中国水产科学  2021, Vol. 28 Issue (11): 1477-1488  DOI: 10.12264/JFSC2021-0138
0

引用本文 

郭祉宾, 钟俊生, 洪波, 周轩, 王淼. 杭州湾北岸水域仔稚鱼的多样性和聚类分析[J]. 中国水产科学, 2021, 28(11): 1477-1488. DOI: 10.12264/JFSC2021-0138.
GUO Zhibin, ZHONG Junsheng, HONG Bo, ZHOU Xuan, WANG Miao. Diversity and cluster analysis of fish larvae and juvenile on the northern of Hangzhou Bay[J]. Journal of Fishery Sciences of China, 2021, 28(11): 1477-1488. DOI: 10.12264/JFSC2021-0138.

基金项目

上海市农业委员会项目(杭州湾上海沿岸水域渔业资源调查)(jc201904).

作者简介

郭祉宾(1994–),男,硕士研究生,研究方向为仔稚鱼资源学. E-mail: singularity_gzb@163.com

通信作者

钟俊生,教授. E-mail: jszhong@shou.edu.cn.

文章历史

收稿日期:2021-04-16
修改日期:2021-05-10
杭州湾北岸水域仔稚鱼的多样性和聚类分析
郭祉宾1,钟俊生1,洪波2,周轩2,王淼2,     
1. 上海海洋大学水产与生命学院,上海 201306
2. 上海市水产研究所渔业检验监测中心,上海 200433
摘要:为了探明以杭州湾北岸水域仔稚鱼分布和多样性特征,2019年5月、8月、11月,在杭州湾北岸水域设立12个站位点,以大型仔稚鱼网(口径1.3 m,网目0.5 mm)进行表层水平拖网采集仔稚鱼,测量表层温度、盐度、溶氧量及pH。结果表明,共36次拖网调查采集到仔稚鱼9019尾,其中淡水性鱼类2种,河口性鱼类12种,海洋性鱼类14种,洄游性鱼类11种。斑尾刺虾虎鱼(Acanthogobius ommaturus)最多,占总个体数的40.32%,其次依次为凤鲚(Coilia mystus) (15.58%)、鮻(Liza haematocheilus) (9.83%)、黄鳍多纪鲀(Takifugu xanthopterus) (1.39%)、单鳍喉褶䲗(Eleutherochir mirabilis) (1.36%)和有明银鱼(Salanx ariakensis) (1.35%)。仔稚鱼物种数与密度均为5月最多,11月最少。物种数和密度均呈现近岸站点较远岸站点高的现象。Shannon-Wiener多样性指数和Margelef多样性指数分析表明,两指数变化趋势较为一致,均呈现5月最高、8月次之而11月最低的情况。相似性聚类分析结果显示,杭州湾北岸仔稚鱼主要分为湾口近岸、湾口离岸和湾内3种群落类型,单独对各月仔稚鱼群落进行聚类分析,结果表明5月、8月仔稚鱼主要分为湾口和湾内两种群落类型,11月仔稚鱼分布较为均匀,没有明显聚类特征。
关键词杭州湾    仔稚鱼    多样性    聚类分析    物种组成    
Diversity and cluster analysis of fish larvae and juvenile on the northern of Hangzhou Bay
GUO Zhibin1,ZHONG Junsheng,1,HONG Bo2,ZHOU Xuan2,WANG Miao2    
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
2. Shanghai Fisheries Research Institute, Fishery Inspection Monitoring Center, Shanghai 200433, China
Abstract:Hangzhou Bay is an important spawning and feeding ground for some economical species such as Coilia mystus and Collichthys lucidus. Hangzhou Bay located in the northern of Zhejiang Province and the southern of Shanghai Municipality. Hangzhou Bay run east-west, close to Zhoushan Islands at east, access to the Qiantang River in the west. The hydrologic condition of the Hangzhou Bay controlled by the runoff from the Yangtze River, the Qiantang River and the tide from the Donghai Sea, formed complicated environment condition which cultured a wealth of plankton as the pray of the fish larvae and juveniles. Recently, much study on fish larvae and juveniles were carried out in the Hangzhou Bay, most of which were located in the bay mouth, to study the seasonal variation of fish larvae and juveniles. To investigate the seasonal change of the distribution and diversity of fish larvae and juveniles in the northern of Hangzhou Bay, using large plankton net (mesh size 0.5 mm, diameter 1.3 m) to conduct 10 min’s horizontal trawl, meanwhile, collect water temperature, salinity, dissolved oxygen and pH. The development period of the fish larvae was divided into preflexion larvae, flexion larvae, postflexion larvae stage by flecxon of the notochord, with juvenile stage by the accomplished of the fin ray. Result shows a total of 9019 fish larvae and juveniles, including 2 species of fresh water fishes, 12 species of estuarine fishes, 14 species of marine fishes and 11 species of migration fishes. Of all the fish larvae collected, 11 species are from family Gobiidae, 8 from family Engraulidae, 6 from family Sciaenidae, 3 from family Clupeidae, and family Elopidae, Ilisha, Osmeridae, Synodontidae, Syngnathoidei, Moronidae, Blenniidae, Callionymidae, Trichiuridae, Tetraodontidae have one species respectively. The domain development stage was preflexion larvae, which was 46.7%. Rda biplot shows that water temperature and salinity were the main environmental factor affecting the distribution of fish larvae and juveniles in the northern of Hangzhou Bay, salinity was negatively correlated with the distribution of fish larvae and juveniles, which were different from other studies on Yangtze River, probably because of the high adaptability of fish taxa in the Hangzhou Bay. Using larger than 1% of total catch as the dominant species, the results were Acanthogobius ommaturus (40.32%), C. mystus (15.58%), Liza haematocheilus (9.83%), Takifugu xanthopterus (1.39%), Eleutherochir mirabilis (1.36) and Salanx ariakensis (1.35%). The number of species and the density of the fish larvae and juveniles shows a declining tendency, mean seasonal density and mean seasonal number of species decline from 0.83 ind/m³ and 23 species to 0.02 ind/m³ and 11 species. The Shannon-Wiener index, the Margelef index both shows that the diversity of fish larvae in the northern of Hangzhou Bay were highest in spring, decreased in summer and were lowest in autumn. There was no significant difference between Taxonomic distinctness index in May and August, but both were significantly different from November. Cluster analysis based on the Bray-Curtis similarity of fish biomass shows that the fish larvae community mainly consist of the near shore, far shore in the mouth of the bay and the bottom of the bay. Results of analysis on each month shows that the fish larvae community in May and August were the mouth and the bottom of the bay, the result in November shows the community were comparatively even. However, the environmental factors has no significant difference between each sampling station, the difference of fish larvare community distribution may cause by other uninvestigated environmental factors. Previous studies on the near location in 2013, 2014–2015 were used for comparison in this study, all the three study share 11 family and 23 species catches, the top 10 catches of this study had one unique species, and the top 10 catches of previous studies had 5 unique species. A. ommaturus, C. mystus and S. ariakensis were the dominant species of all three studies.
Key wordsHangzhou Bay    fish larvae and juveniles    diversity    cluster analysis    species composition    

