立高精确度的鲫Vtg检测方法。

1 材料与方法 1.1 实验用鱼

性成熟的鲫购自青岛市市南区水产市场, 体重(110±20) g, 体长(20±1) cm。经0.075 g/L的MS- 222麻醉后, 解剖, 取雌鱼卵巢, 用于Lv的纯化。

1.2 卵巢匀浆液的制备

采用Hiramatsu等[10]的方法, 将5倍重量的匀浆液(20 mmol/L Tris-HCl, 10 mmol/L EDTA和100 mmol/L NaCl, pH 7.5)加入到卵巢中, 在冰浴条件下用玻璃匀浆器匀浆, 4℃, 10000 g离心15 min, 上清液用0.45 μm滤膜过滤后, 分装备用。

1.3 卵黄脂磷蛋白的纯化 1.3.1 纯化方案I:凝胶过滤结合离子交换层析

按照单瑞后等[11]的方法将1 mL卵巢匀浆液进行凝胶过滤层析(Sephacryl S-300 HR 16/70; GE Healthcare, Uppsala, Sweden), 将可能含有Lv蛋白的洗脱液进行离子交换层析(DEAE-Sepharose F F 12/20; GE Healthcare)。用含有0.07 mol/L、0.1 mol/L、0.2 mol/L和1 mol/L NaCl的25 mmol/L Tris-HCl缓冲液(pH 7.5)依次进行洗脱, 收集洗脱液, 经Native-PAGE检测后, 保存于–80℃。

1.3.2 纯化方案II:选择性沉淀结合离子交换层析

选择性沉淀法根据Norberg[12]的方法略作调整。向1 mL卵巢匀浆液中加入2 mL 20 mmol/L EDTA (pH 7.7)和0.1 mL 0.5 mol/L MgCl2, 随后用10 mL预冷的双蒸水稀释, 4000 g离心20 min, 取上清, 按照1.3.1的方法进行离子交换层析。

1.4 电泳和特异性染色

Native-PAGE按照Davis[13]的方法, 制备4.0%的浓缩胶和7.5%的分离胶, 将10 μL样品缓冲液(0.20 mol/L Tris-HCl, pH 6.8, 25%甘油, 0.1%溴酚兰)加入到等体积的样品中, 离心混匀后每孔上样10 μL, 电压150 V, 4℃电泳。电泳结束后, 将凝胶取下分别进行考马斯亮蓝、Schiff试剂[14]、甲基绿[15]和苏丹黑B[16]染色。

1.5 分子量的测定

采用5%~9%的分离胶进行电泳测定Lv的天然分子量。标准蛋白(Amersham, Sweden)含有甲状腺蛋白(669 kD)、铁蛋白(440 kD)、过氧化氢酶(232 kD)、乳酸脱氢酶(140 kD)、牛血清蛋白(67 kD)。电泳结束后进行考马斯亮蓝染色, 根据郭尧君[17]的方法计量分子量。

SDS-PAGE按照Laemmli[18]的方法, 将等体积的SDS缓冲液(0.16 mol/L Tris-HCl, pH 6.8, 25%甘油, 0.1%溴酚兰, 4% SDS, 5%巯基乙醇)加入到10 µL样品中, 煮沸6 min, 电压200 V, 室温下进行电泳, 电泳后用考马斯亮蓝染色。根据标准蛋白的分子量与相对迁移率的线性回归方程计算分子量, 蛋白标准品(Fermentas, UAB)由分子量为20~200 kD的12种高纯蛋白组成。

1.6 蛋白浓度测定

将方案Ⅰ和方案Ⅱ纯化得到的蛋白溶液分别混合后, 利用Bradford法, 以牛血清蛋白(BSA)为标准品计算2种方法纯化的Lv浓度, 并根据它们各自的体积计算2种方法纯化的Lv总量。

