2. 上海海洋大学水产与生命学院,上海 201306
2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
动物个体行为的某些方面会表现出持续一致性差异[1-7], 这种随着时间的推移,在不同情境下所表现出的持续一致的行为个体差异称为个性(personality)。此外,性格(temperament)、应对方式(coping style)或行为集(behavioral syndrome)也同样用于表达相同或相近的含义。这些概念含义类似,其共同点是相关特征在不同情境(时空条件和个体状态,例如不同发育阶段,不同环境条件,繁殖和非繁殖期)下表现出持续一致的差异[1-7]。个性(personality)原适用于人类,动物行为学家借鉴并发现动物也有个性,因此科学家将动物随时间推移,在不同情境下所表现出的持续一致的行为差异定义为动物个性[2]。对不同物种的研究发现,个性具有三个关键特征:(1)差异性,即个体在行为上存在差异;(2)持续一致性,即个体的行为差异随着时间的推移保持稳定;(3)相关性,即某些行为特征(例如,大胆、攻击和探索)间存在关联性[8-9]。动物个性特征分为勇敢性、探索性、活跃性、攻击性、社交性五种基本类型[4]。此分类已广为行为生态学研究者所接受,极大地推动了动物行为学研究的进步。近年来,随着心理学家转向用动物模型来研究个性,动物个性研究也得以迅速发展。目前有关动物个性的研究对象已涵盖包括哺乳类、鸟类、爬行类、两栖类、鱼类、节肢动物和软体动物在内的各生物类群[2]。虽然鱼类个性研究起步较晚,但研究进展迅速,近年来以鱼类作为模式动物开展行为个性研究已成为趋势,相关研究具有广阔的应用前景。
个性已成为动物行为生态学研究的基础和核心内容,因为个性影响生命过程和产出(行为、生活史、生长、存活、繁殖)。就鱼类而言,个性影响各种行为(包括摄食行为、繁殖行为、洄游等)、生理过程(代谢、免疫力)、认知能力乃至形态,从而影响鱼类的生长、存活和繁殖。要了解一个物种,首先要知晓其个性。水产业(包括养殖、育种、增殖、捕捞、资源管理等)是“以鱼为本”(此处“鱼”为广义定义,包括鱼、甲壳类和贝类)的产业,要管好鱼,首先要知鱼、识鱼,而个性研究是基础,只有充分了解了个性,才能更好地知鱼、识鱼,从而更好地管鱼,以实现可持续高产出的目标。由于甲壳类和软体动物个性研究还不多,本文只简要介绍鱼类个性的研究进展,综述个性在鱼类增、养殖、信息传递及鱼病防控,捕捞、渔业资源管理和保护、物种入侵防治等方面的应用前景,并对未来研究方向进行了展望。
1 鱼类个性的研究进展关于鱼类个性,国内已有文章进行了介绍[10], 在此,重复内容不做赘述,本文重点介绍行为集。
如前所述,描述动物个体行为差异的术语除个性(personality)外,行为特征(behavioral profile)[11]、性格(temperament)[5]、应对方式(coping style)[7]和新近提出的行为集(behavioral syndrome)[3-4]也同样用来表达相同或相近的含义,这些术语含义略有不同,但共同点是个体行为差异是具有生物学意义的持续一致性表征,而且通过某些行为特征差异可预测在其他情境下表现出的其他行为或生理反应。一般而言,医学和农业科学领域偏爱用应对方式,行为生态学领域常用行为集。应对方式常包括在非最适或胁迫条件下的行为和生理反应[7]; 行为集只涉及行为差异,无需考虑胁迫因素;个性和性格在人类中包括情感特征,而应用于动物时则忽略情感因素。综合不同学者的表述,相关术语定义详见表1。
![]() |
表1 有关动物个体行为差异的术语 Tab. 1 Glossary of terms related to animal individual differences in behavior |
行为集概念的提出是行为生态学理论的一个重要进步,其关注在不同情境下共变的各种行为特征,和生态、进化高度相关。动物的行为往往是相关联特征共同表现的结果,将不同行为特征同时进行研究才能得到个性全貌。以攻击行为集为例,部分个体在各种情境下都表现为更具攻击性,在竞争条件下,攻击性强的个体表现更优。然而,在需要谨慎的情境中,攻击性强可能适得其反,将会面临更高生存风险,如在对抗捕食者或亲代抚育时,攻击性弱个体的生存策略反而更优。
行为集概念与传统的行为生态学理论有以下三点不同[3]: (1)行为集概念认为行为特征的可塑性可能是有限度的,因而限制了在任何条件下行为以最适方式呈现的能力。而传统的最适理论强调单一行为适合度的最大化,即所有个体在任何状态(指功能性行为,如摄食、交配、亲代抚育、抗捕食者)下都能表现出最优行为。(2)传统上,行为生态学家将不同生态条件(例如,繁殖和非繁殖季节的行为)下的行为分开研究,而行为集概念建议综合研究不同生态条件下的行为表现。例如,如果要完整研究亲代抚育行为的个体差异,可能需要研究与竞争行为、抗捕食者行为的关联性。行为集概念为在种和种群水平将个体行为差异系统化提供了可能。某些个体在既定条件下可能比所谓的最适反应水平更具有攻击性或更活跃,即当个体在不同情境下调整行为类型时,其行为可塑性可能受到种群水平行为集内相关联行为特征的限制[12]。例如,当大胆和攻击性正相关时,偏好攻击性的竞争条件或许会导致大胆型行为,即使此时大胆型行为并不合适(例如,当捕食风险存在时)。(3)传统行为生态学认为个体行为差异是围绕一个适应中值(adaptive mean)的“噪音”和非适应性差异,而行为集概念不仅量化此差异,并且还解释了保持这种差异的机制。
个体间的行为差异通常以非随机的方式沿特定的轴分布[5], 即所谓的行为轴(behavior-axis)。行为集概念包括五个动物个性轴:(1)害羞-大胆(shyness-boldness); (2)探索-回避(exploration-avoidance); (3)活跃性(activity); (4)攻击性(aggressiveness); (5)社交性(sociability)。其中最重要的是害羞-大胆轴,其他四个特性都与此有关。例如,大胆个体具有较强的探索能力,更活跃,也更具攻击性,社交能力也更强。
就某一行为特征而言,个性结构(personality structure), 即个性维度以及维度的特征常比个性持续性更复杂,而且个性轴间是相关联的[11]。个性结构可以反映一个物种的生活策略类型,如反捕食者行为、竞争配偶、繁殖成功、等级结构[12-13]。了解动物个性结构全貌、各种类型行为轴如何关联、在发育过程中个性结构如何展示等内容是动物个性在群落和种群生态和演化中的作用相关理论研究的核心。
种群水平比较研究表明,行为集的关联性受捕食者影响。例如,与捕食者共生的三刺鱼(Gasterosteus aculeatus), 其大胆和攻击性的相关性更显著[14-16]。这些结果表明,捕食者是大胆和攻击性的驱动力,当然不能排除其他环境因子的影响。实验室研究表明,在太阳鱼(Lepomis gibbosus)暴露在捕食者前,大胆和攻击性不相关,但暴露后却相关,大胆的鱼死亡率高,而且大胆鱼降低了其攻击性[17]。
2 个性的生态学意义及应用个性生态学意义包括三个方面[18-19]: 对个体生存和繁殖成功的潜在影响;对种群动态(通过影响物种的生命率,如生长、繁殖力和存活率)的影响;对群落结构和物种多样性(通过影响物种的相互作用)的影响。个性的生态学意义将结合应用等内容介绍如下。
2.1 个性研究在水产养殖、增殖中的应用 2.1.1 个性研究在水产养殖中的应用个性影响鱼类繁殖成功率和苗种成活率、以及个体的生长[20-23], 这三个方面对养殖而言至关重要。行为特征可能影响繁殖成功[22], 性别内和性别间选择都可能受个性的影响[23]。大量的实验室研究报道了大胆和繁殖成功的正相关关系。例如,比较大胆、攻击性强的雄性斑马鱼(Danio rerio)比胆小的和攻击性较弱的雄性个体能够受精更多的卵子,因为大胆雄鱼的精子要比害羞雄鱼的精子竞争能力强[22]; 另一个原因是体大雌鱼能够产生更多的后代[24-25], 而体大雌鱼更愿意与大胆的雄鱼交配。在孔雀鱼(Poecilia reticulata)中,雌性也被证明更喜欢与胆大的雄性交配[26]。但是,只有雌鱼选择跟自己勇敢性匹配的雄鱼交配时,繁殖成功率最高[27]。然而,实地研究行为性状与繁殖成功关系的报道仍然非常少。人工养殖中,绝大多数种的人工繁殖采用人工授精,而忽视了亲本的个性因素,未来应该加强这方面的研究。
行为特征也可能影响后代的存活率,这主要是对有亲代抚育行为的种而言。例如,在筑巢鱼类中(如鲑科), 比较大胆、具侵略性的个体很可能会在竞争中胜出同种个体而获得更好的筑巢地点,而且越大胆,攻击性强的个体可能更善于保护自己的巢穴免受潜在捕食者的攻击[28]。
鱼类中存在同类相食现象,主要表现为亲代对鱼卵或者仔鱼的蚕食,即亲子相食,也有非亲子相食,如膨腹海马会吃掉其他雄鱼所产的仔鱼。研究表明,同类相食与鱼类特定的个性相关。Vallon等[29]以小眼长臀虾虎鱼(Pomatoschistus microps)为实验模型,首次发现通过动物个性可以预测亲子相食行为,即活动性强的雄鱼要比活动性弱的雄性吃掉更多的鱼卵。充分研究并掌握个性对同类相食行为的影响,对有自相残杀行为鱼类的养殖具有重要意义。
很多鱼类有明显的社群等级,鱼类个性和社群等级密切相关[30-32]。例如,蓝鳍卢氏鳉(Lucania goodei)雄性的社群等级部分决定了繁殖成功。在交配时,雄鱼表现出稳定的线性优势等级;雄鱼的等级与个性高度相关,无论是行为类型还是等级地位都与规格或体型无关[30]。对雄性杜氏虹银汉鱼(Melanotaenia duboulayi)的研究发现一系列个性特征(攻击性、活跃性和大胆性)与雄性等级地位共变,这与繁殖成功直接相关。占统治地位的个体更具攻击性、活跃、大胆,而且显著大于从属个体。此外,该种的活跃水平和大胆程度之间有很强的相关性,这说明选择可能作用于一系列一致的特征(即行为集)[31]。
在养殖条件下,鱼类密度通常显著高于自然种群,因此社群等级效应也显著[32], 在养殖中的负面影响也大。例如,社会等级冲突导致等级较低的个体生长慢[33]。因此,在鱼类养殖过程中探究社群等级的内在机制及其影响因素,并进行合理调控,以减弱甚至消除社群等级带来的不利影响,这对于减少攻击和自残行为、提高鱼类福利、苗种生长率和存活率、降低生长离散等具有重要意义[34]。