杭州湾位于浙江省北部、上海市南部,为东西走向的喇叭形强潮河口湾,且东临舟山群岛,西连钱塘江,同时受到钱塘江径流、长江径流及东海潮流浪涌的影响,水文/环境状况复杂,浮游生物资源丰富[1-3]。据王淼等[4]研究,杭州湾海域为凤鲚(Coilia mystus)及棘头梅童鱼(Collichthys lucidus)等鱼类的索饵和产卵场。

仔稚鱼是鱼类生活史中较为脆弱的阶段,其群落结构的变化同时受到环境因子和生物因子季节性变动的影响[5-6] ,仔稚鱼阶段的鱼类生存状况会极大影响渔业资源补充状况[7]。因此研究仔稚鱼群落的结构特征和季节性变化规律对渔业资源可持续利用的发展有重要意义。我国杭州湾海域仔稚鱼群落结构特征的研究最早见于2005年,蒋玫等[8]对长江口、杭州湾附近海域仔稚鱼夏季分布特征及3年的动态进行了比较的研究。近年来杭州湾北岸水域进行的仔稚鱼调查已经开展较多,主要集中于湾口局部水域,研究仔稚鱼季节性变化[9-12],对杭州湾上游水域的研究较少,未见涉及杭州湾上游水域的仔稚鱼多样性报道。

基于以上问题和研究背景,本研究在扩展采样点范围的基础上对仔稚鱼多样性进行调查,以期能够进一步丰富杭州湾北岸水域的仔稚鱼组成和群落结构,为杭州湾北岸水域早期鱼类资源保护和可持续利用提供科学依据。

1 材料与方法 1.1 调查方法

2019年5月、8月、11月,在杭州湾北岸水域设置12个采样点(St.1~St.12, 图1),在每月大潮期间采用大型仔稚鱼网(口径1.3 m,网目0.5 mm)进行表层水平拖网调查。渔船拖速为2~3 kn,每个采样点拖网10 min,用网口流量计(KC Denmark A/S Model 23.090)记录网口流量值,测量水温、 盐度、溶氧量和pH,在现场用5%甲醛溶液固定样本。

图1  杭州湾北岸仔稚鱼调查站位 Fig. 1  Stations for collecting fish larvae and juveniles in the north of Hangzhou Bay
1.2 室内工作与数据分析

室内在Olympus SZX7解剖镜下分拣出仔稚鱼并计数,按照Kendall[13]仔稚鱼发育分期标准划分发育阶段: 孵化后到鳍条全部形成开始背鳞的个体为仔鱼阶段(larvae stage),其中,从仔鱼孵化到卵黄囊被吸收的过渡时期为卵黄囊仔鱼 (yolk-sac larvae);脊索末端尚呈直线型的阶段为前弯曲期仔鱼(preflexion larvae),脊索末端上弯、尾下骨后缘与体轴倾斜的阶段为弯曲期仔鱼(flexion larvae),脊索末端上弯、尾下骨后缘与体轴垂直的阶段为后弯曲期仔鱼(postflexion larvae);鳍条形成形态趋于成体或鳞片开始出现的阶段 称为稚鱼期(juvenile stage)。科名按照Nelson[14],学名按伍汉霖等[15],并参考鱼类数据库(https:// www.fishbase.de/)及台湾鱼类资料库(https:// fishdb.sinica.edu.tw/)确定仔稚鱼生态类型。