1.7 Western blot

按照Towbin等[19]的方法, 取10 μL纯化的鲫Lv与实验室此前纯化的金鱼Lv和斑马鱼Lv进行SDS-PAGE (4%~9%), 电泳结束后将蛋白质转印到PVDF膜上, 4℃封闭过夜后, 将2张PVDF膜分别使用1︰1000稀释的金鱼Lv抗体和斑马鱼Lv抗体室温孵育4 h, 再使用1︰2000稀释的辣根过氧化物酶标二抗, 室温孵育4 h后, 将PVDF膜放入新鲜配制的DAB底物显色液中, 待条带清晰时用蒸馏水终止反应。

1.8 ELISA的建立

参照Mitsui等[20]的方法, 将金鱼Lv抗体和斑马鱼Lv抗体稀释至5 μg/mL后, 4℃包被过夜; 次日, 37℃封闭1 h; 加入1.95~2000 ng/mL的金鱼Lv、斑马鱼Lv和鲫Lv, 孵育1 h; 加入1︰10000倍稀释的HRP标记金鱼Lv抗体和斑马鱼Lv抗体, 37℃孵育1 h; 每孔加入100 μL TMB单组分显色液, 37℃显色10 min后, 加入100 μL 2mol/L H2SO4终止反应, 测定450 nm波长下的吸光值, 并根据Nilsen等[21]的方法计算2种ELISA的检出限。

2 结果与分析 2.1 鲫Lv的纯化 2.1.1 凝胶过滤结合离子交换层析结果

凝胶过滤层析图谱显示, 鲫卵巢匀浆液出现2个洗脱峰, 经Native-PAGE检测, 第2个洗脱峰呈现清晰的蛋白条带(图 1), 收集该峰的洗脱组分进一步进行离子交换层析。

图 1 鲫卵匀浆液的凝胶过滤洗脱曲线(a)与Native-PAGE图谱(b) 1:峰1组分; 2:峰2组分. Fig.1 Elution curve of the egg homogenate of crucian carp on a Sephacryl S-300 gel filtration chromatography column 1: P1; 2: P2.

离子交换层析结果显示, 在0.2 mol/L NaCl处出现了主洗脱峰, 并且该峰检测到一条蛋白条带(图 2)。该峰共收到了9.5 mL洗脱液, 经测定蛋白浓度为0.88 mg/mL, 总蛋白含量为8.36 mg。

图 2 鲫卵匀浆液凝胶过滤结合离子交换层析洗脱曲线(a)与Native-PAGE图谱(b) Fig.2 Elution curve of the egg homogenate of crucian carp on DEAE anion exchange column (a) and native-PAGE analysis (b)
2.1.2 选择性沉淀结合离子交换层析结果

将选择性沉淀后的上清进行离子交换层析, 在0.07 mol/L和0.2 mol/L NaCl处出现洗脱峰, 电泳结果显示0.2 mol/L NaCl洗脱组分呈现单一条带(图 3)。该峰收集了15.3 mL洗脱液, 经测定蛋白浓度为0.63 mg/mL, 总蛋白含量为9.64 mg。

图 3 鲫卵匀浆液选择性沉淀后离子交换层析洗脱曲线(a)和Native-PAGE图谱(b) 1: 0.07 mol/L NaCl; 2: 0.2 mol/L NaCl. Fig.3 Elution curve of ion exchange chromatography after selective precipitation of the crucian carp egg homogenate (a) and native-PAGE analysis (b) Lane 1: 0.07 mol/L NaCl; lane 2: 0.2 mol/L NaCl.
2.2 性质鉴定 2.2.1 糖、磷、脂特征性测定

将纯化的蛋白进行Native-PAGE后, 分别用考马斯亮蓝、Schiff试剂、甲基绿、苏丹黑B染色, 结果显示该蛋白能同时被4种染色方法着色(图 4)。

图 4 鲫Lv的糖、磷、脂特异性染色 1.考马斯亮蓝染色; 2.脂蛋白染色; 3.糖蛋白染色;
4.磷蛋白染色.
Fig.4 Determination of carbohydrate, lipid and phosphorus in the crucian carp Lv Lane 1: stained by CBB G250; lane 2: lipoprotein stained by Sudan black B; lane 3: glycoportein stained by Schiff reagent; 4: phosphoprotein stained by Methyl green.
2.2.2 分子量测定

