2. 青岛海洋科学与技术试点国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266237
2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
牡蛎是重要的海水养殖贝类, 其养殖总产量居养殖贝类首位。2018年我国牡蛎产量为514万t, 占养殖贝类总产量的36%, 占海水养殖总产量的25%[1]。目前, 国内养殖的牡蛎种类均为巨蛎属牡蛎, 其中长牡蛎(Crassostrea gigas)也称太平洋牡蛎, 主要分布在辽宁、山东等长江以北地区, 喜好低温环境, 是我国北方的主要养殖贝类; 葡萄牙牡蛎(C. angulata)又称福建牡蛎, 是我国南方的主要养殖种类, 喜好高温环境。多年来, 长牡蛎夏季大规模死亡现象在日本、美国、法国等多个国家相继报道, 一直困扰牡蛎养殖产业的发展[2,3,4,5]。在我国辽宁和山东沿海, 二龄长牡蛎夏季死亡率高达40%以上, 对牡蛎养殖业造成重大损失[4,5]。长牡蛎夏季大规模死亡可能是由温度和溶氧等环境因素[6]、糖原代谢和生殖状态等生理因素[7], 以及病原体[8]等生物因素共同作用引起。由于全球气候变暖和牡蛎的固着习性, 高温应激已成为牡蛎夏季的重要应激源, 被认为是夏季大规模死亡的重要诱导因素[9]。因此, 培育牡蛎耐高温品种、提高养殖牡蛎的夏季成活率, 成为北方牡蛎养殖产业健康发展的现实需求。
杂交育种是动植物品种改良的重要手段。多数杂交是为结合双亲理想性状而进行, 分为种内杂交和种间杂交。种间杂交可以促进物种间基因交流, 产生新变异类型, 甚至新物种, 已被广泛用于水生动物的遗传改良[10]。利用产生的杂种优势, 有望获得生长快、肉质高、抗逆性强的杂交新品种[11]。种间杂交品种在一些国家水产养殖中占比重很大, 例如美国的杂交条纹鲈、泰国的杂交鲇和以色列的杂交罗非鱼等[12]。在双壳类软体动物中也培育出一批具有高商业价值的杂交品种, 如扇贝杂交品种‘渤海红’[13]、鲍杂交品种‘绿盘鲍’[14]等。
牡蛎杂交育种研究相对较早。Davis[15]开展 了长牡蛎和美洲牡蛎(C. virginica)以及美洲牡蛎和奥林匹亚牡蛎(C. lurida)的杂交研究。然而, 多数早期的牡蛎种间杂交表现出不同程度的生殖隔离[16]。近年来, 在巨蛎属牡蛎杂交后代中观察到杂种优势, 例如葡萄牙牡蛎×香港牡蛎(C. hongkongensis)[17]、近江牡蛎(C. ariakensis)×香港牡蛎[18]以及香港牡蛎×熊本牡蛎(C. sikamea)[19]等。Zhang等[20]将香港牡蛎(♀)与长牡蛎(♂)的可育杂种与亲本回交, 培育出牡蛎杂交品种‘华南 1号’。
本研究将长牡蛎与福建的葡萄牙牡蛎进行杂交, 分析了温度对长牡蛎、葡萄牙牡蛎及其杂交稚贝生长和存活的影响, 旨在培育生长快速、夏季成活率高的牡蛎杂交新品种, 以解决我国北方长牡蛎夏季大规模死亡的问题。
1 材料与方法 1.1 实验动物长牡蛎取自山东荣成养殖的‘海大1号’品系, 葡萄牙牡蛎取自福建漳州的养殖群体。2019年6月在烟台莱州育苗基地, 采用完全双列杂交设计建立4个不同的交配组合: 长牡蛎(♀)×长牡蛎(♂) (GG)、葡萄牙牡蛎(♀)×葡萄牙牡蛎(♂)(AA)、长牡蛎(♀)×葡萄牙牡蛎(♂)(GA)、葡萄牙牡蛎(♀)×长牡蛎(♂)(AG)。采用常规方法进行牡蛎苗种培育, 稚贝附着后转移到山东荣成进行海上养成。
2019年12月从海区养殖的GG、AA、GA和AG 4个交配组合中各采集稚贝3000个个体, 4个交配组合稚贝的平均壳高分别为(37.59±2.19) mm、(38.85±3.93) mm、(38.16±2.05) mm和(37.36± 2.44) mm。在温度18 ℃、盐度30的海水中暂养1周。暂养和实验期间每日投喂混合浓缩硅藻和绿藻3次, 每天换水量1/3。死亡个体及时移出, 以免影响水质。
1.2 亚致死温度、致死温度和LT50采用急性温度胁迫的方式确定4个交配组合稚贝耐热性范围和LT50[21], 实验设置3个重复组, 每组20个稚贝。首先使用恒温水浴箱以0.1 ℃/min的速率将水温加热至目标温度(25 ℃、30 ℃、35 ℃、40 ℃、45 ℃和50 ℃)。将稚贝放入目标温度海水中热激1 h后立即移入18 ℃新鲜海水恢复7 d。使用解剖针触碰牡蛎软体部, 未关闭外壳视为死亡。为进一步评估LT50, 在上步测定的温度范围内, 设置温度梯度为0.5 ℃, 热激1 h, 重复上述步骤。另设一组对照, 水温为18 ℃, 试验期间未观察到死亡。
1.3 温度对稚贝生长和存活的影响 1.3.1 温度设计设置5个温度梯度(16 ℃、20 ℃、24 ℃、28 ℃和32 ℃), 每个梯度设置3个重复组。将4个交配组合稚贝在30 L水族箱培育30 d, 每个水族箱放置稚贝30只。定期测量稚贝壳高数据, 并统计死亡率。
1.3.2 存活率和日增长率的测定实验结束后, 统计各组稚贝的壳高和存活数据, 与初始值比较。
壳高日增长率RH(μm/d)=(H1–H0)/t
存活率Rs=N1/N0×100%
式中, H1和H0分别为实验结束和开始时各组的平均壳高(μm), t为实验天数(d), N1和N0分别为实验结束和开始时各组稚贝的数量。
1.3.3 杂种优势的测定参考Zheng等[22,23]的方法计算杂交子代的中亲杂种优势和单亲杂种优势:
