着生藻类又称为周丛藻类或底栖藻类,生长于水中各种基质表面,其物种数较多,群落结构复杂,是河流生态系统中重要的生物类群之一[1-2]。着生藻类是水域生态系统重要的初级生产者,在维持生态系统多样性、能量流动和物质传递方面起着重要作用。在一些流速适宜的河流中,该类群所固定的初级生产力远比浮游植物和水生维管植物高[3]。随着社会经济的发展,水质恶化、梯级水电站建设、岸坡硬化护砌、采石挖沙等人为干扰显著改变了河流环境,导致着生藻类多样性和群落结构发生变化[4-6]。由于着生藻类具有营固着生活、繁殖迅速和生命周期较短等特性,其数量和种类组成对环境变化和各种干扰较为敏感,对水体富营养化、水文变化以及其他污染物都有较快的响应,进而在河流生物多样性监测与健康评价中应用广泛[6-7]。
通常,着生藻类的分布格局受到河流等级、河流纵向环境梯度等因素的影响,从而具有明显的空间异质性。环境因子与着生藻类的关系非常密切,已有研究表明,水温、水深、流速和营养盐等环境因子对河流着生藻类群落结构有着重要影响[8-11]。而山区河流中流速和底质类型等环境因子对着生藻类多样性的影响研究较少[12-13],纵向梯度下河流环境与着生藻类空间分布格局的研究则更为少见。
雅砻江是金沙江最大的一级支流,水电资源丰富。目前雅砻江下游规划的5座梯级(即锦屏一级、锦屏二级、官地、二滩和桐子林)已全部建成,河流环境明显改变。作为雅砻江下游的最大支流,安宁河水生生物多样性对维持雅砻江水域生态系统结构和功能具有重要意义。而目前有关雅砻江下游及安宁河水生生物群落的研究报道较少,仅见于吴乃成等[12]和渠晓东等[14]对雅砻江锦屏段着生藻类和底栖动物的多样性分析,以及马宝珊等[15-18]对安宁河中游水生生物群落结构及其关键环境因子的分析。在此背景下,为理解河流环境变化下水生生物多样性格局及关键因子,本研究对雅砻江下游及支流安宁河的着生藻类多样性及空间格局进行研究,并以安宁河为代表,着重分析河流纵向梯度下着生藻类的空间格局,以期为高原山区河流的水生生物多样性保护提供依据,并为该流域食物网构建提供基础资料。
1 材料与方法 1.1 采样时间和地点2018年6–8月在雅砻江下游干支流共设置31个样点进行调查采样,其中雅砻江干流采样点10个,一级支流安宁河干流采样点14个,二级支流安宁河支流采样点7个(图1)。
![]() |
图1 雅砻江下游着生藻类调查样点分布示意图雅砻江下游干流10个样点(Y1~Y10),安宁河干流14个样点(A1~A14),安宁河支流7个样点(Z1~Z7). 安宁河干流A1~A4为上游,A5~A10为中游,A11~A14为下游. Fig. 1 Sampling sites for periphytic algae in the lower Yalong RiverThe Yalong River, 10 sites (Y1–Y10); the Anning River, 14 sites (A1–A14); the tributaries of the Anning River, 7 sites (Z1–Z7). The upper Anning River, A1–A4; the middle Anning River, A5–A10; the lower Anning River, A11–A14. |
采样期间,对采样点的河流环境进行了现场记录:经纬度、海拔、河宽、水深、透明度、流速、水温、溶氧、pH、电导率和浊度等。将每个调查河段分为3个等距的断面,在每个断面上测量河宽。在每个断面上选取3个等距截点,在每个截点处测量水深(Peedtech SM-5)和透明度,并在每个截点60%水深处测量流速(Global Water FP-311)。水温、溶氧、pH、电导率和浊度指标通过YSI-EXO2便携式多参数水质分析仪获取[19]。将底质类型分为5类:(1)淤泥和黏土(粒径<0.06 mm); (2)沙(粒径0.06~2 mm); (3)砾石(粒径2~64 mm); (4)卵石(粒径64~256 mm); (5)大石(粒径>256 mm)[20]。经现场目测后,计算各个样点各底质类型的百分比[21]。
1.3 样本的采集和鉴定在采样河段上下范围100 m内,依据河流生境不同(水深和流速等),挑选 3块石头,每块石头选取约9 cm2 (3 cm×3 cm的方形塑料片)的平面,用硬毛牙刷反复刷取后装入50 mL样本瓶中,鲁哥氏液固定[22]。
参考胡鸿钧等[23]以及朱蕙忠等[24]进行着生藻类的种类鉴定和数据记录。每个样品计数2片(0.1 mL浮游植物计数框),每片100个小格,再取其平均值。
1.4 数据分析优势度计算公式:Y=(Ni /N)Fi,式中,Fi为物种i的出现率,Ni为物种i的密度,N为总密度。本研究将Y≥0.02 的物种定为优势种[25]。
着生藻类物种多样性指数计算如下:
Margalef’s richness指数(D): D=(S–1)/lnN