采用以下公式计算仔稚鱼密度(单位为ind/m³):

$G{\rm{ = }}N{\rm{/}}(S \cdot L \cdot C)$

式中,N为每次拖网所采集到的仔稚鱼个体数(尾); S为网口面积(m2); L为流量计转数;C为流量计校正值(C=0.3)。

G作为CPUE比较不同月份、不同站位点的仔稚鱼密度。

多样性研究采用Margalef丰富度指数(D′)、Shannon-Wiener多样性指数(H′)、Pielou均匀度指数(J)、Simpson优势度指数(λ)[16]、分类多样性指数(Δ)[17]、平均分类多样性指数(Δ+)[18]以及相对稀有种数目(R)[19]

D′=(S–1)/lnN

H′=–∑PilnPi

$J{\rm{ = }}\left( { - \mathop \sum \nolimits^ {P_i}\ln {P_i}} \right)/\ln S$$

$\lambda = \sum {P_i^2} $

$\Delta {\rm{ = }}\sum {\sum\limits_{i < j} {{\omega _{ij}}} } {\rm{/}}[S(S - 1){\rm{/}}2]$

${\Delta ^ + } = \sum {\sum\limits_{i < j} {{\omega _{ij}}} } {x_i}{x_j}{\rm{/}}[N(N - 1){\rm{/}}2]$

R=100×Sr/S

式中,S为一个样本中的物种总数,N为一个样本中的总尾数,Pi为第i种所占总尾数的比例,${\omega _{ij}}$$表i和第j物种在分类系统树中的路径长度,参考李圣法[20]设置其权重,Sr为未达样本总数5%的种类[19]

用Bray-Curits相似性指数作为各站点种类组成差异的度量[21],使用PRMER5软件进行相似性聚类分析,以分析仔稚鱼组成的水平分布特征。

${B_{jk}} = 100 \times \left[ {1 - \frac{{\sum\limits_{i = 1}^s {{\rm{|}}{X_{ij}} - {X_{ik}}{\rm{|}}} }}{{\sum\limits_{i = 1}^s {({X_{ij}} - {X_{ik}})} }}} \right]$

式中,XijXik分别为第i种在第j、第k站所采集到的密度,S为总种类数。

所有的统计分析均通过Excel 2016、Primer Prernier 5.0中完成。

2 结果与分析 2.1 温度、盐度、pH及溶氧量

本研究中,如表1所示,平均水温最高为8月(29.2 ℃),最低为5月(18.9 ℃),平均盐度最高在11月(17.6),而最低为8月(9.6); pH变化不大,平均7.43~7.81;溶氧量11月最高(10.3 mg/L), 8月最低(5.5 mg/L)。

表1  杭州湾北岸水域的月平均环境因子变化 Tab. 1  Monthly changes of average environmental data in the north of Hangzhou Bay
2.2 种类组成

本研究共拖网36网次,采集到仔稚鱼9013尾,隶属15科34种(表2)。其中河口性鱼类12种(67.33%),洄游性鱼类7种(17.39%),海洋性鱼类13种(15.22%),淡水性鱼类1种(0.06%)。虾虎鱼科(Gobiidae)的种类最多(11种)、鳀科(Engraulidae) 9种、石首鱼科(Sciaenidae) 5种、鲻科(Mugilidae) 2种,其他科均为1种。优势种结果分析表明,斑尾刺虾虎鱼(Acanthogobius ommaturus)的个体数最多,占总个体数的40.32%,其次为,凤鲚(Coilia mystus)(15.69%)、鮻(Liza haematocheilus)(9.84%)、黄鳍多纪鲀(Takifugu xanthopterus)(1.36%)、单鳍喉褶䲗(Eleutherochir mirabilis)(1.36%)、有明银鱼(Salanx ariakensis)(1.30%)。以上6种鱼占总体渔获总量的69.89%。

表2  杭州湾北岸仔稚鱼种类组成 Tab. 2  Species composition of fish larvae and juveniles in the northern of Hangzhou Bay
2.3 物种数和密度月度变化

杭州湾北岸仔稚鱼密度在5月最高(0.67 ind/m³),其次为8月(0.13 ind/m³), 11月密度处于较低水平,仅为0.02 ind/m³。物种数在5月和8月较高,均为20种,而11月最少,仅采集到10种(图2)。

比较各站位点间的密度、种类数(图3, 图4),各站点中,除St.2、St.4外,其余6站点仔稚鱼密度均为5月最大,其中Sts.9~12 4个站位点5月仔稚鱼密度远大于8月和11月。5月密度最高的站位为St.11,密度为1.80 ind/m³,最低的为St.2,密度为0.05 ind/m³。8月密度最高的站位为St.2,密度为0.46 ind/m³,最低为未采集到仔稚鱼的St.12。11月密度最高的站位点为St.5,密度为0.04 ind/m³,最低为St.3,密度为0.007 ind/m³。仔稚鱼种类数Sts.1~8各站位5月和8月变化不大,而Sts.9~12站点8月种类数大大下降,其中St.12 8月未采集到仔稚鱼;11月仔稚鱼种类数站位点间变化不大,最低为St.6, 1种,最高为St.9, 4种。