$\text{中亲杂种优势}H(%)=\left[ ({{X}_{\text{GA}}}+{{X}_{\text{AG}}})-({{X}_{\text{GG}}}+{{X}_{\text{AA}}}) \right]\times 100/({{X}_{\text{GG}}}+{{X}_{\text{AA}}})$ | (1) |
${\text{GA组单亲杂种优势}{H}_{\text{GA}}}\text{( }\!\!%\!\!\text{ )}=({{X}_{\text{GA}}}-{{X}_{\text{GG}}})\times \text{100}/{{X}_{\text{GG}}}$ | (2) |
${\text{AG组单亲杂种优势}{H}_{\text{AG}}}\text{( }\!\!%\!\!\text{ )}=({{X}_{\text{AG}}}-{{X}_{\text{AA}}})\times \text{100}/{{X}_{\text{AA}}}$ | (3) |
式中, XGA和XAG分别指杂种GA和AG的表型平均值(壳高或存活率), XGG和XAA分别指同一天长牡蛎和葡萄牙牡蛎的表型平均值。
1.4 数据处理数据分析使用SPSS 21.0软件, 使用Probit回归分析计算LT50[24], 使用单因素方差分析(ANOVA)和最小显著性差异(LSD)检验来比较LT50和不同温度下生长与存活差异的显著性, 显著水平为0.05。
2 结果与分析 2.1 亚致死温度、致死温度和LT5035 ℃时4个交配组合牡蛎存活率均为100%, 而45 ℃时全部死亡。因此, 在35~45 ℃的范围内进一步确定LT50。当GG和AA组暴露在低于37.0 ℃的温度1 h后, 7 d后没有观察到死亡; 而GA和AG组的零死亡温度为低于37.50 ℃。当温度高于43.50 ℃时, 7 d后GG、AA和AG组发生100%的死亡, 而GA组则在高于44.00 ℃时全部死亡。因此, GG和AA组的亚致死温度为37.00 ℃, GA和AG组的亚致死温度为37.50 ℃; GG、AA和AG组致死温度均为43.50 ℃, GA组致死温度最高, 为44.00 ℃。Probit回归预测表明, GA组LT50(42.48 ℃)显著高于与其他3组, 其次是AG组(41.94 ℃), 与自交组差异显著; 自交组最低, 其中AA组的LT50(41.63 ℃)高于GG组(41.55 ℃), 但无显著性差异(表1)。
![]() |
表1 不同牡蛎稚贝的亚致死温度、致死温度和LT50 Tab. 1 Sublethal temperature, lethal temperature, and LT50 of different oyster juveniles n=20;$\bar{x}\pm \text{SD}$; ℃ |
如图1所示, 16 ℃时各组存活率相对较低, GA组(68.9%)与AG组(66.7%)差异不显著, 但显著高于GG组(56.7%)和AA组(48.9%) (P<0.05)。随温度升高, 4实验组稚贝存活率均先升高后降低, 并在24 ℃时具有最高存活率, 其中GA组最高(85.6%), 显著高于自交组, 其他3组存活率差异不显著。32 ℃时4实验组稚贝存活率降至最低, 其中GA组(55.6%)显著高于GG组(32.2%)和AA组(44.4 ℃) (P<0.05), AG(53.3%)与GA组差异不显著, 但显著高于GG。当温度为16~24 ℃时, GG组存活率高于AA组, 而在24~32 ℃时, GG组存活率低于AA组。多重比较分析表明, GA组和AG组的最适生存温度为16~28 ℃, GG组为20~28 ℃, 而AA组为24~28 ℃。
![]() |
图1 不同温度下牡蛎稚贝的存活率同一温度下数据上标不同表示组间存在显著差异(P<0.05). Fig. 1 Survival rates of juveniles at different temperatures Values in the same temperature with different superscripts are significantly different (P<0.05). |
不同温度下稚贝的存活杂种优势如表2所示。所有温度下, 中亲杂种优势H和单亲杂种优势HGA、HAG均为正值; 16 ℃时, 中亲杂种优势H为28.4, 单亲杂种优势HGA、HAG分别为21.5和36.4, 表现出显著的杂种优势。随温度升高, 中亲优势和单亲优势均先减少而后增加。32 ℃时, 中亲杂种优势H和单亲杂种优势HGA达到了最大值, 分别为42.2和72.7, 表明杂交组GA组在32 ℃时表现出非常显著的存活优势。
![]() |
表2 不同温度下杂交牡蛎稚贝的存活优势 Tab. 2 Survival heterosis of hybrid oyster juveniles at different temperatures % |
与16 ℃组相比, 4实验组稚贝壳高随温度升高而显著增加, 在28 ℃达到最大值, 随后降低至与16 ℃相近水平(图2)。在所有温度下, GA组均显著高于GG组和AA组。AG组在20 ℃、24 ℃和28 ℃显著高于自交组, 并显著低于GA (P<0.05)。当水温为20 ℃和24 ℃时, GG组显著高于AA组(P<0.05), 而在32 ℃时, AA组壳高超过GG组, 尽管差异不显著(P>0.05)。
![]() |