根据蛋白条带相对迁移率测得鲫Lv的天然分子量约为521 kD, 在SDS-PAGE中显示分子量分别为117 kD和103 kD的2条清晰条带与1条分子量约为75 kD的模糊条带(图 5)。

图 5 鲫Lv天然分子量(a)和变性条件分子量(b) 1:标准蛋白; 2:鲫Lv. Fig.5 Crucian carp Lv natural molecular weight (a) and denaturing conditions molecular weight (b) Lane 1: maker; lane 2: crucian carp Lv.
2.3 Western blot结果

Western blot结果显示, 金鱼Lv抗体和斑马鱼Lv抗体都能与金鱼、斑马鱼和鲫的Lv发生反应, 其中金鱼Lv呈现多个条带, 斑马鱼和鲫Lv呈现3条清晰的条带(图 6)。

图 6 金鱼、斑马鱼和鲫Lv与金鱼Lv抗体(a)和斑马鱼Lv抗体(b)的Western blot结果 1:金鱼Lv, 2:斑马鱼Lv, 3:鲫Lv. Fig.6 Western blot analysis of goldfish, zebrafish and crucian carp Lv detected by anti-goldfish Lv antibody (a) and anti-zebrafish Lv antibody (b) Lane 1: goldfish Lv; lane 2: zebrafish Lv;
lane 3: crucian carp Lv.
2.4 ELISA的建立

以金鱼Lv抗体为包被抗体、纯化的3种鱼类Lv为抗原, 以HRP标记的金鱼Lv抗体建立夹心ELISA(图 7a), 金鱼Lv和鲫Lv的结合曲线基本重合, 并且明显高于斑马鱼Lv的结合曲线(图 7a), 以鲫Lv为抗原的夹心ELISA工作范围为15.6~ 1000 ng/mL (Y=1.56X–1.83, R2=0.982), 检出限约为6.8 ng/mL。

图 7 金鱼、斑马鱼和鲫Lv在两种ELISA中的结合曲线 Fig.7 The binding curves of goldfish Lv, zebrafish Lv, and crucian carp Lv in two ELISA assays

同样, 利用3种鱼类Lv与斑马鱼Lv抗体构建夹心ELISA, 金鱼Lv和鲫Lv的结合曲线也基本重合, 但是要低于斑马鱼Lv的结合曲线(图 7b)。夹心ELISA对鲫Lv的检测范围为31.2~500 ng/mL (Y=2.07X-2.73, R2=0.953), 检出限约为15.2 ng/mL。

3 讨论

本研究利用纯化的鲫Lv建立夹心ELISA, 为鲫Vtg的准确定量提供了重要方法。鱼类Vtg与Lv的纯化通常采用凝胶过滤与离子交换相结合的两步层析法[22], 选择性沉淀结合离子交换层析的方法也被少数研究者用于Vtg的纯化[23]。本研究利用凝胶过滤结合离子交换层析(方案I)与选择性沉淀结合离子交换层析(方案II) 2种方案从鲫卵匀浆液中纯化Lv。2种方法纯化的蛋白在Native-PAGE中都显示单一条带, 特异性染色结果显示该蛋白为糖磷脂蛋白, 这符合鱼类Lv的基本特征[24-25]; 该蛋白的天然分子量约为521 kD, 结合SDS-PAGE测得了亚基分子量, 推测鲫Lv由2组分子量为117 kD和103 kD的亚基和1个分子量为75 kD的亚基组成的, 这与斑马鱼和金鱼等其他鲤科鱼类的Lv研究结果相近[25-26]。根据以上结果断定纯化的蛋白为鲫Lv。此外, 2种方案纯化得到的蛋白总量较为接近, 对Lv的纯化得率没有显著差别。与方案I相比, 方案II不需要凝胶过滤层析的装填、平衡以及洗脱等步骤, 大约可以节省近8 h, 可见选择性沉淀结合离子交换层析的方法更适合鱼类Lv的纯化。