在自然界中,由于存在被捕食的风险,鱼类通常处于饥饿-被捕食的矛盾处境下。面对此境,在同一种群中,有些鱼会冒着可能会被捕食的风险,积极主动去觅食,而有些则会以饥饿为代价,选择不去冒险[35-36]。一个种群内的个体表现出从勇敢到谨慎的反应,代表了不同的生存策略。主动觅食的鱼,虽然面临更大的被捕食风险,但也得到更多获取食物的机会,从而获得更多的能量和更高的生长率;而那些被动的鱼,获取食物的机会自然也就较少,但却降低了被捕食的风险。对欧洲鳎(Solea solea)的研究表明,大胆或更活跃个体的摄食率以及生长率更高[37]。可能的原因是大胆或活跃的个体花费更多的时间在游泳上,从而导致摄食率的增加,进而引起成本维持的过度补偿,表现为生长率的提高。当然,这也可能和欧洲鳎的底栖生活习性有关,被捕食风险可能较小,游动多,觅食机会多,如果游泳时间多而减少了摄食时间,反而会影响生长。另一种解释是活跃个体通常被视为优势竞争者,更容易从其他个体中争夺到食物[36]。在有捕食者存在时,大胆的杀人鱼(Rivulus hartti)游动距离长,且生长与游动距离正相关;然而,当无捕食者存在时,生长与游动距离无相关性[35]。太阳鱼的生长和大胆性也表现出正相关[19]。这种相关性在虹鳟中也存在,若存在捕食者,放流的1龄人工培育的虹鳟(Oncorhynchus mykiss)生长比野生品系快20%[38], 但死亡率却高50%~60%[39], 因为人工养殖鱼比野生鱼表现更为大胆,探知风险的能力更低。
在人工养殖条件下,由于无敌害生物存在,而且人工投喂,饵料充足,加之群体密度远远高于野生种群,因此个性和生长的关联性因情境(密度、性别等)而定。总体上,勇敢个体摄食多,生长快[40]。然而,当勇敢和害羞鱼混合养殖时,害羞鱼可能生长快于勇敢鱼[41], 而当不同个性鱼分开养殖时,生长差异不显著[42]。另外,美新亮丽鲷(Neolamprologus pulcher)的个性研究还表明,攻击性强的雌鱼比害羞个体生长快,摄食率高,而雄鱼中差异不明显[43]。当然,这个现象是否在所有养殖对象中都有表现,有待更多研究结果证实。生长和代谢有关,不同个性个体的基础代谢率有差异,应该是导致生长差异的原因之一[44]。例如,鲤(Cyprinus carpio)[45]和金头鲷(Sparus aurata)[46]的冒险行为(大胆)与较高的代谢率有关,而谨慎个体(规避风险行为)具有较低的代谢率。因此,搞清楚养殖对象在不同情境下个性和生长、存活的相关性,有助于解决养殖中常见的个体分化显著等问题;可以根据不同个性个体行为特征进行养殖,并且根据不同个性个体的摄食行为改进投饵技术。
2.1.2 鱼类个性研究在增殖放流中的应用个性与适应性密切相关,因此在增殖放流中如何利用个性提高放流效果是必须要考虑的重要问题。增殖放流成功与否和放流对象觅食能力、避敌能力、栖息地选择性等都密切相关,这些往往是由个性所决定。
增殖放流首先要了解的是人工养殖鱼和野生鱼的行为差异,以及不同个性个体在不同情境下的行为表现差异。大量的研究表明,与野生种群相比,人工养殖亲鱼所产的后代通常更大胆和(或)更具攻击性,倾向于冒险,生长快,但死亡率高[38-39,47-49]。实验室比较研究也发现,人工驯化后的鱼比野生鱼更大胆和(或)更具攻击性[50-53]。这种行为差异关乎放流后的适应性。例如,金头鲷(Sparus aurata)在高密度条件下,大胆个体比谨慎个体活动能力强,而在低密度条件下,谨慎个体比大胆个体活动能力强。这是因为在高密度条件下,大胆个体需要付出更多的运动才能占据主导地位[54]。这个观察结果与大胆个体更适应稳定的环境而谨慎个体更容易适应变化的环境相一致[55]。大胆的个体通常在低风险、稳定的环境中表现更好,害羞的个体在高风险、多变的环境中表现更好[34], 害羞的鱼在释放到自然环境中后生长比大胆鱼快,原因是大胆的鱼容易遭遇捕食者的攻击。就成活率而言,放流害羞个体的结果可能优于大胆个体;但从遗传性状和繁殖成功率角度而言(见前述), 大胆个体对种群可能更重要。因此,放流前采取驯化措施以提高他们在野外环境中的生存技能就非常必要,尤其是通过驯化提高大胆个体的适应性对种群恢复具有重要意义。
放流不仅要考虑个体水平个性的影响,还要考虑个性对群体表现和种群动力学的影响。例如,组成鱼群个体的大胆性影响孔雀鱼觅食的成功。不同个性个体的混合鱼群比单一个性鱼群的鱼吃得多,表明混合个性鱼群的大胆行为类型可能优于单一大胆或单一害羞个体组成的鱼群[56]。欧洲鲈(Dicentrarchus labrax)的研究表明,鱼群内的不同冒险行为类型影响整个鱼群的冒险行为,大胆的个体对鱼群行为有特别大的影响[57]。三刺鱼的研究表明,大胆和害羞的组成比例会影响种群的社群结构。全部由害羞的个体组成的群体比全部由大胆个体组成的群体有较强的社群结构。另外,所有害羞个体组成的鱼群更为集团化[58]。实地研究拟鲤(Rutilus rutilus)发现,胆大的个体比害羞个体有更高的迁徙倾向(从湖洄游到溪流)[59]。这些结果对指导增殖放流有重要价值。
海洋牧场建设日益受到重视,但相关鱼类的行为研究严重滞后,尤其是对人工放流对象在人工牧场环境中的适应、定殖等研究刚刚起步。研究发现,与大胆或侵略、觅食或捕食者回避的相关的行为特征可能影响栖息地的使用和资源消耗。例如,跟野生鱼相比,人工养殖重牙鲷(Diplodus sargus)放流后不易定居[60]; 大斑杜父鱼(Cottus perifretum)攻击性较低的个体更倾向使用复杂栖息地[51]。因此,海洋牧场建设中,环境丰容驯化越来越受到重视,其对于提高增殖效果极其重要。研究证实,环境丰容驯化可显著提高养殖大西洋鲑(Salmo salar)的觅食能力[61], 鱼类的捕食能力[62]、反捕食能力[62-63]及野外放流存活率[63-65]。更重要的是,环境丰容可以降低养殖鱼类的勇敢性,使养殖鱼行为更接近野生鱼[66], 从而降低放流后被捕食的风险。人工鱼礁有助于恢复海洋鱼类资源[67-68]。然而,由于人工鱼礁会导致海底基质发生变化,造成沿海地区生物的栖息地发生改变,这可能会导致生活在人工鱼礁中的鱼类的行为发生改变。Koeck 等[69]使用生物遥感技术对重牙鲷(Diplodus sargus)进行监测,研究表明重牙鲷的昼夜行为模式在人工和天然礁石之间不同,人工放流鱼主要表现为夜间模式,而天然鱼则具有昼夜模式。这可能是由于两种栖息地及资源可利用差异导致的鱼类行为差异。另外,人工养殖重牙鲷放流后不易定居[60]。因此将鱼类行为纳入人工鱼礁建设和渔业资源的未来管理计划中至关重要。
针对人工放流效果不佳问题,放流前驯化已受到重视,但何时开始驯化效果更好犹未可知。动物早期生活环境对行为可能产生终生影响。这些长期响应可能是适应性,也可能是适应不良的表现,这和早期经验能否可靠地预示后期环境需求有关。如果早期和后期的环境需求相近,那动物就可能通过早期的环境信息建立一种生活策略而悠然应对此环境[70-72]。
不同情境中不同行为特征是相关联的,即行为集。例如个体对捕食者的行为反应可能与该个体对同类的行为相关。个体的某个行为(例如,攻击行为、陌生环境中的活跃性,面对捕食风险时的勇敢性)在不同发育阶段的可塑性可能比较大,但这些单一行为间的相关性却很稳定。这说明生态和发育环境可能有利于不同的行为集[14,73]。因此,驯化时要考虑各种情境以及行为集。
2.1.3 鱼类个性研究在选育中的应用选育种已成为水产养殖增产、增效的重要手段之一。人工选育关注养殖对象经济性状,如生长性状[74]。然而,对生长性状的选择可能会对养殖对象的行为特征产生意外的变异,要么改变了行为特征本身(例如,选择的个体更大胆、更具攻击性和具有更积极的摄食行为), 要么因为选择了代谢性状(metabolic trait), 从而导致个体为满足代谢需求行为更大胆。这些行为变异可能对养殖效果产生影响,因此,在人工选育中需要加以考虑,尤其是那些生性好斗的种更应注意。
选育种时应该考虑的另一个因素是行为可塑性(behavioral plasticity), 即个体的行为随着外部或内部刺激的变化而变化的程度。在确定生长特性的选择是否对其他相关行为产生意外后果时,行为可塑性可能非常重要。如果个体能够对环境变化做出行为反应,选择就可能会受到限制。或者,如果行为紧密相关且不可塑,选择高生长率也可能选择了大胆和攻击性强的个体。确定个体(或物种)的行为可塑性,理解早期发育和养育环境如何影响行为可塑性水平,是未来研究的重要领域[75-76], 对选育种具有重要意义。
人工选育时,亲本对后代行为的影响也必须考虑。除了遗传的直接影响外,当亲代其一或父母二者的表型或所经历的环境影响其后代的表型时,母本效应(maternal effect)就会出现[77]。亲代影响子代表型可能是父母一方或双方通过巢穴选址、营养供应、激素传导、提供特别的社会经验或作为社会学习的“导师”, 以及表观遗传修饰等重要的近因机制作用的结果[78]。虽然鱼类育苗基本采用人工授精的方式,亲代对子代行为的影响可能不像自然环境下那么明显,但人工选育时亲代的作用仍不可忽视。
2.2 鱼类个性对信息传递及疾病传播的影响 2.2.1 个性影响信息的获取和使用获取信息是动物生存的必要技能之一,个体获取信息的能力和个性相关,尤其是社群信息的获取和使用与个性密切相关。研究表明,鱼类在群体中优先使用社交信息并非最佳策略,因为优先使用社交信息而非个体信息有时会提高生存成本。例如,无同伴信息存在时,三刺鱼觅食时发现食物快,觅食持久,如果利用社交信息,反而会丧失充分利用食物资源的机会[79]。此外,社交获取的信息不一定总是准确的,虽然自己探索环境收集信息可能会耗费大量精力且面临更多风险,但却可以获得有关资源分布的直接且最新的信息。因此,依赖公共或个体信息具有许多潜在的成本和收益,个体在做出决策时必须权衡这些成本和收益。Trompf等[80]以孔雀鱼(Poecilia reticulata)为研究对象,测试了当个体信息与社交信息发生冲突时,个性如何影响野生雌性孔雀鱼对这两种信息的反应。研究结果表明大胆性和社交性会影响孔雀鱼对两种信息的决策。大胆的雌性使用社交信息来避免竞争和/或潜在的资源耗竭,而高度社交的个体更喜欢同类的存在,而不是丰富的觅食机会。而在空间联想学习任务中不需要进行精度权衡,相反,大胆的雌性孔雀鱼比害羞的雌性学习得更快、更准确[80]。
2.2.2 个性影响信息的传播鱼类生活离不开信息传播,而信息获取、传播方面个体差异很大。例如,鲫(Carassius auratus)勇敢个体获取信息的能力强,学习速度快[81]; 三刺鱼(Gasterosteus aculeatus)的大胆个体获得信息快,决策也快于害羞个体[82]。在害羞个体比例很高的三刺鱼社群网络中,信息的传播速度较慢,而且传播范围小,许多个体无法接收到信息;随着大胆个体比例的增加,信息传播得更快,并传播给更多的群体成员,说明鱼类社交网络结构受群体成员行为构成的影响,对于了解信息在群体中的传播具有十分重要的意义[58]。此外,社交网络的结构还会影响个体对资源的获取[83-84]。这些特点对增殖放流前驯化有指导意义。由于无法识别、捕获和处理活食物,或者经验不足,警惕性低等因素,导致放流鱼的成活率很低[85]。因此,为提高增殖放流效果,需要在放流前对部分鱼进行训练,使它们充当榜样鱼或头鱼,通过群体内的社交网络传播头鱼所具有的生存技能,从而提高放流后的野外生存能力。一方面,大胆个体放流后扩散范围广,学习速度快,对于信息传递有着十分积极的作用;但另一方面,害羞个体在放流后,通常仍然待在释放点附近,所以害羞个体受益较少。因此,合理的做法是对两种个性的鱼都进行训练,让其都发挥榜样作用[86]。