图2 不同温度下牡蛎稚贝的生长同一温度数据上标不同表示组间存在显著差异(P<0.05). Fig. 2 Growth of oyster juveniles under different temperature Values in the same temperature with different superscripts are significantly different (P<0.05). |
温度对4实验组稚贝的壳高日增长率产生了显著影响(图3)。GA组壳高日增长率始终最大,在20~28 ℃时显著高于其他3组(P<0.05), AG组次之, GG组和AA组最低。随温度升高, 各组稚贝壳高日增长率均先升高后降低, 在28 ℃时达到最大值, 由大到小依次为GA组(365.3 μm/d)、AG组(318.1 μm/d)、GG组(273.4 μm/d)和AA组(240.0 μm/d)。除GG组外, 32 ℃时其他3组壳高日增长率大于16 ℃, 但差异不显著, 其中GA组(220.8 μm/d)显著高于GG组(154.0 μm/d) (P<0.05)。多重分析结果表明, 杂交组GA和AG以及GG组的最适生长温度为20~28 ℃, AA为24~28 ℃。
![]() |
图3 不同温度下牡蛎稚贝壳高的日增长率同一温度数据上标不同表示组间存在显著差异(P<0.05). Fig. 3 Daily growth rate of juvenile oyster shell height at different temperatures Values in the same temperature with different superscripts are significantly different (P<0.05). |
所有温度下杂交稚贝均具有显著的生长优势, 中亲杂种优势始终维持在30左右(表3)。与存活优势不同, 杂种稚贝在20~28 ℃的适宜温度下表现出较大的中亲杂种优势; 在16~28 ℃时, GA组和AG组均表现出较高的单亲杂种优势; 32 ℃时, GA组的单亲优势明显高于AG组。
![]() |
表3 不同温度下杂交牡蛎稚贝的生长优势 Tab. 3 Growth heterosis of hybrid oyster juveniles at different temperatures % |
水温是重要的环境因子, 对海洋生物的行为、生长和生命周期具有显著影响[25]。水温过高被认为是夏季大规模死亡的重要影响因素, 因此提高牡蛎的高温耐受能力对其夏季存活至关重要[2]。
3.1 亚致死温度、致死温度和LT50LT50是比较不同物种耐热性的有效指数[26,27]。本研究中GG组和AA组的LT50分别为41.55 ℃和41.63 ℃, 低于Ghaffari等[21]的结果。这可能是因为牡蛎不同发育时期抗热胁迫能力不同[28]。本研究以稚贝为材料, 规格较小, 而较大的成贝通常具有更高的耐热性[29]。与此相似, 袁有宪等[30]也发现体型较大的栉孔扇贝高温下存活率要高于较小个体。此外, GA组与AG组的亚致死温度、致死温度和LT50要高于GG组和AA组, 表明杂交子代高温耐受性大于自交组。杂交可以提高生物耐高温能力, You等[31]发现皱纹盘鲍与绿鲍杂交后代耐高温能力比亲本更好。GA组的LT50显著高于AG组, 表现出最佳的温度耐受性, 这与Tan等[32]的报道有所不同, 他们认为长牡蛎与葡萄牙牡蛎正反交后代存活率无显著差异。一方面可能是由于杂交所使用长牡蛎亲本的遗传基础不同。本研究使用的长牡蛎亲本为经多代选育而成的‘海大1号’新品种[33]。有研究指出, 当对基础群体进行多代定向选择时, 由于亲本中某些不同的非加性遗传变异的积累, 杂种优势将获得提高[34]。另一方面可能是由于环境不同。水生动物生存会受到环境的影响[35], Zhang等[36]对香港牡蛎不同地理群体杂交后发现, 杂交后代的表型特征在两个养殖海区存在差异, 认为这可能与不同环境食物组成和丰度有关。
3.2 温度对稚贝存活和生长的影响本研究中, 所有温度杂交稚贝的存活率均高于自交稚贝, 表明杂交可以提高牡蛎存活能力。杂交稚贝适宜存活温度范围为16~28 ℃, 明显大于自交后代, 可能是杂种成功结合了长牡蛎的低温耐受性和葡萄牙牡蛎的高温耐受性。与此相似, Huo等[37]也发现香港牡蛎(♀)×近江牡蛎(♂)的杂交稚贝表现出比双亲更宽的耐盐性。GA组和AG组具有明显存活优势, 这与Soletchnik等[38]和Batista等[39]的研究报道不一致, 他们认为长牡蛎与葡萄牙牡蛎杂交子代不具备存活优势。这种研究结果的不同并不罕见, 例如滕爽爽等[40]报道长牡蛎与熊本牡蛎杂交后代在整个生长期均未观察到杂种优势, 而Xu等[41]发现长牡蛎与熊本牡蛎杂交后代在存活上具有明显的杂种优势。另外, 尽管各温度下GA组与AG组的存活率均无显著差异, 但除16 ℃外GA组的单亲杂种优势总是高于AG组, 这与GA组LT50值最高相吻合。在16 ℃或32 ℃时杂交组与自交组之间的存活率差异更大, 中亲优势和单亲优势更显著, 表明在极端温度下杂种具有更大的存活能力和更好的环境适应性[42]。早期学者普遍认为长牡蛎生存能力高于葡萄牙牡蛎, 然而Tan等[32]在中国南方的实验发现, 夏秋季长牡蛎后代存活率明显低于葡萄牙牡蛎, 这两种结果并不矛盾。与此相似, 本研究发现在16~24 ℃的较低温度下, 长牡蛎的存活率要高于葡萄牙牡蛎, 随温度升高, 葡萄牙牡蛎存活率超过长牡蛎, 可能是因为长牡蛎分布在中国北方, 适应低温环境, 而南方的葡萄牙牡蛎更适宜较高的温度。海洋双壳贝类在低温下由于不能消化食物无法生长, 但是却可以存活并长期摄食[43], 当温度过高时会发生氧化应激[44], 免疫防御系统损害[45], 导致代谢衰竭, 并可能降低对细菌感染 的耐受性[46]。这在本研究中表现为4实验组稚贝32 ℃时存活率均低于16 ℃, 表明相对于低温牡蛎可能更容易遭受高温的损伤。