图2  杭州湾北岸水域仔稚鱼的种类数和密度的月变化 Fig. 2  Monthly variations of species number and density in the north of Hangzhou Bay
图3  各站位点间密度比较及月变化 Fig. 3  Variations between each station and monthly change of density in the north of Hangzhou Bay
图4  各站位点间仔稚鱼种类数比较及月变化 Fig. 4  Variations between each station and monthly change of species number in the north of Hangzhou Bay
2.4 仔稚鱼发育阶段

采获的仔稚鱼主要是前弯曲期仔鱼和弯曲期仔鱼,共占总数的72.05%,其中,5月、8月采集到的前弯曲期仔鱼比例较高,11月后弯曲期仔鱼所占比例增加。卵黄囊仔鱼仅在5月有采集到,稚鱼期样品所占比例按月份升高(图5)。

2.5 群落和环境因子间关系

通过canoco5.0软件包进行仔稚鱼群落与环境因子间关系的分析,将各月仅有单一站点分布的物种排除后,选取RDA排序方法分析群落与环境因子间的关系,结果如图6所示。5月pH和水温在排序图中方向相似,而溶氧与盐度方向相似,说明前两者和后两者各自对仔稚鱼分布影响方向相似。中国花鲈(Lateolabrax maculatus)、单鳍喉褶䲗(E. mirabilis)、鮻(L. haematocheilus)、鳀(Engraulis japonicus)和鲻(Mugil cephalus)距离水温和pH夹角较小,说明其分布与水温和pH存在正相关,同理小黄鱼(Larimichthys polyactis)和棘头梅童鱼(C. lucidus)与溶氧量和盐度存在正相关,而与环境因子箭头反向的物种之分布与相应环境因子存在负相关关系,箭头长度越长表明环境因子对仔稚鱼分布影响越大或仔稚鱼受环境因子影响越大。因此5月主要影响仔稚鱼分布的环境因子为盐度和水温。8月所有仔稚鱼均处于排序图左侧,盐度也位于排序图左侧,表明仔稚鱼分布与盐度均存在正相关;相反地,pH、盐度与溶氧量均位于排序图右侧,以上3项环境因子与仔稚鱼分布均存在负相关。由排序图可见,8月主要影响因子为盐度、水温和溶氧量,受环境因子影响最大的仔稚鱼为凤鲚(C. mystus)和太的黄鲫(Setipinna taty); 11月环境因子仅能解释30.9%变量,该月环境因子对仔稚鱼分布影响较小,刀鲚(Coilia nasus)主要与水温呈正相关,棘头梅童鱼(C. lucidus)主要与盐度呈正相关,有明银鱼(S. ariakensis)主要与pH呈正相关,而龙头鱼(Harpadon nehereus)主要与溶氧量呈负相关。

图5  各月仔稚鱼发育阶段组成 Fig. 5  Development stages distribution of larvae and juveniles
图6  杭州湾北岸仔稚鱼与环境因子的RDA排序SSS: 水温;SST: 盐度;DO: 溶氧量;a: 5月RDA排序;b: 8月RDA排序;c: 11月RDA排序. 图b中银线弹涂鱼和拉氏狼牙虾虎鱼箭头重合. Fig. 6  RDA biplot of species composition of survey stations and environmental factors in the north of Hangzhou BaySSS. Water temperature; SST. Salinity; DO: Dissolved oxygen; a. RDA biplot in May; b. RDA biplot in August; c. RDA biplot in November. P. argentilcneatus and O. lacepedit share the same arrow in Fig. b.
2.6 多样性分析

分析Shannon-Wiener指数(H′)、Margalef多样性指数(D′)、Pielou均匀度指数(J)及Simpson优势度指数(λ)显示,仔稚鱼群落多样性呈现5月最高,8月次之而11月最低的趋势(图7)。

分类学多样性指数,平均分类学多样性指数及相对稀有种如表3所示,方差分析表明,分类多样性指数5月、8月间不存在显著差异,而11月与前两者差异显著(P<0.05),各站点间差异均不显著;平均分类多样性指数月份间、站点间差异均不显著,相对稀有种5月最多,占(65.3±11.1)%, 8月次之,占50.7±34.7, 11月无相对稀有种。

2.7 相似度聚类分析

相似度聚类分析表明(图8),各站点仔稚鱼种类组成主要分为3支,第一支在相似度22.5时与其余各站分开,在相似度39.9处聚为一支,其余两支在相似度24.09处分开,各自在相似度28.4和相似度32.78处聚为一支。可以看出,接近湾内的离岸站点St.2、St.4和St.6三站首先聚为一支,靠近湾口的Sts.9~12各站点聚为一支,剩余位于中部的近岸站点聚为另外一支。据此,可将本次调查中杭州湾仔稚鱼区分为湾口近岸型、湾口远岸型和湾底型3种仔稚鱼群落类型。