2.2.3 个性影响疾病的传播越来越多的证据表明鱼类的个性差异可能会影响宿主与寄生虫之间的相互作用[87-89], 近年来,一种观点认为,大胆个体更易感染寄生虫,原因是比较大胆的、攻击性和探索性较强的个体,遇到寄生虫的可能性更高,并且它们可能不太注意与寄生虫相关的线索,而较慢地学习如何规避寄生虫的风险;另一种观点则认为大胆个体不易感染寄生虫,原因是如果大胆个体更容易遇到寄生虫,并且被寄生虫感染的代价很大,那么这些大胆的,探索性强的个体应该有更强的选择力,有利于进化或发展出更强的学习能力,从而可以发现和规避寄生虫[90-91]。Barber 等[92]提供了支持该假说的最新实验证据,他们证明大胆的褐鳟(Salmo trutta)个体在学习测试中的表现要优于害羞的个体,这表明对认知能力的投资增加可能是适应性的补偿反应。到目前为止,很少有研究去验证这两个互为对立的假说,但鱼类行为确实会影响宿主对寄生虫的易感染性[90]。
2.3 个性研究在捕捞、资源管理和保护上的应用渔业资源一旦遭到破坏就很难自然恢复。最新研究表明,高达48%的种群生物量低于目标,40%的种群高于可持续利用率,而最近的恢复率基本为零,高达46%的种群生物量呈下降趋势,29%的种群利用率呈上升趋势[93]。渔业资源恢复缓慢,原因多方面,但其中很重要的一点是捕捞压力(商业捕捞和休闲渔业), 可能会改变个体的行为类型,这种生态后果可能影响自然选择与种群特征的进化[94-95]。捕捞对生活史进化和行为变化产生潜在影响[96-97], 导致可遗传表型的差异性丢失[98-100], 如规格。捕捞总是追求大规格个体,因而产生规格选择效应(size selection)[101]。如此,捕捞的后果不仅仅是造成资源下降,更严重的是“捕捞后遗症”——种群繁殖力下降,主要体现为两种现象:性早熟、成熟鱼规格日益趋变小、幼鱼成活率下降[102-103], 以及遗传多样性的下降[104]。规格选择实际上是一种行为选择,因为快速成长的个体(即大规格个体)往往更加活跃、大胆和贪婪[40,104]。因此,反过来,由于大胆、快速生长个体和渔具接触率较高,避让渔具的次数较少,更容易被捕获。事实上,在群体层面,即使没有规格选择,较快的生长与较高的可捕性相关[40,103-106]。越来越多研究表明活跃和大胆个体更容易被捕获[102,104,107-109]。
捕捞导致的性早熟问题至今仍未得到足够重视。很显然,成熟年龄日益趋小是由于大胆个体被大量捕捞所致[104,110]。大胆个体的探索性强、繁殖力高、生长快,往往成为“头鱼”, 群体行动都是由勇敢个体启动[111-112]。由于往往是鱼群的“头鱼”而最易被捕获,从而导致害羞个体存活下来[104,110]。我国的带鱼、小黄鱼繁殖年龄越来越小,应该与此有密切关系。此外,大量“头鱼”被捕获,对洄游性鱼类可能是致命的打击。鱼类洄游受物理信号和化学信号的支配,大胆个体的感知能力强于害羞鱼[113], 由于群体中大胆个体被大量捕获,剩余个体多为害羞型个体,探索能力弱,可能会影响鱼群洄游。
游钓的强度看似没有大规模网具捕捞那么大,但对鱼类种群繁殖力影响也很大,尤其对有亲代抚育行为的种来说影响更大。例如,在非渔区,对有筑巢和领域行为的种而言,攻击性强的个体可能会更加警惕地保护自己的巢穴免受潜在的捕食者的侵害,从而提高卵和幼苗存活率。然而,游钓可能会对鱼类资源造成严重伤害,不仅仅是钓鱼那么简单,因为被钓的鱼往往是攻击性强的个体,而这些个体的护巢或护幼能力强,大量被钓会影响幼苗成活率[107]。移走护巢的父母(即使是短期的捕获和释放), 都会大大增加卵和幼苗死亡率[114]。大口黑鲈(Micropterus salmoides)大胆雄鱼护巢能力强,幼体成活率高,但大胆个体容易被垂钓,从而导致幼鱼死亡率高[95]。但也因种而异,就太阳鱼而言,相对于围网,垂钓则更容易钓获害羞个体[115]。
过去二十多年中多项研究表明,商业性渔业对大个体的选择性捕捞导致后代的增长率下降,以及很多其他影响[116-119]。商业性渔业或许可使用被动性渔具(如诱捕、钓、刺网), 根据行为类型和生长率,无论大小进行捕捞[94,104]。加拿大湖泊中虹鳟的实验研究发现,生长较快的个体更容易被刺网捕获,与规格无关。因为生长快的个体比生长慢的个体更活跃、更大胆,因此更容易被捕获[94,104]。即使商业性捕捞没有直接依据行为特征,但只要某个行为特征(如勇敢性)或生活史特征(如生长率)受到选择,相关的行为特征(即行为集)就会受到影响。这些效应会对物种表现以及种群动态产生重要影响,这是渔业管理者在制订管理政策时需要考虑的因素。
以上信息提示,目前渔业、资源管理中的规格限制可能需要重新考虑。如果按目前“抓大放小”措施,当年群体的大规格鱼被捕,而这些鱼基本是生长快的勇敢个体,繁殖力强,留下的害羞个体成为繁殖主体,可能导致种群繁殖力下降,恢复艰难,除非完全禁渔。
2.4 个性研究对控制物种入侵的意义在全球范围内,生物入侵正不断地发生,许多物种被有意或无意地引入新的环境并建立它们自己的群落。研究表明,生物入侵将会对整个原生生物群落带来重大的负面影响[120], 是对全球生物多样性最严重的威胁因素之一,并给许多国家带来很高的经济损失以及生态代价[121]。随运输有意或无意引进非本地物种是物种入侵的原因之一[122], 鱼类偶然的引入主要是由于个体无意进入人类运输设施而导致的,偶然引入的个体往往是大胆、活跃以及探索性高的个体,这些个体更易接近人类基础设施[123]; 有意的引入经常是人类有目的地将非本地物种引入用于休闲渔业、渔业或生物控制中[122]。而有意的引入也与个性相关,因为这些引入的个体通常是野外捕获的,而捕获的概率随个性类型而异,被捕获的往往是大胆个体[124]。而在物种入侵的防控管理过程中,很少有研究将鱼类的个性考虑在内,这些个性差异可能会与管理措施相互作用,甚至会降低管理防控的效率[125]。
近十多年来,一些研究表明,个体表现出个性依赖的扩散性[126]。一般而言,勇敢、进取和社交等特征通常与扩散行为相关,因为比较大胆、社交性更强的个体倾向于承担更多的风险并采取行动,或者积极寻求新事物、新环境,而缺乏专一性[35,126-127]。但也有研究表明,大胆的个体不太可能去扩散[128], 因为大胆的鱼通常更具侵略性,因此害羞个体可能被迫离开最佳栖息地,并且需要提高扩散能力才能找到新的栖息地[129]。迄今为止,虽然仅少数物种表现出依赖于个性的散布,但很多学者认为这是一种普遍的现象,具有重要的生态学意义[126]。
研究个性与物种入侵的关系,有利于了解入侵物种的特点,从而有助于控制入侵者,而且也将为预测哪些物种和种群可能造成入侵问题提供依据。这对于制定评估方案(例如,评估在水产养殖中引入物种的风险)和对早期发现的入侵者确定其应对顺序[130](包括重建本地种群以减缓入侵速度)至关重要[131]。
3 展望鱼类个性的研究受到了越来越多研究者的关注,但大多数都是以斑马鱼、鲑科及丽鱼科等模式动物为研究对象,经济鱼类,特别是增养殖对象的报道较少;要了解动物个性的生态意义,需要研究动物在复杂环境中的表现,但目前研究基本在实验室条件下进行,野外和半自然环境下的研究寥寥无几。此外,虽然个性概念已统一,但研究方法和广度方面仍存在不少问题,尤其是行为集研究,不能仅限于五个行为轴[132], 个性的可塑性、形成机制以及个性的生理学机制还有待进一步研究;环境条件塑造个性的机制以及后期生活经历在多大程度上塑造了个性,这些问题还未得到充分的认知;在生活史水平研究个性还很少。鉴于个性研究对水产养殖、增殖放流、捕捞和资源管理的重要性,未来在加强基础研究的同时,应用研究应该同步开展。鱼类个性研究及应用前景广阔,但任重而道远。
[1] |
Budaev S V, Zworykin D D. Individuality in fish behavior: Ecology and comparative psychology[J]. Journal of Ichthyology, 2002, 42: 189-195..》Google Scholar
|
[2] |
Dall S R X, Houston A I, McNamara J M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective[J]. Ecology Letters, 2004, 7(8): 734-739..》Google Scholar
|
[3] |
Sih A, Bell A, Johnson J C. Behavioral syndromes: An ecological and evolutionary overview[J]. Trends in Ecology & Evolution, 2004, 19(7): 372-378..》Google Scholar
|
[4] |
Sih A, Bell A M, Johnson J C, et al. Behavioral syndromes: An intergrative overiew[J]. The Quarterly Review of Biology, 2004, 79(3): 241-277..》Google Scholar
|
[5] |
Réale D, Reader S M, Sol D, et al. Integrating animal temperament within ecology and evolution[J]. Biological Reviews, 2007, 82(2): 291-318..》Google Scholar
|
[6] |
Réale D, Dingemanse N J, Kazem A J N, et al. Evolutionary and ecological approaches to the study of personality[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1560): 3937-3946..》Google Scholar
|
[7] |
Koolhaas J M, Korte S M, de Boer S F, et al. Coping styles in animals: Current status in behavior and stress-physiology[J]. Neuroscience & Biobehavioral Reviews, 1999, 23(7): 925-935..》Google Scholar
|
[8] |