Vtg或Lv抗体是建立Vtg ELISA的基础[27-28]。抗体的制备需要反复免疫动物、费时费力, 研究发现Vtg抗体能够识别同科鱼类的Vtg[21], 例如鲤(Cyprinus carpio) Vtg抗体常用于检测金鱼、斑马鱼等鲤科鱼类的Vtg[29-30]。王军[26]发现金鱼Lv抗体能有效检测斑马鱼、鲫、鲤、石鲽(Platichthys bicoloratus)、真鲷(Pagrosomus major)等多种鱼类的Vtg, 比Vtg抗体具有更广泛的应用范围。因此, 本研究尝试利用金鱼Lv抗体与斑马鱼Lv抗体建立鲫Vtg的夹心ELISA。在本研究中, Western blot结果显示金鱼Lv抗体和斑马鱼Lv抗体能检测到鲫、金鱼和斑马鱼Lv的多条清晰条带, 表明2种抗体都能和鲫Lv发生很好的交叉反应。相比之下, 斑马鱼Lv和鲫Lv显示3条条带, 而金鱼Lv出现了多条带, 这可能与金鱼Lv存放时间过长发生了部分降解有关。利用鲫Lv与金鱼和斑马鱼的Lv抗体建立了2种夹心ELISA, 其中基于金鱼Lv抗体建立的ELISA工作范围为15.6~1000 ng/mL, 检出限约为6.8 ng/mL, 显著低于李康等[31]建立的以鲫Vtg为抗原的竞争ELISA(工作范围为390~25000 ng/mL), 以及此前研究者开发的鲤和日本青鳉(Oryzias latipes)的Vtg ELISA[32-33]。与竞争ELISA相比, 夹心ELISA是通过包被的抗体直接捕获抗原, 随后HRP标记抗体与捕获抗原的结合起到信号放大作用, 因此本研究建立的夹心ELISA具有更高的敏感度。金鱼是由鲫进化而来的, 两者在蛋白水平上具有很高的同源性[34], 推测这可能是基于金鱼Lv抗体ELISA对鲫Lv的检测敏感度高于斑马鱼Lv抗体ELISA的主要原因。Wang等[35-36]发现在Lv抗体建立的ELISA中, 斑马鱼和金鱼的Lv标准曲线都与Vtg的标准曲线基本重合, 证实以Lv与Lv抗体建立的ELISA能够用于Vtg的定量。因此, 本研究利用鲫Lv与金鱼Lv抗体开发的夹心ELISA可以准确定量鲫Vtg, 为鲫Vtg的检测提供了可靠方法。