图7  杭州湾北岸水域仔稚鱼各站点多样性指数a: Shannon-Wiener指数;b: Margalef丰富度指数;c: Pielou均匀度指数 d: Simpson优势度指数. Fig. 7  Diversity index of larvae and juveniles in the north of Hangzhou Baya: Shannon-Wiener index; b: Margalef’s index; c: Pielou index; d: Simpson index.
表3  分类学多样性指数、平均分类学多样性指数及相对稀有种数目 Tab. 3  Taxonomic distinctness index, average taxonomic distinctness, and relative rare species rate
图8  杭州湾北岸水域仔稚鱼群落相似性聚类 Fig. 8  Cluster analysis based on the Bray-Curtis similarity of fish biomass at each sampling station of the north of Hangzhou Bay

以各月仔稚鱼数据分别进行聚类分析,结果表明,5月(图9a)主要聚为3支,湾口远岸的St.2、St.4、St.6三站点在相似度14.83处与其余各处分开,在相似度36.26处聚为一支,湾口远岸和湾底站点在相似度17.52处分开,各自聚于相似度25.79和相似度32.14处。8月(图9b)未采集到仔稚鱼的St.12点除外,主要分为两支,一支聚于相似度36.4处,另一只聚于40.32处。11月(图9c)仔稚鱼总体采集量少,且种类数分布较为均匀,因此相似度差别并不大。

图9  杭州湾北岸水域仔稚鱼群落相似性聚类a: 5月站点相似性聚类结果;b: 8月站点相似性聚类结果;c: 11月站点相似性聚类结果. Fig. 9  Cluster analysis based on the Bray-Curtis similarity of fish biomass at each sampling station in each season of the north of Hangzhou Baya: Results of cluster analysis in May; b: Results in August; c: Results in November.
3 讨论 3.1 环境因子对仔稚鱼分布的影响

通过影响仔稚鱼代谢、运动、基因表达等方式,水温可以直接影响仔稚鱼生理、生化状态和生活史过程[22]。王九江等[23]对大亚湾鱼卵和仔稚鱼种群特征的调查显示,21~27 ℃时鱼卵、仔稚鱼与温度都呈显著的负相关关系。李建生等[24]对春季长江口临近水域的调查表明20 m浅水域仔稚鱼种类数与表层水温的关系在4—6月表现为显著正相关关系。从4月到7月,仔稚鱼的丰度表现出前期(4—6月)缓慢增加而后期(7月)大幅增加的趋势,与种类数的变化有较大差异,王淼等[25]对杭州湾北部海域春夏季鱼类种群结构分析表明春、夏季杭州湾北部鱼类种群结构与温度的相关性最高,因此温度是导致杭州湾北岸水域鱼类种群的结构变化的主要环境因子。

O’Connor等[26]对海洋浮游生物和仔稚鱼对温度的生态学效应研究表明,仔稚鱼期持续时间和水温间存在很强的相关性,认为温度对仔稚鱼期长度的影响能够推导出海洋水温和仔稚鱼散布距离与生存率的关系。李浩然等[27]对黄河口及临近水域浮游动物的调查显示,仔稚鱼饵料浮游动物丰度也有温度的相关性。

除温度外,本研究发现盐度和溶氧量也在一定程度上影响了仔稚鱼的种类和密度分布,调查显示,本海域水团划分为湾内高温低盐水团,舟山近海低温高盐水团,本研究水域为湾内低盐水团[28]。李建生等[24]调查表明长江口20 m以下水域仔稚鱼丰度与盐度随时间的推移呈现显著负 相关关系,由于冲淡水的逐渐增强而形成的水温升高和盐度降低所营造的高温低盐环境,更有利于仔稚鱼早期的生长发育及索饵。相反的,宋超等[29]对象山港蓝点马鲛(Scomberomorus niphonius)早期生活史阶段分析表明,蓝点马鲛鱼卵分布受限于盐度变化,主要集中在港口和中部等盐度较高水域,同样,盐度对卵黄囊期和前弯曲期仔鱼也有较大影响,这一发育期仔鱼也主要分布于盐度较高水域。本研究水域与李建生等[24]相似,均为较开放的河口,盐度相对较低(9~16),象山港水域为半封闭型狭长水域,盐度更高(24~26)[29]。因此本研究水域仔稚鱼的分布与李建生等[24]调查结果相似,仔稚鱼分布与盐度呈现负相关。