Toms C N, Echevarria D J, Jouandot D J. A methodological review of personality-related studies in fish: Focus on the shy-bold axis of behavior[J]. International Journal of Comparative Psychology, 2010, 23: 1-25..》Google Scholar
|
[9] |
Wolf M, McNamara J M. On the evolution of personalities via frequency-dependent selection[J]. The American Naturalist, 2012, 179(6): 679-692..》Google Scholar
|
[10] |
Zhang Q, Fu S J, Xia J G. Recent progress on the personality of fish[J]. Chinese Journal of Ecology, 2017, 36(12): 3623-3628. [张嫱,付世建,夏继刚. 鱼类“个性”行为及其研究进展[J]. 生态学杂志,2017, 36(12): 3623-3628.].》Google Scholar
|
[11] |
Groothuis T G G, Trillmich F. Unfolding personalities: The importance of studying ontogeny[J]. Developmental Psychobiology, 2011, 53(6): 641-655..》Google Scholar
|
[12] |
Gosling S D. From mice to men: What can we learn about personality from animal research?[J]. Psychological Bulletin, 2001, 127(1): 45-86..》Google Scholar
|
[13] |
Weinstein T, Capitanio J P, Gosling S D. Personality in animals[C]//Third Edition. Handbook of Personality: Theory and Research. New York: Springer, 2008: 328-348..》Google Scholar
|
[14] |
Bell A M, Stamps J A. Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus[J]. Animal Behaviour, 2004, 68(6): 1339-1348..》Google Scholar
|
[15] |
Bell A M. Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus)[J]. Journal of Evolutionary Biology, 2005, 18(2): 464-473..》Google Scholar
|
[16] |
Dingemanse N J, Wright J, Kazem A J N, et al. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback[J]. The Journal of Animal Ecology, 2007, 76(6): 1128-1138..》Google Scholar
|
[17] |
Bell A M, Sih A. Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus)[J]. Ecology Letters, 2007, 10(9): 828-834..》Google Scholar
|
[18] |
Sih A, Cote J, Evans M, et al. Ecological implications of behavioural syndromes[J]. Ecology Letters, 2012, 15(3): 278-289..》Google Scholar
|
[19] |
Mittelbach G G, Ballew N G, Kjelvik M K. Fish behavioral types and their ecological consequences[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71(6): 927-944..》Google Scholar
|
[20] |
Smith B R, Blumstein D T. Behavioral types as predictors of survival in Trinidadian guppies (Poecilia reticulata)[J]. Behavioral Ecology, 2010, 21(5): 919-926..》Google Scholar
|
[21] |
Ariyomo T O, Carter M, Watt P J. Heritability of boldness and aggressiveness in the zebrafish[J]. Behavior Genetics, 2013, 43(2): 161-167..》Google Scholar
|
[22] |
Ariyomo T O, Watt P J. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish[J]. Animal Behaviour, 2012, 83(1): 41-46..》Google Scholar
|
[23] |
Schuett W, Tregenza T, Dall S R X. Sexual selection and animal personality[J]. Biological Reviews of the Cambridge Philosophical Society, 2010, 85(2): 217-246..》Google Scholar
|
[24] |
Reznick D, Yang A P. The influence of fluctuating resources on life history: Patterns of allocation and plasticity in female guppies[J]. Ecology, 1993, 74(7): 2011-2019..》Google Scholar
|
[25] |
Sato A, Shimoichi A, Karino K. Copulation type affects parturition in the guppy[J]. Zoological Science, 2011, 28(2): 98-104..》Google Scholar
|
[26] |
Godin J G, Dugatkin L A. Female mating preference for bold males in the guppy, Poecilia reticulata[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(19): 10262-10267..》Google Scholar
|
[27] |
Ariyomo T O, Watt P J. Disassortative mating for boldness decreases reproductive success in the guppy[J]. Behavioral Ecology, 2013, 24(6): 1320-1326..》Google Scholar
|
[28] |
McPhee M V, Quinn T P. Factors affecting the duration of nest defense and reproductive lifespan of female sockeye salmon, Oncorhynchus nerka[J]. Environmental Biology of Fishes, 1998, 51(4): 369-375..》Google Scholar
|
[29] |
Vallon M, Grom C, Kalb N, et al. You eat what you are: Personality-dependent filial cannibalism in a fish with paternal care[J]. Ecology and Evolution, 2016, 6(5): 1340-1352..》Google Scholar
|
[30] |
McGhee K E, Travis J. Repeatable behavioural type and stable dominance rank in the bluefin killifish[J]. Animal Behaviour, 2010, 79(2): 497-507..》Google Scholar
|
[31] |
Colléter M, Brown C. Personality traits predict hierarchy rank in male rainbowfish social groups[J]. Animal Behaviour, 2011, 81(6): 1231-1237..》Google Scholar
|
[32] |
Geffroy B, Bru N, Dossou-Gbété S, et al. The link between social network density and rank-order consistency of aggressiveness in juvenile eels[J]. Behavioral Ecology and Sociobiology, 2014, 68(7): 1073-1083..》Google Scholar
|
[33] |
Wong M Y L, Munday P L, Buston P M, et al. Fasting or feasting in a fish social hierarchy[J]. Current Biology, 2008, 18(9): R372-R373..》Google Scholar
|
[34] |