Shannon–Wiener指数(H′): H=–ΣPi (lnPi)
Pielou’s evenness指数(J): J=H′/lnS
式中,Pi为物种i的个数百分比,N为总个数,S为群落总物种数[26]。
采用Canoco 4.5分析着生藻类群落结构与环境因子的相关性。分析前,先对环境因子(除pH)和密度数据进行对数化处理,使数据呈正态分布;再采用除趋势对应分析(DCA)对着生藻类密度数据进行排序,依据排序轴长度决定哪种模型更为合适。由于排序轴长度小于3.0,故采用冗余分析(RDA)解析着生藻类密度与环境因子的关系。RDA分析中通过前选法和蒙特卡罗检验排除贡献较小的环境因子[27]。本研究选取优势度>0.001的物种进行RDA分析。
采用SPSS16.0中的方差分析(ANOVA)和Tukey’s post hoc test检验不同河流及不同河段间环境因子和着生藻类多样性指数的差异性,显著水平为0.05。文章作图采用Origin2016。
2 结果与分析 2.1 环境参数雅砻江下游干流、安宁河干流及安宁河支流的环境参数见表1。调查显示,随着河流级别的升高,海拔和流速呈下降趋势,水深、河宽、水温和电导率呈上升趋势。雅砻江干流的水深、河宽、溶氧和电导均高于安宁河干支流。浊度以安宁河干流最大,其次为安宁河支流,雅砻江干流最低。不同河流之间的水温差异不大。雅砻江干流透明度较大,安宁河干流水较浑浊,而安宁河支流大部分为清澈见底的溪流。
沿“上游–下游”纵向梯度,随着安宁河海拔的下降,水深、河宽、水温和电导率呈上升趋势。安宁河干流不同河段之间的海拔和水温相差很大,中下游的水深、河宽和电导率均高于上游。不同河段之间的流速、溶氧和浊度无明显差异(表2)。
![]() |
表1 雅砻江下游及其一级、二级支流环境参数 Tab. 1 Environmental parameters of the lower Yalong River and its tributaries |
![]() |
表2 安宁河干流环境参数 Tab. 2 Environmental parameters in the mainstream of the Anning River |
本研究共采集着生藻类95种,隶属于5门49属。其中硅藻门(Bacillariophyta) 24属57种,绿藻门(Chlorophyta)15属20种,蓝藻门(Cyanophyta)7属14种,甲藻门(Dinophyta) 1属2种,裸藻门(Euglenophyta) 2属2种。其中雅砻江干流物种丰富度最高(57种),安宁河干流次之(52种),安宁河支流最低(49种,表3)。物种组成上,雅砻江干流中除了蓝藻、硅藻和绿藻种类以外,还有少量甲藻和裸藻种类;而安宁河干支流中仅采集到蓝藻、硅藻和绿藻。
雅砻江干流优势种为曲壳藻属未定种(Achnanthes sp.)、异极藻属未定种(Gomphonema sp.)、胶质细鞘丝藻(Leptolyngbya gelatinosa)、针杆藻属未定种(Synedra sp.)、舟形藻属未定种(Navicula sp.)、大卵囊藻(Oocystis naegelii)和桥弯藻属未定种(Cymbella sp.),安宁河干流优势种为曲壳藻属未定种和细小隐球藻(Aphanocapsa elachist),安宁河支流流优势种为曲壳藻属未定种、胶质细鞘丝藻、异极藻属、舟形藻属和扁圆卵形藻(Cocconeis placentula)(表3)。
沿“上游–下游”纵向梯度,安宁河干流藻类物种丰富度呈上升趋势(表3);安宁河上游全部为硅藻,中游为硅藻和绿藻,下游则蓝藻、硅藻和绿藻均有。安宁河中上游的优势种与下游差异明显,中上游优势种全部为硅藻种类(舟形藻属未定种、桥弯藻属未定种、异极藻属未定种、扁圆卵形藻和曲壳藻属未定种),而下游的优势种仅有蓝藻门一种(细小隐球藻)。
2.2.2 着生藻类密度雅砻江干流着生藻类平均密度为12.67×108 ind/m2,安宁河干流为72.91×108 ind/m2,安宁河支流为30.96×108 ind/m2。雅砻江干流着生藻类密度低于安宁河干支流,安宁河干流着生藻类密度高于支流。安宁河干流密度以蓝藻占优势,支流密度以硅藻占据优势(图2)。
安宁河上游着生藻类平均密度为2.72×108 ind/m2,中游为17.25×108 ind/m2,下游为226.59× 108 ind/m2。沿着河流纵向梯度,由上游至下游,安宁河干流硅藻比例渐趋下降,而绿藻和蓝藻的比例却逐渐升高,下游密度以蓝藻占据绝对优势(99.20%) (图2)。
2.2.3 着生藻类多样性丰富度指数(D)以雅砻江干流最高,其次为安宁河支流,安宁河干流最低。多样性指数(H′)以雅砻江干流最高,其次为安宁河干流,安宁河支流最低。均匀度指数(J)以安宁河干流最高,其次为雅砻江干流,安宁河支流最低(图3a)。