3.2 种类组成和多样性

本研究中所采集到的仔稚鱼中,优势种主要为斑尾刺虾虎鱼、凤鲚、鮻、黄鳍多纪鲀,5月斑尾刺虾虎鱼在样本中大量出现,为本研究中的最优势种,占全部仔稚鱼个体中的40.32%。Croker[30]在Sandy Hook湾的调查中,优势种为美洲鳗鲡(Anguilla rostrata)、大西洋鲱(Clupea harengus harengus)、棕海龙(Syngnathus fuscus)、美洲拟鲽(Pseudopleuronectes americanus)和美洲玉筋鱼(Ammodytes americanus),共采集到仔稚鱼20种,其中,与本研究相似的海湾近岸站点(St.2, St.3)中各采集到9种仔稚鱼,其中包含大西洋鲱外其余各优势种,以及虾虎鱼科和鲱科仔稚鱼;Chermahini 等[31]在北波斯湾近岸点位的调查中,发现该水域仔稚鱼群落主要由鲱科、虾虎鱼科和鱚科鱼类组成。以上物种为印度-太平洋海域河口区域主要鱼类类群。北波斯湾仔稚鱼聚类分析表明,该水域各站点以其出现的优势种作为区别聚为3支。选择Munk等[32]在西格陵兰Disko海湾的浮游生物研究中,与本研究相似的近岸站点进行比较,发现仔稚鱼主要分布于海湾远岸站点,近岸点位仔稚鱼分布较少,与本研究结果相似。本次调查中,聚类分析显示,仔稚鱼群落呈现湾口近岸、离岸和湾3种类型,但多样性指数并未呈现湾口和湾内的差异,其原因可能是本研究涉及的海域更为开放,且研究海域范围较小,盐度梯度变化不明显,导致多样性变化不呈现上游-下游梯度。

河口区仔稚鱼季节分布会呈现显著的定时、定域现象[33]。本研究所采集到的41种仔稚鱼种28种只在特定的月份出现,12种混合2个月份出现,而仅有棘头梅童鱼1种在3个月份中同时出现。5月出现的仔稚鱼主要为河口性鱼类,而8月、11月出现的仔稚鱼则主要为洄游性鱼类。可以看出分布于本海域的仔稚鱼中,大多数为季节性分布,随季节变化和发育阶段不同洄游或漂移迁入或迁出本海域。而不同月份的仔稚鱼数量分布来看,仔稚鱼密度为5月>8月>11月,5月仔稚鱼平均密度为8月的6.38倍,为11月的41.5倍。而水平分布上,可以观测到大部分的站位存在近岸点密度高于离岸点的现象,且种类组成上也存在着湾口侧近岸站点和离岸站点的相似度差异。本研究所调查的环境因子并未显示出与上述密度、种类数差异相一致的情况,由于设站点范围较为集中,环境因子的站点间差异不显著,尚无法解释上述差异的产生。

3.3 相似水域比较

比较近年在相似水域的调查结果(表4),闫欣等[9]2013年共采集到仔稚鱼143782尾,隶属于23科69种,优势种主要为髭缟虾虎鱼(Tridentiger barbatus)、棘头梅童鱼和凤鲚,胡敏等[10]2014—2015年共采集到仔稚鱼96118尾,隶属于23科55种,优势种主要为髭缟虾虎鱼、棘头梅童鱼和凤鲚。对比本研究结果,3年共有种共11科23种,2013年、2014—2015年共有,本次未采集到仔稚鱼共10科21种,2013年独有8科11种,2014—2015年独有5科6种,本次研究独有5科11种。

表4  杭州湾渔获仔稚鱼种类比较 Tab. 4  Comparison of dominant species of fish larvae and juveniles from Hangzhou Bay in the three years

从调查区域上来看,2013年、2014—2015年调查[8-9]主要在杭州湾北部偏向湾口一侧,站位点设在121°46′~122°26′E,而本次调查区域偏上游区域,站位点位于121°18′~122°6′E, 2013年、2014—2015年研究Sts.5~7对应水域本研究未涉及,而本研究St.5、Sts.7~12对应水域前者未涉及。从数量占比上看(表4),前10位种类除斑尾刺虾虎鱼、凤鲚、鮻、有明银鱼、中华侧带小公鱼外,其余种类差别较大,2013年、2014—2015年前10种中,5种本研究未出现,本次采集到的前10种中,单鳍喉褶䲗(Eleutherochir mirabilis)为本研究独有种。但种类组成上,3次调查结果均为虾虎鱼科种类数、占总渔获比例最高,斑尾刺虾虎鱼、凤鲚和有明银鱼为3次调查共同优势种。分析本次调查独有种的水平分布,多数独有种所采集到的站点与之前所进行的调查站点相近,因此认为独有种差异方面不是由水平分布导致的。2013年杭州湾仔稚鱼平均密度为1.25 ind/m³, 2014—2015年平均密度为0.79 ind/m³,而本次调查平均密度为0.27 ind/m³。选取2013年、2014—2015年5月、8月、11月多样性指数与本研究进行对比,也可以发现本研究多样性指数较前两次调查来说相对较低,是否是由于季度采样所致,还有待进一步考证。