Zhang Z H, Guo H Y, Zhang X M, et al. Fish social hierarchy and its application in aquaculture and stock enhancement[J]. Chinese Journal of Ecology, 2018, 37(4): 1257-1264. [张宗航,郭浩宇,张雪梅,等. 鱼类社群等级及其在水产增养殖中的应用[J]. 生态学杂志,2018, 37(4): 1257-1264.].》Google Scholar
|
[35] |
Fraser D F, Gilliam J F, Daley M J, et al. Explaining leptokurtic movement distributions: Intrapopulation variation in boldness and exploration[J]. The American Naturalist, 2001, 158(2): 124-135..》Google Scholar
|
[36] |
Werner E E, Anholt B R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity[J]. The American Naturalist, 1993, 142(2): 242-272..》Google Scholar
|
[37] |
Mas-Muñoz J, Komen H, Schneider O, et al. Feeding behaviour, swimming activity and boldness explain variation in feed intake and growth of sole (Solea solea) reared in captivity[J]. PLoS One, 2011, 6(6): e21393..》Google Scholar
|
[38] |
Biro P A, Abrahams M V, Post J R, et al. Predators select against high growth rates and risk-taking behaviour in domestic trout populations[J]. Proceedings of the Royal Society B: Biological Sciences, 2004, 271(1554): 2233-2237..》Google Scholar
|
[39] |
Biro P A, Abrahams M V, Post J R, et al. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates[J]. The Journal of Animal Ecology, 2006, 75(5): 1165-1171..》Google Scholar
|
[40] |
Biro P A, Stamps J A. Are animal personality traits linked to life-history productivity?[J]. Trends in Ecology & Evolution, 2008, 23(7): 361-368..》Google Scholar
|
[41] |
Riebli T, Avgan B, Bottini A M, et al. Behavioural type affects dominance and growth in staged encounters of cooperatively breeding cichlids[J]. Animal Behaviour, 2011, 81(1): 313-323..》Google Scholar
|
[42] |
Schürch R, Heg D. Life history and behavioral type in the highly social cichlid Neolamprologus pulcher[J]. Behavioral Ecology, 2010, 21(3): 588-598..》Google Scholar
|
[43] |
Heg D, Schürch R, Rothenberger S. Behavioral type and growth rate in a cichlid fish[J]. Behavioral Ecology, 2011, 22(6): 1227-1233..》Google Scholar
|
[44] |
Biro P A, Stamps J A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?[J]. Trends in Ecology and Evolution, 2010, 25(11): 653-659..》Google Scholar
|
[45] |
Huntingford F A, Andrew G, Mackenzie S, et al. Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio[J]. Journal of Fish Biology, 2010, 76(7): 1576-1591..》Google Scholar
|
[46] |
Herrera M, Castanheira M F, Martins C I M, et al. Linking risk taking and the behavioral and metabolic responses to confinement stress in gilthead seabream Sparus aurata[J]. Applied Animal Behaviour Science, 2014, 155: 101-108..》Google Scholar
|
[47] |
Berejikian B A. The effects of hatchery and wild ancestry and experience on the relative ability of steelhead trout fry (Oncorhynchus mykiss) to avoid a benthic predator[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52(11): 2476-2482..》Google Scholar
|
[48] |
Einum S, Fleming I A. Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon[J]. Journal of Fish Biology, 1997, 50(3): 634-651..》Google Scholar
|
[49] |
Sundström L F, Löhmus M, Johnsson J I. Investment in territorial defence depends on rearing environment in brown trout (Salmo trutta)[J]. Behavioral Ecology and Sociobiology, 2003, 54(3): 249-255..》Google Scholar
|
[50] |
Budaev S, Brown C. Personality traits and behaviour[M]// Fish Cognition and Behavior. Oxford: Wiley-Blackwell Publishing, 2011: 135-165..》Google Scholar
|
[51] |
Conrad J L, Weinersmith K L, Brodin T, et al. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management[J]. Journal of Fish Biology, 2011, 78(2): 395-435..》Google Scholar
|
[52] |
Eens M, Maes G, Humblet Y, et al. Temperament traits and microhabitat use in bullhead, Cottus perifretum: Fish associated with complex habitats are less aggressive[J]. Behaviour, 2011, 148(5-6): 603-625..》Google Scholar
|
[53] |
Sundström L F, Lôhmus M, Johnsson J I, et al. Growth hormone transgenic salmon pay for growth potential with increased predation mortality[J]. Proceedings of the Royal Society B: Biological Sciences, 2004, 271(Suppl_5): S350-S352..》Google Scholar
|
[54] |
Carbonara P, Alfonso S, Zupa W, et al. Behavioral and physiological responses to stocking density in sea bream (Sparus aurata): Do coping styles matter?[J]. Physiology & Behavior, 2019, 212: 112698..》Google Scholar
|
[55] |
Øverli Ø, Sørensen C. On the role of neurogenesis and neural plasticity in the evolution of animal personalities and stress coping styles[J]. Brain, Behavior and Evolution, 2016, 87(3): 167-174..》Google Scholar
|
[56] |
Dyer J R G, Croft D P, Morrell L J, et al. Shoal composition determines foraging success in the guppy[J]. Behavioral Ecology, 2009, 20(1): 165-171..》Google Scholar
|
[57] |