纵向梯度下安宁河干流着生藻类丰富度指数(D)呈上升趋势。而多样性指数(H′)和均匀度指数(J)却以中游最高,其次为下游,上游最低(图3b)。安宁河不同河段着生藻类的多样性指数均无显著性差异。
![]() |
表3 雅砻江下游着生藻类种类数、主要优势种及优势度 Tab. 3 Species number and dominant periphytic algae and their dominance in the lower Yalong River |
![]() |
图2 雅砻江下游着生藻类的密度DA:安宁河下游,MA:安宁河干流,MA′:安宁河中游,MY:雅砻江干流,TA:安宁河支流,UA:安宁河上游. Fig. 2 Density of periphytic algae from the lower Yalong RiverDA: downstream of the Anning River; MA: the mainstream of the Anning River; MA′: midstream of the Anning River; MY: the mainstream of the Yalong River; TA: the tributaries of the Anning River; UA: upstream of the Anning River. |
![]() |
图3 雅砻江下游流域着生藻类的物种多样性MY:雅砻江干流;MA:安宁河干流;TA:安宁河支流;DA:安宁河下游;MA′:安宁河中游;UA:安宁河上游. Fig. 3 Species diversity of periphytic algae in the lower Yalong River basinMY: the mainstream of the Yalong River; MA: the mainstream of the Anning River; TA: the tributaries of the Anning River; DA: downstream of the Anning River; MA′: midstream of the Anning River; UA: upstream of the Anning River. |
冗余分析结果显示,雅砻江下游流域着生藻类密度与水温、浊度和底质类型(砾石)显著相关(P<0.05, 表4, 图4a)。第一和第二排序轴所反映的物种信息量共计53.4%。水温与第一排序轴的正相关性最高,其次为砾石;浊度与第一排序轴呈负相关。砾石与第二排序轴呈正相关,水温和浊度与第二排序轴呈负相关。绝大部分藻类密度与砾石比例呈正相关,与浊度呈负相关。细小隐球藻、多形眉藻(Calothrix polymorpha)、大卵囊藻(Oocystis naegelii)和双对栅藻(Scenedesmus bijuga)等蓝绿藻密度与水温呈正相关,扁圆卵形藻、偏肿桥弯藻(Cymbella ventricosa)、优美桥弯藻(Cymbella delicatula)和冬生等片藻中型变种(Diatoma hiemale var. mesodon)等大部分硅藻密度与水温呈负相关。
![]() |
表4 雅砻江下游着生藻类密度与环境因子关系的RDA分析结果 Tab. 4 RDA results relating densities of periphytic algaeto environmental factors in the lower Yalong River |
RDA结果显示,安宁河着生藻类密度与流速显著相关(P<0.05),与海拔相关性较高,但并不显著(P=0.059, 表5, 图4b)。第一和第二排序轴所反映的物种信息量共计69.7%。流速和海拔与第一排序轴呈负相关;流速与第二排序轴呈正相关,海拔与第二排序轴呈负相关。绝大部分藻类密度与流速呈负相关。桥弯藻、曲壳藻、扁圆卵形藻和异极藻等硅藻密度与海拔呈正相关,而细小隐球藻和大卵囊藻等藻类则与海拔呈负相关。
![]() |
图4 着生藻类群落结构与环境因子的RDA排序图a:雅砻江不同河流等级;b:安宁河不同河段;APH:细小隐球藻;OSC1:钻头颤藻;OSC2:颤藻属未定种;LYN:近稀疏鞘丝藻,PSE:链状假鱼腥藻,LEP1:胶质细鞘丝藻,LEP2:浮游细鞘丝藻,LEP3:细鞘丝藻藻属未定种,CAL:多形眉藻;CYC:小环藻属未定种;DIA:冬生等片藻中型变种;FRA:钝脆杆藻;SYN:针杆藻属未定种;NAV:舟形藻属未定种;CYM1:近缘桥弯藻;CYM2:膨胀桥弯藻;CYM3:偏肿桥弯藻;CYM4:优美桥弯藻;CYM5:桥弯藻属未定种;GOM:异极藻属未定种;COC:扁圆卵形藻;ACH:曲壳藻属未定种;OOC:大卵囊藻;SCE:双对栅藻. Fig. 4 RDA diagram of periphytic algae community and