参考文献
[1]
Editorial Board of China Bay Survey. Survey of China Bays[M]. Beijing: China Ocean Press, 1998: 1-82. [中国海湾志编纂委员会. 中国海湾志[M]. 北京: 海洋出版社,1998: 1-82.].》Google Scholar
[2]
Jia H B, Shao J B, Cao L Y. Analysis of the changes and development trend of ecological environment in Hangzhou Bay[J]. Environmental Pollution & Control, 2014, 36(3): 14-19, 25. [贾海波,邵君波,曹柳燕. 杭州湾海域生态环境的变化及其发展趋势分析[J]. 环境污染与防治,2014, 36(3): 14-19, 25.].》Google Scholar
[3]
Jia H B, Tang J L, Hu H Y. The variation tendency of biodiversity and cause analysis in Hangzhou Bay from 1992 to 2012[J]. Acta Oceanologica Sinica, 2014, 36(12): 111-118. [贾海波,唐静亮,胡颢琰. 1992—2012杭州湾海域生物多样性的变化趋势及原因分析[J]. 海洋学报,2014, 36(12): 111-118.].》Google Scholar
[4]
Wang M, Hong B, Zhang Y P, et al. Community structure of nektons in northern Hangzhou Bay in summer and winter[J]. Journal of Guangdong Ocean University, 2015, 35(3): 56-62. [王淼,洪波,张玉平,等. 夏、冬季杭州湾北部游泳动物群落结构[J]. 广东海洋大学学报,2015, 35(3): 56-62.].》Google Scholar
[5]
Ramos S, Cowen R K, Ré P, et al. Temporal and spatial distributions of larval fish assemblages in the Lima estuary (Portugal)[J]. Estuarine, Coastal and Shelf Science, 2006, 66(1-2): 303-314..》Google Scholar
[6]
Jiang M, Li L, Shen X Q, et al. Structure of community and biodiversity of larvae fish in spring and autumn 2010–2011 in Yangtze River Estuary and its adjacent waters[J]. Acta Oceanologica Sinica, 2014, 36(6): 131-137. [蒋玫,李磊,沈新强,等. 2010—2011年长江河口及邻近水域春夏季仔稚鱼群落结构及其多样性的研究[J]. 海洋学报(中文版), 2014, 36(6): 131-137.].》Google Scholar
[7]
Oeberst R, Klenz B, Gröhsler T, et al. When is year-class strength determined in western Baltic herring?[J]. ICES Journal of Marine Science, 2009, 66(8): 1667-1672..》Google Scholar
[8]
Jiang M, Shen X Q. Abundance distributions of pelagic fish eggs and larva in the Changjiang River estuary and vicinity waters in summer[J]. Marine Sciences, 2006, 30(6): 92-97. [蒋玫,沈新强. 长江口及邻近水域夏季鱼卵、仔鱼数量分布特征[J]. 海洋科学,2006, 30(6): 92-97.].》Google Scholar
[9]
Yan X, Zhong J S, Wang M X, et al. Study on the species composition and diversity of fish larvae and juveniles in the north of Hangzhou Bay[J]. Journal of Shanghai Ocean University, 2014, 23(5): 765-773. [闫欣,钟俊生,王明星,等. 杭州湾北部水域仔稚鱼种类组成和多样性研究[J]. 上海海洋大学学报,2014, 23(5): 765-773.].》Google Scholar
[10]
Hu M, Zhong J S, Tang Z H, et al. Monthly and annual comparison of fish larvae and juveniles composition in the north of Hangzhou Bay[J]. Journal of Shanghai Ocean University, 2017, 26(1): 103-112. [胡敏,钟俊生,唐子涵,等. 杭州湾北部水域仔稚鱼组成的月度及年间比较[J]. 上海海洋大学学报,2017, 26(1): 103-112.].》Google Scholar
[11]
Jiang M, Wang Y L, Lin Q, et al. Distribution characteristics of fish eggs and larvae around Yangshan Port in Hangzhou Bay[J]. Marine Environmental Science, 2008, 27(1): 43-46. [蒋玫,王云龙,林钦,等. 洋山深水港水域鱼卵仔鱼分布特征[J]. 海洋环境科学,2008, 27(1): 43-46.].》Google Scholar
[12]
Wei Y J, Wang X B, Zhang H B, et al. Ichthyoplankton species composition and distribution in Hangzhou Bay in summer during 2004–2010[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(4): 501-508. [魏永杰,王晓波,张海波,等. 2004—2010年夏季杭州湾鱼类浮游生物种类组成与数量分布[J]. 台湾海峡,2012, 31(4): 501-508.].》Google Scholar
[13]
Kendall A W Jr. Early life history stages of fishes and their characters[M]//Ontogeny and Systematics of Fishes. Lawrence: The American Society of Ichthyologists Herpetologists, 1984: 11-22..》Google Scholar
[14]
Nelson J S. Fishes of the World[M]. 4th Ed. New York: John Wiley & Sons, 2006..》Google Scholar
[15]
Wu H L, Shao G Z, Lai C F. Latin-Chinese Dictionary of Fish Names by Classification System[M]. Keelung: Taiwan Fisheries Press, 1999. [伍汉霖,邵广昭,賴春福. 拉汉世界鱼类系统名典[M]. 基隆: 水产出版社,1999.].》Google Scholar
[16]
Ma K P. The measurement of community diversity[M]// Biodiversity Committee of Chinese Academy of Sciences. Principles and Methodologies of Biodiversity Studies. Beijing: Science and Technology of China Press, 1994: 141-155. [马克平. 生物群落多样性的测度方法[M]//中国科学院生物多样性委员会. 生物多样性研究的原理和方法. 北京: 中国科学技术出版社,1994: 141-155.].》Google Scholar