与早期报道[47,48]不同, 16~32 ℃时GA组和AG组的壳高增长均高于GG组和AA组, 杂交稚贝表现出显著的生长优势。Falconer[49]认为两个特定种群杂交的杂种优势取决于群体间基因频率差异的平方, 杂交的差异越大, 纯合频率越高, 杂种优势也就越明显。长牡蛎‘海大1号’新品种对壳高进行了连续多代选育, 快速生长相关基因更加纯合, 因此杂交稚贝表现出显著生长优势。有报道称, 葡萄牙牡蛎♀×长牡蛎♂杂交后代表现出明显的生长优势, 而长牡蛎♀×葡萄牙牡蛎♂杂交后代与亲本差异不显著[23,32], 与本研究结果不一致。本研究发现, 在20~28 ℃时GA组壳高日增长率要显著高于AG组。类似的正反交差异也发生在香港牡蛎×熊本牡蛎[26]中, 可能是性别连锁基因、母系遗传或亲本效应所致[50], 特别是‘海大1号’的快速生长特性可能对以长牡蛎为母本的GA组产生了积极影响。另外, GA组和AG组的适宜生长温度为20~28 ℃, 而GG组和AA组为24~28 ℃, 表明杂交牡蛎能够在更宽的温度范围内实现快速增长。与存活相似, 32 ℃时葡萄牙牡蛎的壳高日增长率要快于长牡蛎, 表明葡萄牙牡蛎更适宜在高温环境生长。
综上所述, 长牡蛎与葡萄牙牡蛎杂交稚贝的高温耐受性大于自交稚贝, 适宜生存温度范围更广, 并表现出显著的生长与存活杂种优势。其中, 长牡蛎♀×葡萄牙牡蛎♂杂交后代优势更大, 表明长牡蛎与葡萄牙牡蛎杂交有望获得一种既生长快速又耐高温的杂交品系, 为解决北方牡蛎夏季大规模死亡问题提供可能。
[1] |
Bureau of Fishery Administration, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China Fishery Statistical Yearbook 2019[M]. Beijing: China Agriculture Press, 2019. [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019.].》Google Scholar
|
[2] |
Cheney D P, MacDonald B F, Elston R A. Summer mortality of Pacific oysters, Crassostrea gigas (Thunberg): Initial findings on multiple environmental stressors in Puget Sound, Washington, 1998[J]. Journal of Shellfish Research, 2000, 19(1): 353-359..》Google Scholar
|
[3] |
Samain J F, Dégremont L, Soletchnik P, et al. Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes[J]. Aquaculture, 2007, 268(1-4): 227-243..》Google Scholar
|
[4] |
Sui X L, Sun J W, Wang F G, et al. Reasons of mass death- off in Pacific oyster cultured in Dalian sea shore[J]. Journal of Dalian Fisheries University, 2002, 17(4): 272-278. [隋锡林, 孙景伟, 王富贵, 等. 大连沿海太平洋牡蛎大量死亡原因解析[J]. 大连水产学院学报, 2002, 17(4): 272-278.].》Google Scholar
|
[5] |
Mao Y Z, Zhou Y, Yang H S, et al. Seasonal variation in metabolic rate of Pacific oyster, Crassostrea gigas and its implication to summer mortality[J]. Oceanologia et Limnologia Sinica, 2005, 36(5): 445-451. [毛玉泽, 周毅, 杨红生, 等. 长牡蛎(Crassostrea gigas)代谢率的季节变化及其与夏季死亡关系的探讨[J]. 海洋与湖沼, 2005, 36(5): 445-451.].》Google Scholar
|
[6] |
Soletchnik P, Moine O L, Faury N, et al. Summer mortality of the oyster in the Bay Marennes-Oléron: Spatial variability of environment and biology using a geographical information system (GIS)[J]. Aquatic Living Resources, 1999, 12(2): 131-143..》Google Scholar