environmental factorsa: different river grades of the Yalong River; b: different sections of the Anning River; APH: Aphanocapsa elachista; OSC1: Oscillatoria terebriformis; OSC2: Oscillatoria sp.; LYN: Lyngbya subconfervoides; PSE: Pseudanabaena catenate; LEP1: Leptolyngbya gelatinosa; LEP2: Leptolyngbya planktonica; LEP3: Leptolyngbya sp.; CAL: Calothrix polymorpha; CYC: Cyclotella sp.; DIA: Diatoma hiemale var. mesodon; FRA: Fragilaria capucina; SYN: Synedra sp.; NAV: Navicula sp.; CYM1: Cymbella affinis; CYM2: Cymbella tumida; CYM3: Cymbella ventricosa; CYM4: Cymbella delicatula; CYM5: Cymbella sp.; GOM, Gomphonema sp.; COC: Cocconeis placentula; ACH: Achnanthes sp.; OOC: Oocystis naegelii; SCE: Scenedesmus bijuga. |
![]() |
表5 安宁河着生藻类密度与环境因子关系的RDA分析结果 Tab. 5 RDA results relating densities of periphytic algae to environmental factors in Anning River |
本研究结果表明,雅砻江下游干流着生藻类密度低于安宁河干支流分析其主要原因可能如下:(1)自然状态下,雅砻江下游干流着生藻类的密度便低于支流,比如,在梯级电站建成前,雅砻江锦屏江段干流着生藻类的密度远低于支流[12]; (2)梯级电站的建设,导致水位升高,流速降低,原有的流水生境丧失,底质类型发生改变,着生藻类缺乏适宜的栖息生境,故其密度显著下降[18]; (3)雅砻江干支流底质组成存在较大差异,雅砻江干流生境以高坝深库为主,库区环境不利于着生藻类的生长,故雅砻江干流的密度及优势种等与安宁河差异较大,而安宁河干支流底质以大石和卵石为主,比较适合着生藻类的生长发育。
此外,梯级电站建成前,雅砻江锦屏江段物种组成以硅藻占据绝对优势,不管丰水期还是枯水期优势种都全部由硅藻组成[12]。本次调查中锦屏江段(Y1~Y4)仍以流水为主,其着生藻类优势类群主要以硅藻为主;但随河流梯度往下,雅砻江干流出现较大量的蓝藻和绿藻,而且蓝绿藻的比例呈上升趋势,这与雅砻江下游梯级电站的建成运行有一定关系。电站建成后,雅砻江下游干流大部分江段形成库区,其水位高,流速低,原有的流水生境丧失,底质类型发生改变,导致库区的藻类群落呈现蓝藻和绿藻种类和密度增加的趋势,蓝藻和绿藻种类也逐渐成为优势种[4]。陈家厚等[4]指出,大顶子山航电枢纽蓄水运行后,水环境变化导致松花江哈尔滨段着生藻类中蓝绿藻比例升高。吴乃成[28]对香溪河水电站建设前后进行对比,结果表明,电站蓄水运行后,下游流速、水深和河宽等主要水文指标显著改变,进而导致着生硅藻总密度、桥弯藻密度、直立型硅藻相对含量、物种丰富度以及Margalef多样性指数等显著下降。Jansen等[29]对加利福尼亚州鳗鱼河建坝干流和未建坝支流着生藻类的比较,也表明建坝蓄水会影响着生藻类和底栖动物的群落结构组成及其密度,进而影响整个食物网的能量传输。综上所述,梯级电站的建设对水环境将产生累积效应,最终导致下游水体蓝绿藻比例升高,硅藻密度、物种丰富度和生物多样性等呈下降趋势。
3.2 河流纵向梯度下着生藻类空间分布格局及其主要环境因子河流可被视为一个由上游至下游的线性等级结构,沿着这一纵向梯度,许多非生物因子呈现出连续性的空间变化,并对水生生物的空间分布产生重要影响[30]。河流连续统及相关理论认为,河流的环境特征沿水流方向呈现一定的规律性,如海拔降低、水温升高、流速变缓、水深增加等[31]。Jiang等[21]对尼洋河的调查结果也显示,沿着河流纵向梯度,尼洋河水深和水温逐渐升高,流速逐渐降低。本研究中,纵向梯度下安宁河干流的海拔和流速呈下降趋势,水深、河宽、水温和电导率呈上升趋势;沿着河流纵向梯度,安宁河干流中上游水深较浅,流速非常快,底质主要由大石、卵石和砾石组成,着生藻类主要以硅藻为主,下游水深较深,流速较缓,底质虽然也以大石、卵石和砾石为主,但沙粒和黏土占据一定比例,绿藻和蓝藻的比例相对较高。