[17]
Warwick R M, Clarke K R. Taxonomic distinctness and environmental assessment[J]. Journal of Applied Ecology, 1998, 35(4): 532-543..》Google Scholar
[18]
Clarke K R, Warwick R M. A taxonomic distinctness index and its statistical properties[J]. Journal of Applied Ecology, 1998, 35(4): 523-531..》Google Scholar
[19]
Sun J Y, Dai X J, Zhu J F, et al. Analysis of the fish species diversity in Dianshan Lake[J]. Journal of Shanghai Fisheries University, 2007, 16(5): 454-459. [孙菁煜,戴小杰,朱江峰,等. 淀山湖鱼类多样性分析[J]. 上海水产大学学报,2007, 16(5): 454-459.].》Google Scholar
[20]
Li S F. The ecological study for fish community in the East China sea continental shelf: The spatial pattern and diversity[D]. Shanghai: East China Normal University, 2005. [李圣法. 东海大陆架鱼类群落生态学研究—空间格局及其多样性[D]. 上海: 华东师范大学,2005.].》Google Scholar
[21]
Bray J R, Curtis J T. An ordination of the upland forest communities of southern Wisconsin[J]. Ecological Monographs, 1957, 27(4): 325-349..》Google Scholar
[22]
Jost B, Hartmut A, Sylvia B, et al. Drift of fish larvae and juveniles in the Lower Rhine before and after the goby invasion[J]. Limnologica, 2016, 59: 53-62..》Google Scholar
[23]
Wang J J, Liu Y, Xiao Y Y, et al. Population characteristics of fish eggs and larvae and their relationship with environmental factors in Daya Bay[J]. Journal of Fishery Sciences of China, 2019, 26(1): 14-25. [王九江,刘永,肖雅元,等. 大亚湾鱼卵、仔稚鱼种群特征与环境因子的相关关系[J]. 中国水产科学,2019, 26(1): 14-25.].》Google Scholar
[24]
Li J S, Lin N, Ling J Z. Temporal variation in the composition and abundance of fish larvae and juveniles off the Yangtze River Estuary in spring and summer[J]. Journal of Fishery Sciences of China, 2018, 25(3): 586-594. [李建生,林楠,凌建忠. 春夏季长江口邻近水域仔稚鱼种类组成和丰度的月变化[J]. 中国水产科学,2018, 25(3): 586-594.].》Google Scholar
[25]
Wang M, Hong B, Zhang Y P, et al. Spring and summer fish community structure in northern Hangzhou Bay[J]. Journal of Hydroecology, 2016, 37(5): 75-81. [王淼,洪波,张玉平,等. 春季和夏季杭州湾北部海域鱼类种群结构分析[J]. 水生态学杂志,2016, 37(5): 75-81.].》Google Scholar
[26]
O’Connor M I, Bruno J F, Gaines S D, et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(4): 1266-1271..》Google Scholar
[27]
Li H R, Liu G X, Ma J, et al. Community characteristics of zooplankton in the Yellow River estuary and its adjacent area in summer and autumn[J]. Marine Environmental Science, 2018, 37(5): 631-639. [李浩然,刘光兴,马静,等. 夏、秋季黄河口及邻近水域浮游动物群落特征[J]. 海洋环境科学,2018, 37(5): 631-639.].》Google Scholar
[28]
Xu Y J, Yu C G, Zhang P, et al. Spring nekton community structure and its relationship with environmental variables in Hangzhou Bay-Zhoushan inshore waters[J]. Journal of Fisheries of China, 2019, 43(3): 605-617. [许永久,俞存根,张平,等. 杭州湾—舟山近海春季游泳动物群落结构及与环境因子的关系[J]. 水产学报,2019, 43(3): 605-617.].》Google Scholar
[29]
Song C, Wang Y T, Liu Z L, et al. Relationship between environmental factors and distribution of Scomberomorus niphonius eggs, larvae, and juveniles in Xiangshan Bay[J]. Journal of Fishery Sciences of China, 2016, 23(5): 1197-1204. [宋超,王宇坛,刘尊雷,等. 象山港蓝点马鲛鱼卵、仔稚鱼的时空分布特征及其与环境因子关系[J]. 中国水产科学,2016, 23(5): 1197-1204.].》Google Scholar
[30]
Croker R A. Planktonic fish eggs and larvae of sandy hook estuary[J]. Chesapeake Science, 1965, 6(2): 92-95..》Google Scholar
[31]
Chermahini M A, Shabani A, Naddafi R, et al. Diversity, distribution, and abundance patterns of ichthyoplankton assemblages in some inlets of the northern Persian Gulf[J]. Journal of Sea Research, 2021, 167: 101981..》Google Scholar
[32]
Munk P, Nielsen T G, Hansen B W. Horizontal and vertical dynamics of zooplankton and larval fish communities during mid-summer in Disko Bay, West Greenland[J]. Journal of Plankton Research, 2015, 37(3): 554-570..》Google Scholar
[33]
Jiao X M, Mao C Z, Chen Y G, et al. Ecological research progress of larvae and juvenile fishes in coastal surf zone[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2016, 25(2): 70-75. [矫新明,毛成责,陈渊戈,等. 沿海碎波带仔稚鱼生态学研究进展[J]. 淮海工学院学报 (自然科学版), 2016, 25(2): 70-75.].》Google Scholar