Magnhagen C, Bunnefeld N. Express your personality or go along with the group: What determines the behaviour of shoaling perch?[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1671): 3369-3375..》Google Scholar
|
[58] |
Pike T W, Samanta M, Lindström J, et al. Behavioural phenotype affects social interactions in an animal network[J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1650): 2515-2520..》Google Scholar
|
[59] |
Chapman B B, Hulthén K, Blomqvist D R, et al. To boldly go: Individual differences in boldness influence migratory tendency[J]. Ecology Letters, 2011, 14(9): 871-876..》Google Scholar
|
[60] |
Lino P G, Bentes L, Abecasis D, et al. Comparative behavior of wild and hatchery reared white sea bream (Diplodus sargus) released on artificial reefs off the Algarve (southern Portugal)[M]//Tagging and Tracking of Marine Animals with Electronic Devices. Dordrecht: Springer, 2009: 23-34..》Google Scholar
|
[61] |
Brown C, Davidson T, Laland K. Environmental enrichment and prior experience of live prey improve foraging behaviour in hatchery-reared Atlantic salmon[J]. Journal of Fish Biology, 2003, 63: 187-196..》Google Scholar
|
[62] |
Ullah I, Zuberi A, Khan K U, et al. Effects of enrichment on the development of behaviour in an endangered fish mahseer (Tor putitora)[J]. Applied Animal Behaviour Science, 2017, 186: 93-100..》Google Scholar
|
[63] |
D’Anna G, Giacalone V M, Vega Fernández T, et al. Effects of predator and shelter conditioning on hatchery-reared white seabream Diplodus sargus (L., 1758) released at sea[J]. Aquaculture, 2012, 356-357: 91-97..》Google Scholar
|
[64] |
Hyvärinen P, Rodewald P. Enriched rearing improves survival of hatchery-reared Atlantic salmon smolts during migration in the River Tornionjoki[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(9): 1386-1395..》Google Scholar
|
[65] |
Roberts L J, Taylor J, Gough P J, et al. Silver spoons in the rough: Can environmental enrichment improve survival of hatchery Atlantic salmon Salmo salar in the wild?[J]. Journal of Fish Biology, 2014, 85(6): 1972-1991..》Google Scholar
|
[66] |
Roberts L J, Taylor J, Garcia de Leaniz C. Environmental enrichment reduces maladaptive risk-taking behavior in salmon reared for conservation[J]. Biological Conservation, 2011, 144(7): 1972-1979..》Google Scholar
|
[67] |
Pickering H, Whitmarsh D. Artificial reefs and fisheries exploitation: A review of the attraction versus production debate, the influence of design and its significance for policy[J]. Fisheries Research, 1997, 3(1-3): 39-59..》Google Scholar
|
[68] |
Seaman W, Unifying trends and opportunities in global artificial reef research, including evaluation[J]. ICES Journal of Marine Science, 2002, 59(suppl): S14-S16..》Google Scholar
|
[69] |
Koeck B, Alós J, Caro A, et al. Contrasting fish behavior in artificial seascapes with implications for resources conservation[J]. PLoS One, 2013, 8(7): e69303..》Google Scholar
|
[70] |
Brakefield P M, Pijpe J, Zwaan B J. Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies[J]. Journal of Biosciences, 2007, 32(3): 465-475..》Google Scholar
|
[71] |
Frankenhuis W E, Del Giudice M. When do adaptive developmental mechanisms yield maladaptive outcomes?[J] Developmental Psychology, 2012, 48(3): 628-642..》Google Scholar
|
[72] |
Hope B V, Fjellner K L, Renn S C P, et al. Juvenile stress disrupts the development of an exploration-boldness behavioural syndrome in convict cichlid fish[J]. Animal Behaviour, 2020, 161: 95-102..》Google Scholar
|
[73] |
Bell A M, Stamps J A. Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus[J]. Animal Behaviour, 2004, 68(6): 1339-1348..》Google Scholar
|
[74] |
Huntingford F A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes[J]. Journal of Fish Biology, 2004, 65(s1): 122-142..》Google Scholar
|
[75] |
Dingemanse N J, Wolf M. Recent models for adaptive personality differences: A review[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2010, 365(1560): 3947-3958..》Google Scholar
|
[76] |
Dingemanse N J, Wolf M. Between-individual differences in behavioural plasticity within populations: Causes and consequences[J]. Animal Behaviour, 2013, 85(5): 1031-1039..》Google Scholar
|
[77] |
Marshall D J, Uller T. When is a maternal effect adaptive?[J]. Oikos, 2007, 116(12): 1957-1963..》Google Scholar
|
[78] |
Reddon A R. Parental effects on animal personality[J]. Behavioral Ecology, 2012, 23(2): 242-245..》Google Scholar
|
[79] |
Webster M M, Laland K N. Social information, conformity and the opportunity costs paid by foraging fish[J]. Behavioral Ecology and Sociobiology, 2012, 66(5): 797-809..》Google Scholar
|
[80] |
Trompf L, Brown C. Personality affects learning and trade- offs between private and social information in guppies, Poecilia reticulata[J]. Animal Behaviour, 2014, 88: 99-106..》Google Scholar