纵向梯度下安宁河干流的物种多样性指数(Shannon–Wiener指数,H′)呈现出一定的规律,符合中间高度膨胀(mid-altitude bulge)理论,即安宁河中游着生藻类多样性指数最大,上游河段和下游河段相对较低。中间高度膨胀理论指出,在中间海拔区域内物种的多样性指数最高,而在高海拔或低海拔区域内物种的多样性指数呈下降趋势[18]。刘海平等[13]也指出尼洋河着生藻类Shannon– Wiener指数在中游最大,中上游河段和中下游河段呈下降趋势。
海拔与物种分布存在一定相关性。海拔高度决定了一个地区的水温和光照强度等环境条件的变化,对河流着生藻类的群落结构组成的影响较大[5,13]。肖妮娜等[5]指出,海拔对赣江中游着生藻类群落结构有显著影响,海拔越高,着生藻类物种数、密度和多样性指数越低。本研究结果表明,纵向梯度下安宁河着生藻类物种数、总密度及丰富度指数(D)均呈上升趋势。刘海平等[13]研究西藏尼洋河着生藻类时也有相似结果。此外,本研究中部分硅藻种类密度与海拔呈正相关,由于海拔提升,水温降低,喜低温的硅藻成为优势种,因此中上游主要以硅藻为主,下游海拔低,水温高,喜高温的蓝绿藻比例显著上升。
水温影响着生藻类细胞代谢、酶活性及繁殖生长等生物特性。在适度范围内,水温上升有利于藻类的生长繁殖[9]。已有研究表明,藻类最适生长水温也依种类不同而有所差异,例如,绿藻和蓝藻喜高温,硅藻喜低温[17]。本研究中沿着河流纵向梯度,安宁河干流水温逐渐升高,硅藻比例渐趋下降,而绿藻和蓝藻的比例却逐渐升高,这对解释上述现象提供了佐证。本研究RDA结果也显示细小隐球藻等蓝藻的密度以及大卵囊藻等绿藻的密度与水温呈正相关,而扁圆卵形藻和桥弯藻等大部分硅藻的密度与水温呈负相关。
流速也是影响着生藻类分布的重要环境因子[32]。韦丽丽等[33]指出,新疆伊犁河着生藻类的生物量与流速呈极显著的负相关。安宁河上游流速较高,水流对石块上附着藻类的冲刷,导致着生藻类密度下降[13]。下游流速较缓,着生藻类的适宜生境较多,有利于其生长繁殖。本研究RDA结果表明大部分藻类密度与流速呈负相关。另外流速与河床底质类型存在一定的相关性[13],马宝珊等[18]对安宁河中游着生藻类的调查也表明流速和底质类型共同影响丰水期着生藻类的群落结构。
自然状态下,在雅砻江这种高海拔山区河流中,着生藻类往往是鱼类及其他水生动物主要的饵料来源[34-35]。因此,着生藻类多样性及现存量对于维持雅砻江水生生物多样性及河流生态功能具有重要作用。然而,随着雅砻江下游水电梯级的全面实施,水域生态环境和鱼类群落结构已发生明显变化[36-37]。分析区域内着生藻类的空间分布格局,有利于理解流域水生态系统结构和功能的变化。在干流梯级开发加速推进的背景下,加强支流水生态环境的保护显得尤为重要。
[1] |
Azim M A, Beveridge M C M, van Dam A A, et al. Periphyton and aquatic production: an introduction[M]//Azim M A, Verdegem M C J, van Dam A A, et al. Periphyton: Ecology, Exploitation and Management. Oxfordshire: CABI, 2005: 1-14.》Google Scholar
|
[2] |
Stevenson R J. An introduction to Algal ecology in freshwater benthic habitats[M]//Stevenson R J, Bothwell M L, Lowe R L. Algal Ecology-Freshwater Benthic Ecosystem. New York: Academic Press, 1996: 3-30..》Google Scholar
|
[3] |
Fu B R, Li X, Guo H J, et al. Community structure and spatial- temporal distribution of periphytic algae in rivers of Shenyang- Fushun Connection Belt[J]. China Water and Wastewater, 2019, 35(1): 68-72, 76. [付保荣,李雪,郭海娟,等. 沈抚连接带河流着生藻类群落结构及时空分布特征[J]. 中国给水排水,2019, 35(1): 68-72, 76.].》Google Scholar
|
[4] |