|
[7] |
Berthelin C, Kellner K, Mathieu M. Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France)[J]. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology, 2000, 125(3): 359-369..》Google Scholar
|
[8] |
Garnier M, Labreuche Y, Garcia C, et al. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas[J]. Microbial Ecology, 2007, 53(2): 187-196..》Google Scholar
|
[9] |
Lang R P, Bayne C J, Camara M D, et al. Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock[J]. Marine Biotechnology, 2009, 11(5): 650-668..》Google Scholar
|
[10] |
Lou Y D. Fish Breeding[M]. Beijing: China Agriculture Press, 1999: 83-84. [楼允东. 鱼类育种学[M]. 北京: 中国农业出版社, 1999: 83-84.].》Google Scholar
|
[11] |
Hulata G. A review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection[J]. Aquaculture, 1995, 129(1-4): 143-155..》Google Scholar
|
[12] |
Bartley D M, Rana K, Immink A J. The use of inter-specific hybrids in aquaculture and fisheries[J]. Reviews in Fish Biology and Fisheries, 2000, 10(3): 325-337..》Google Scholar
|
[13] |
Wang C D, Liu B, Liu X, et al. Selection of a new scallop strain, the Bohai Red, from the hybrid between the bay scallop and the Peruvian scallop[J]. Aquaculture, 2017, 479: 250-255..》Google Scholar
|
[14] |
Deng Y C. Primary study on growth, behavior and circadian rhythm of abalone under different light conditions[D]. Xiamen: Xiamen University, 2018. [邓雅程. 鲍在不同光照条件下的生长、行为及昼夜节律的初探[D]. 厦门: 厦门大学, 2018.].》Google Scholar
|
[15] |
Davis H C. On interspecific hybridization in Ostrea[J]. Science, 1950, 111(2889): 522..》Google Scholar
|
[16] |
Gaffney P M, Allen S K Jr. Hybridization among Crassostrea species: A review[J]. Aquaculture, 1993, 116(1): 1-13..》Google Scholar
|
[17] |
Zhang Y H, Zhang Y, Jun L, et al. Phenotypic trait of Crassostrea hongkongensis♀ × C. angulata♂ hybrids in southern China[J]. Aquaculture Research, 2016, 47(11): 3399-3409..》Google Scholar
|
[18] |
Qin Y P, Li X Y, Noor Z, et al. A comparative analysis of the growth, survival and reproduction of Crassostrea hongkongensis, Crassostrea ariakensis, and their diploid and triploid hybrids[J]. Aquaculture, 2020, 520: 734946..》Google Scholar
|
[19] |