参考文献
[1]
Magalhães I, Ledrich M L, Pihan J C, et al. One-step, non-denaturing purification method of carp (Cyprinus carpio) vitellogenin[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2004, 799(1): 87-93.
[2]
Arukwe A, Goks yr A. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption[J]. Comparative Hepatology, 2003, 2(1): 4. DOI:10.1186/1476-5926-2-4
[3]
Brodeur J C, Woodburn K B, Zhang F, et al. Plasma sampling and freezing procedures influence vitellogenin measurements by enzyme-linked immunoassay in the fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2006, 25(2): 337-348. DOI:10.1897/05-368R.1
[4]
Wang J, Shan R, Zhang X, et al. Development of a lipovitellin-based sandwich ELISA for quantification of vitellogenin in surface mucus and plasma of goldfish (Carassius auratus)[J]. Ecotoxicology and Environmental Safety, 2015, 120: 80-87. DOI:10.1016/j.ecoenv.2015.05.010
[5]
Lu G H, Song W T, Wang C, et al. Assessment of in vivo estrogenic response and the identification of environmental estrogens in the Yangtze River (Nanjing section)[J]. Chemosphere, 2010, 80(9): 982-990. DOI:10.1016/j.chemosphere.2010.05.038
[6]
Song W T, Lu G H, Wang C, et al. Study on environmental estrogen pollution in Yangtze River (Nanjing section) by an in vivo bioassay[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(4): 406-412. DOI:10.1007/s00128-010-9944-9
[7]
Shao J, Shi G, Jin X, et al. Preliminary survey of estrogenic activity in part of waters in Haihe River, Tianjin[J]. Chinese Science Bulletin, 2005, 50(22): 2565-2570. DOI:10.1007/BF03183651
[8]
Liu J, Wang R, Huang B, et al. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents[J]. Environmental Pollution, 2012, 162: 325-331. DOI:10.1016/j.envpol.2011.11.036
[9]
Wang R H, Liu J, Yang X, et al. Biological response of high-back crucian carp (Carassius auratus) during different life stages to wastewater treatment plant effluent[J]. Environmental Science and Pollution Research, 2013, 20(12): 8612-8620. DOI:10.1007/s11356-013-1817-4
[10]
Hiramatsu N, Hara A. Relationship between vitellogenin and its related egg yolk proteins in Sakhalin taimen (Hucho perryi)[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1996, 115(3): 243-251. DOI:10.1016/0300-9629(96)00055-2
[11]
Shan R H, Wang S, Wang J, et al. Purification and characterization identification of lipovitellin from tilapia (Oreochromis niloticus)[J]. Journal of Fishery Sciences of China, 2015, 22(4): 638-644. [单瑞后, 王松, 王骏, 等. 尼罗罗非鱼卵黄脂磷蛋白的分离纯化与性质鉴定[J]. 中国水产科学, 2015, 22(4): 638-644.]
[12]
Norberg B. Atlantic halibut (Hippoglossus hippoglossus) vitellogenin: induction, isolation and partial characterization[J]. Fish Physiology and Biochemistry, 1995, 14(1): 1-13. DOI:10.1007/BF00004286
[13]
Davis B J. Disc elecrophoresis-Ⅱ. Method and application to human serum proteins[J]. Annals of the New York Academy of Sciences, 1964, 121: 404-427.
[14]
Fairbanks G, Steck T L, Wallach D F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane[J]. Biochemistry, 1971, 10(13): 2606-2617. DOI:10.1021/bi00789a030
[15]
Cutting J A, Roth T F. Staining of phospho-proteins on acrylamide gel electropherograms[J]. Analytical Biochemistry, 1973, 54(2): 386-394. DOI:10.1016/0003-2697(73)90367-9
[16]
Prat J P, Lamy J N, Weill J D. Staining of lipoproteins after electrophoresis in polyacrylamide gel[J]. Bulletin de la Société de chimie biologique, 1969, 51(9): 1367.
[17]
Guo Y J. Protein Electrophoresis Experiment Technology[M]. Beijing: Science Press, 1999. [郭尧君. 蛋白质电泳实验技术[M]. 北京: 科学出版社, 1999.]
[18]
Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680-685. DOI:10.1038/227680a0
[19]
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications[J]. Proceedings of the National Academy of Sciences, 1979, 76(9): 4350-4354. DOI:10.1073/pnas.76.9.4350
[20]
Mitsui N, Tooi O, Kawahara A. Sandwich ELISAs for quantification of Xenopus laevis vitellogenin and albumin and their application to measurement of estradiol-17 beta effects on whole animals and primary-cultured hepatocytes[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2003, 135C(3): 305-313.
[21]