|
[81] |
Engman M. Personality and information use in fish: Bolder crucian carps learn faster[D]. Lund: Lund University, 2014..》Google Scholar
|
[82] |
Mamuneas D, Spence A J, Manica A, et al. Bolder stickleback fish make faster decisions, but they are not less accurate[J]. Behavioral Ecology, 2015, 26(1): 91-96..》Google Scholar
|
[83] |
Krause J, Croft D P, James R. Social network theory in the behavioural sciences: Potential applications[J]. Behavioral Ecology and Sociobiology, 2007, 62(1): 15-27..》Google Scholar
|
[84] |
Wey T, Blumstein D T, Shen W W, et al. Social network analysis of animal behaviour: A promising tool for the study of sociality[J]. Animal Behaviour, 2008, 75(2): 333-344..》Google Scholar
|
[85] |
McNeil W J. Expansion of cultured Pacific salmon into marine ecosystems[J]. Aquaculture, 1991, 98(1-3): 173-183..》Google Scholar
|
[86] |
Sneddon L U. The bold and the shy: Individual differences in rainbow trout[J]. Journal of Fish Biology, 2003, 62(4): 971-975..》Google Scholar
|
[87] |
Dizney L, Dearing M D. Behavioural differences: A link between biodiversity and pathogen transmission[J]. Animal Behaviour, 2016, 111: 341-347..》Google Scholar
|
[88] |
Aalvik I M, Moland E, Olsen E M, et al. Spatial ecology of coastal Atlantic cod Gadus morhua associated with parasite load[J]. Journal of Fish Biology, 2015, 87(2): 449-464..》Google Scholar
|
[89] |
Boyer N, Réale D, Marmet J, et al. Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus[J]. The Journal of Animal Ecology, 2010, 79(3): 538-547..》Google Scholar
|
[90] |
Barber I, Mora A B, Payne E M, et al. Parasitism, personality and cognition in fish[J]. Behavioural Processes, 2017, 141: 205-219..》Google Scholar
|
[91] |
Klemme I, Karvonen A. Learned parasite avoidance is driven by host personality and resistance to infection in a fish–trematode interaction[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1838): 20161148..》Google Scholar
|
[92] |
Barber I, Dingemanse N J. Parasitism and the evolutionary ecology of animal personality[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1560): 4077-4088..》Google Scholar
|
[93] |
Britten G L, Duarte C M, Worm B. Recovery of assessed global fish stocks remains uncertain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31): e2108532118..》Google Scholar
|
[94] |
Uusi-Heikkilä S, Wolter C, Klefoth T, et al. A behavioral perspective on fishing-induced evolution[J]. Trends in Ecology & Evolution, 2008, 23(8): 419-421..》Google Scholar
|
[95] |
Philipp D P, Claussen J E, Koppelman J B, et al. Fisheries-induced evolution in largemouth bass: Linking vulnerability to angling, parental care, and fitness[J]. Transactions of American Fisheries Society Symposium, 2015, 82: 223-234..》Google Scholar
|
[96] |
Allendorf F W, England P R, Luikart G, et al. Genetic effects of harvest on wild animal populations[J]. Trends in Ecology & Evolution, 2008, 23(6): 327-337..》Google Scholar
|
[97] |
Allendorf F W, Hard J J. Human-induced evolution caused by unnatural selection through harvest of wild animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(Supplement_1): 9987- 9994..》Google Scholar
|
[98] |
Coltman D W, O’Donoghue P, Jorgenson J T, et al. Undesirable evolutionary consequences of trophy hunting[J]. Nature, 2003, 426(6967): 655-658..》Google Scholar
|
[99] |
Fenberg P B, Roy K. Ecological and evolutionary consequences of size-selective harvesting: How much do we know?[J]. Molecular Ecology, 2008, 17(1): 209-220..》Google Scholar
|
[100] |
Darimont C T, Carlson S M, Kinnison M T, et al. Human predators outpace other agents of trait change in the wild 1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 952-954..》Google Scholar
|
[101] |
Kuparinen A, Kuikka S, Merilä J. Estimating fisheries- induced selection: Traditional gear selectivity research meets fisheries-induced evolution[J]. Evolutionary Applications, 2009, 2(2): 234-243..》Google Scholar
|
[102] |
Law R. Fishing, selection, and phenotypic evolution[J]. ICES Journal of Marine Science, 2000, 57(3): 659-668..》Google Scholar
|
[103] |
Heino M, Godø O R. Fisheries-induced selection pressures in the context of sustainable fisheries[J]. Bulletin of Marine Science, 2002, 70(2): 639-656..》Google Scholar
|
[104] |
Biro P A, Post J R. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2919-2922..》Google Scholar
|
[105] |
Stamps J A. Growth-mortality tradeoffs and ‘personality traits’ in animals[J]. Ecology Letters, 2007, 10(5): 355-363..》Google Scholar
|
[106] |
Biro P A. Are most samples of animals systematically biased? Consistent individual trait differences bias samples despite random sampling[J]. Oecologia, 2013, 171(2): 339-345..》Google Scholar