Zhang Y H, Li J, Zhang Y, et al. Performance evaluation of reciprocal hybrids derived from the two brackish oysters, Crassostrea hongkongensis and Crassostrea sikamea in southern China[J]. Aquaculture, 2017, 473: 310-316..》Google Scholar
|
[20] |
Zhang Y H, Zhang Y, Li J, et al. Artificial interspecific backcrosses between the hybrid of female Crassostrea hongkongensis × male C. gigas and the two parental species[J]. Aquaculture, 2016, 450: 95-101..》Google Scholar
|
[21] |
Ghaffari H, Wang W, Li A, et al. Thermotolerance divergence revealed by the physiological and molecular responses in two oyster subspecies of Crassostrea gigas in China[J]. Frontiers in Physiology, 2019, 10: 1137..》Google Scholar
|
[22] |
Zheng H P, Zhang G F, Guo X M, et al. Heterosis between two stocks of the bay scallop, Argopecten irradians irradians Lamarck (1819)[J]. Journal of Shellfish Research, 2006, 25(3): 807-812..》Google Scholar
|
[23] |
Zheng H P, Wang D W, Lin Q, et al. Hybridization between the two close related species Crassostrea gigas and C. angulata and heterosis for growth and survival at early stage of life history[J]. Journal of Fisheries of China, 2012, 36(2): 210-215. [郑怀平, 王迪文, 林清, 等. 太平洋牡蛎与葡萄牙牡蛎两近缘种间杂交及其早期阶段生长与存活的杂种优势[J]. 水产学报, 2012, 36(2): 210-215.].》Google Scholar
|
[24] |
Chen N, Luo X, Gu Y T, et al. Assessment of the thermal tolerance of abalone based on cardiac performance in Haliotis discus hannai, H. gigantea and their interspecific hybrid[J]. Aquaculture, 2016, 465: 258-264..》Google Scholar
|
[25] |
Brucet S, Boix D, Nathansen L W, et al. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: Implications for effects of climate change[J]. PLoS ONE, 2012, 7(2): e30877..》Google Scholar
|
[26] |
Stillman J H. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes[J]. Integrative and Comparative Biology, 2002, 42(4): 790-796..》Google Scholar
|
[27] |
Cooper B S, Williams B H, Angilletta M J Jr. Unifying indices of heat tolerance in ectotherms[J]. Journal of Thermal Biology, 2008, 33(6): 320-323..》Google Scholar
|
[28] |
Pörtner H O, Farrell A P. Physiology and climate change[J]. Science, 2008, 322(5902): 690-692..》Google Scholar
|
[29] |
Rajagopal S, van der Velde G, Jansen J, et al. Thermal tolerance of the invasive oyster Crassostrea gigas: Feasibility of heat treatment as an antifouling option[J]. Water Research, 2005, 39(18): 4335-4342..》Google Scholar
|
[30] |