Nilsen B M, Berg K, Eidem J K, et al. Development of quantitative vitellogenin-ELISAs for fish test species used in endocrine disruptor screening[J]. Analytical and Bioanalytical Chemistry, 2004, 378(3): 621-633. DOI:10.1007/s00216-003-2241-2
[22]
Maltais D, Roy R L, Couillard C M. Hybrid ELISAs for vitellogenins of the endangered copper redhorse Moxostoma hubbsi and the shorthead redhorse Moxostoma macrolepidotum (Cypriniformes, catostomidae)[J]. Ecotoxicology and Environmental Safety, 2010, 73(5): 883-892. DOI:10.1016/j.ecoenv.2010.03.005
[23]
Garnayak S K, Mohanty J, Rao T V, et al. Vitellogenin in Asian catfish, Clarias batrachus: Purification, partial characterization and quantification during the reproductive cycle by ELISA[J]. Aquaculture, 2013, 392: 148-155.
[24]
Hara A, Yamauchi K, Hirai H. Studies on female-specific serum protein (vitellogenin) and egg yolk protein in Japanese eel (Anguilla japonica) Studies on female-specific serum p[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1980, 65(2): 315-320. DOI:10.1016/0305-0491(80)90019-X
[25]
Wiley H S, Wallace R A. The structure of vitellogenin. Multiple vitellogenins in Xenopus laevis give rise to multiple forms of the yolk proteins[J]. Journal of Biological Chemistry, 1981, 256(16): 8626-8634.
[26]
Wang J. Purification and characterization identification of lipovitellin from Carassius auratus and preparation of polyclonal antisera[D]. Qingdao: Ocean University of China, 2012. [王军.金鱼卵黄脂磷蛋白的分离纯化、性质鉴定及其多克隆抗血清的制备[D].青岛: 中国海洋大学, 2012.]
[27]
Holbech H, Andersen L, Petersen G I, et al. Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2001, 130(1): 119-131.
[28]
Fujiwara Y, Fukada H, Shimizu M, et al. Purification of two lipovitellins and development of immunoassays for two forms of their precursors (vitellogenins) in medaka (Oryzias latipes)[J]. General and Comparative Endocrinology, 2005, 143(3): 267-277. DOI:10.1016/j.ygcen.2005.03.014
[29]
Tyler C R, van der Eerden B, Jobling S, et al. Measurement of vitellogenin, a biomarker for exposure to oestrogenic chemicals, in a wide variety of cyprinid fish[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1996, 166(7): 418-426. DOI:10.1007/BF02337886
[30]
Maltais D, Roy R L. A lateral flow immunoassay for rapid evaluation of vitellogenin levels in plasma and surface mucus of the copper redhorse (Moxostoma hubbsi)[J]. Enviro n mental Toxicology and Chemistry, 2007, 26(8): 1672-1676. DOI:10.1897/06-481R.1
[31]
Li K, Zhou Z L, Yu J, et al. Development of ELISA for detecting Carassius auratus vitellogenin[J]. China Environmental Science, 2003, 23(3): 276-280. [李康, 周忠良, 于静, 等. 鲫鱼(Carassius auratus)卵黄蛋白原的ELISA检测[J]. 中国环境科学, 2003, 23(3): 276-280. DOI:10.3321/j.issn:1000-6923.2003.03.013]
[32]
Hennies M, Wiesmann M, Allner B, et al. Vitellogenin in carp (Cyprinus carpio) and perch (Perca fluviatilis): purification, characterization and development of an ELISA for the detection of estrogenic effects[J]. Science of the Total Environment, 2003, 309(1-3): 93-103. DOI:10.1016/S0048-9697(03)00005-6
[33]
Kordes C, Rieber E P, Gutzeit H O. An in vitro vitellogenin bioassay for oestrogenic substances in the medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2002, 58(3-4): 151-164. DOI:10.1016/S0166-445X(01)00227-2
[34]
Zhuang Y H, Zhou Y, Niu Y D, et al. Molecular phylogenetic relationships of different varieties of goldfishes (Carssius auratus Var) and crucian carps (Carssius auratus)[J]. Acta Laser Biology Sinica, 2009, 18(1): 46-49. [庄远红, 周毅, 牛艳东, 等. 不同品种金鱼和鲫鱼的分子系统发育关系研究[J]. 激光生物学报, 2009, 18(1): 46-49. DOI:10.3969/j.issn.1007-7146.2009.01.009]
[35]
Wang J, Zhang X, Shan R, et al. Lipovitellin as an antigen to improve the precision of sandwich ELISA for quantifying zebrafish (Danio rerio) vitellogenin[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2016, 185-186: 87-93.
[36]
Wang J, Shan R, Zhang X, et al. Development of a lipovitellin-based sandwich ELISA for quantification of vitellogenin in surface mucus and plasma of goldfish (Carassius auratus)[J]. Ecotoxicology and Environmental Safety, 2015, 120: 80-87. DOI:10.1016/j.ecoenv.2015.05.010