|
[107] |
Cooke S J, Suski C D, Ostrand K G, et al. Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish[J]. Physiological and Biochemical Zoology, 2007, 80(5): 480-490..》Google Scholar
|
[108] |
Wilson D S, Coleman K, Clark A B, et al. Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): An ecological study of a psychological trait[J]. Journal of Comparative Psychology, 1993, 107(3): 250-260..》Google Scholar
|
[109] |
Côté I M, Darling E S, Malpica-Cruz L, et al. What doesn’t kill you makes you wary? Effect of repeated culling on the behaviour of an invasive predator[J]. PLoS One, 2014, 9(4): e94248. DOI:10.1371/journal.pone.0094248..》Google Scholar
|
[110] |
Monk C T, Bekkevold D, Klefoth T, et al. The battle between harvest and natural selection creates small and shy fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2009451118..》Google Scholar
|
[111] |
Harcourt J L, Ang T Z, Sweetman G, et al. Leadership, personality and social feedback[J]. Communicative & Integrative Biology, 2009, 2(4): 335-336..》Google Scholar
|
[112] |
Nakayama S, Harcourt J L, Johnstone R A, et al. Initiative, personality and leadership in pairs of foraging fish[J]. PLoS One, 2012, 7(5): e36606..》Google Scholar
|
[113] |
Kareklas K, Arnott G, Elwood R W, et al. Relationships between personality and lateralization of sensory inputs[J]. Animal Behaviour, 2018, 141: 127-135..》Google Scholar
|
[114] |
Siepker M J, Ostrand K G, Cooke S J, et al. A review of the effects of catch-and-release angling on black bass, Micropterus spp.: Implications for conservation and management of populations[J]. Fisheries Management and Ecology, 2007, 14(2): 91-101..》Google Scholar
|
[115] |
Wilson A D M, Binder T R, McGrath K P, et al. Capture technique and fish personality: Angling targets timid bluegill sunfish, Lepomis macrochirus[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(5): 749-757..》Google Scholar
|
[116] |
Conover D O, Munch S B. Sustaining fisheries yields over evolutionary time scales[J]. Science, 2002, 297(5578): 94-96..》Google Scholar
|
[117] |
Hutchings J A. The cod that got away[J]. Nature, 2004, 428(6986): 899-900..》Google Scholar
|
[118] |
Reznick D N, Ghalambor C K. Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(4): 791-801..》Google Scholar
|
[119] |
Walsh M R, Munch S B, Chiba S, et al. Maladaptive changes in multiple traits caused by fishing: Impediments to population recovery[J]. Ecology Letters, 2006, 9(2): 142-148..》Google Scholar
|
[120] |
Cucherousset J, Olden J D. Ecological impacts of nonnative freshwater fishes[J]. Fisheries, 2011, 36(5): 215-230..》Google Scholar
|
[121] |
Luque G M, Bellard C, Bertelsmeier C, et al. The 100th of the world’s worst invasive alien species[J]. Biological Invasions, 2014, 16(5): 981-985..》Google Scholar
|
[122] |
Lockwood J L, Hoopes M F, Marchertti M P. Invasion Ecology[M]. London: Wiley-Blackwell, 2013..》Google Scholar
|
[123] |
Chapple D G, Simmonds S M, Wong B B M. Can behavioral and personality traits influence the success of unintentional species introductions?[J]. Trends in Ecology & Evolution, 2012, 27(1): 57-64..》Google Scholar
|
[124] |
Biro P A, Dingemanse N J. Sampling bias resulting from animal personality[J]. Trends in Ecology & Evolution, 2009, 24(2): 66-67..》Google Scholar
|
[125] |
Juette T, Cucherousset J, Cote J. Animal personality and the ecological impacts of freshwater non-native species[J]. Current Zoology, 2014, 60(3): 417-427..》Google Scholar
|
[126] |
Cote J, Clobert J, Brodin T, et al. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2010, 365(1560): 4065-4076..》Google Scholar
|
[127] |
Rasmussen J E, Belk M C. Dispersal behavior correlates with personality of a North American fish[J]. Current Zoology, 2012, 58(2): 260-270..》Google Scholar
|
[128] |
Coates W D, Hale R, Morrongiello J R. Dispersal decisions and personality in a freshwater fish[J]. Animal Behaviour, 2019, 157: 209-218..》Google Scholar
|
[129] |
Cote J, Fogarty S, Weinersmith K, et al. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis)[J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1687): 1571-1579..》Google Scholar
|
[130] |
Tricarico E, Vilizzi L, Gherardi F, et al. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates[J]. Risk Analysis, 2010, 30(2): 285-292..》Google Scholar
|
[131] |
Carere C, Gherardi F. Animal personalities matter for biological invasions[J]. Trends in Ecology & Evolution, 2013, 28(1): 5-6..》Google Scholar
|
[132] |
Koski S E. Broader horizons for animal personality research[J]. Frontiers in Ecology and Evolution, 2014, 2: 70..》Google Scholar
|