Yuan Y X, Qu K M, Chen J F, et al. Adaptability of Chlymys farreri to environment—Effects of temperature on survival, respiration, ingestion and digestion[J]. Journal of Fishery Sciences of China, 2000, 7(3): 24-27. [袁有宪, 曲克明, 陈聚法, 等. 栉孔扇贝对环境变化适应性研究——温度对存活、呼吸、摄食及消化的影响[J]. 中国水产科学, 2000, 7(3): 24-27.].》Google Scholar
|
[31] |
You W W, Guo Q, Fan F L, et al. Experimental hybridization and genetic identification of Pacific abalone Haliotis discus Hannai and green abalone H. fulgens[J]. Aquaculture, 2015, 448: 243-249..》Google Scholar
|
[32] |
Tan K, Liu H X, Ye T, et al. Growth, survival and lipid composition of Crassostrea gigas, C. angulata and their reciprocal hybrids cultured in southern China[J]. Aquaculture, 2020, 516: 734524..》Google Scholar
|
[33] |
Li Q, Wang Q Z, Liu S K, et al. Selection response and realized heritability for growth in three stocks of the Pacific oyster Crassostrea gigas[J]. Fisheries Science, 2011, 77(4): 643-648..》Google Scholar
|
[34] |
Sheridan A K. Genetic improvement of oyster production—A critique[J]. Aquaculture, 1997, 153(3-4): 165-179..》Google Scholar
|
[35] |
Dégremont L, Bédier E, Boudry P. Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield[J]. Aquaculture, 2010, 299(1-4): 21-29..》Google Scholar
|
[36] |
Zhang Y H, Su J Q, Li J, et al. Survival and growth of reciprocal crosses between two stocks of the Hong Kong oyster Crassostrea hongkongensis (Lam & Morton, 2003) in southern China[J]. Aquaculture Research, 2017, 48(5): 2344-2354..》Google Scholar
|
[37] |
Huo Z M, Wang Z P, Yan X W, et al. Hybridization between Crassostrea hongkongensis and Crassostrea ariakensis at different salinities[J]. Journal of the World Aquaculture Society, 2014, 45(2): 226-232..》Google Scholar
|
[38] |
Soletchnik P, Huvet A, Le Moine O, et al. A comparative field study of growth, survival and reproduction of Crassostrea gigas, C. angulata and their hybrids[J]. Aquatic Living Resources, 2002, 15(4): 243-250..》Google Scholar
|
[39] |
Batista F M, Leitão A, Fonseca V G, et al. Individual relationship between aneuploidy of gill cells and growth rate in the cupped oysters Crassostrea angulata, C. gigas and their reciprocal hybrids[J]. Journal of Experimental Marine Biology and Ecology, 2007, 352(1): 226-233..》Google Scholar
|
[40] |
Teng S S, Li Q, Li J R. Cytological observations of nuclear behavior and comparative growth of the hybrids between Crassostrea gigas and C. sikamea[J]. Oceanologia Et Limnologia Sinica, 2010, 41(6): 914-922. [滕爽爽, 李琪, 李金蓉. 长牡蛎(Crassostrea gigas)与熊本牡蛎(C. sikamea)杂交的受精细胞学观察及子一代的生长比较[J]. 海洋与湖沼, 2010, 41(6): 914-922.].》Google Scholar
|
[41] |
Xu H Q, Li Q, Kong L F, et al. Fertilization, survival and growth of hybrids between Crassostrea gigas and Crassostrea sikamea[J]. Fisheries Science, 2019, 85(5): 821-828..》Google Scholar
|
[42] |
Johnson N A, Wade M J. Genetic covariances within and between species: Indirect selection for hybrid inviability[J]. Journal of Evolutionary Biology, 1996, 9(2): 205-214..》Google Scholar
|
[43] |
Davis H C, Calabrese A. Survival and growth of larvae of the European oyster (Ostrea edulis L.) at different temperatures[J]. The Biological Bulletin, 1969, 136(2): 193-199..》Google Scholar
|
[44] |
Abele D, Heise K, Pörtner H O, et al. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria[J]. The Journal of Experimental Biology, 2002, 205(Pt 13): 1831- 1841..》Google Scholar
|
[45] |
Chen M Y, Yang H S, Delaporte M, et al. Immune condition of Chlamys farreri in response to acute temperature challenge[J]. Aquaculture, 2007, 271(1-4): 479-487..》Google Scholar
|
[46] |
Li Y, Qin J G, Abbott C A, et al. Synergistic impacts of heat shock and spawning on the physiology and immune health of Crassostrea gigas: An explanation for summer mortality in Pacific oysters[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 293(6): R2353-R2362..》Google Scholar
|
[47] |
Huvet A, Gérard A, Ledu C, et al. Is fertility of hybrids enough to conclude that the two oysters Crassostrea gigas and Crassostrea angulata are the same species?[J]. Aquatic Living Resources, 2002, 15(1): 45-52..》Google Scholar
|
[48] |
Batista F M, Ben-Hamadou R, Fonseca V G, et al. Comparative study of shell shape and muscle scar pigmentation in the closely related cupped oysters Crassostrea angulata, C. gigas and their reciprocal hybrids[J]. Aquatic Living Resources, 2008, 21(1): 31-38..》Google Scholar
|
[49] |
Falconer D. Introduction to Quantitative Genetics[M]. 2th ed. New York: Longman Inc, 1981: 254-258..》Google Scholar
|
[50] |
Kong L F, Song S L, Li Q. The effect of interstrain hybridization on the production performance in the Pacific oyster Crassostrea gigas[J]. Aquaculture, 2017, 472: 44-49..》Google Scholar
|