Chen J H, Sun Z M, Bai Y J, et al. Influence of Dadingzishan closure on attached algae of Songhua River in Harbin Seciton[J]. Environmental Science and Management, 2010, 35(5): 46-50. [陈家厚,孙子孟,白羽军,等. 大顶子山航电枢纽工程蓄水后对松花江哈尔滨江段着生藻类的影响[J]. 环境科学与管理,2010, 35(5): 46-50.].》Google Scholar
|
[5] |
Xiao N N, Zhang M, Peng B, et al. Community structure of periphytic algae and their relationship to water environmental factors in Ganjiang River Basin during the high water period[J]. Resources and Environment in the Yangtze Basin, 2020, 29(4): 900-910. [肖妮娜,张萌,冯兵,等. 丰水期赣江流域着生藻类群落结构及其与水环境因子的关系[J]. 长江流域资源与环境,2020, 29(4): 900-910.].》Google Scholar
|
[6] |
Gillett N D, Pan Y, Asarian J E et al. Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams[J]. Science of the Total Environment, 2016, 541: 1382-1392..》Google Scholar
|
[7] |
Wen H, Cai J L, Su Y, et al. Characteristics of periphytic algal community and its relationship with aquatic environmental factors in stream s of Lake Dianchi watershed in wet season[J]. Journal of Lake Sciences, 2011, 23(1): 40-48. [文航,蔡佳亮,苏玉,等. 滇池流域入湖河流丰水期着生藻类群落特征及其与水环境因子的关系[J]. 湖泊科学,2011, 23(1): 40-48.].》Google Scholar
|
[8] |
Chételat J, Pick F R, Morin A, et al. Hamilton. Periphyton biomass and community composition in rivers of different nutrient status[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56: 560-569..》Google Scholar
|
[9] |
Asarian J E, Pan Y D, Gillett N D, et al. Periphyton assemblages and associated environmental conditions in the Klamath River 2004-2013[M]. Klamath: Klamath Basin Tribal Water Quality Work Group, 2015..》Google Scholar
|
[10] |
Tang T, Qu X D, Li D F, et al. Benthic Algae of the Xiangxi River, China[J]. Journal of Freshwater Ecology, 2004, 19(4): 597-604..》Google Scholar
|
[11] |
Li J, Zhou Q, Xie C X, et al. Studies on the community structure of periphyton in the Irtysh River of Xinjiang Uygur Autonomous Region[J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1033-1039. [李君,周琼,谢从新,等. 新疆额尔齐斯河周丛藻类群落结构特征研究[J]. 水生生物学报,2014, 38(6): 1033-1039.].》Google Scholar
|
[12] |
Wu N C, Tang T, Li D F, et al. Benthic algal communities in Jinping reach of Yalong River and its main tributaries in relation to environmental variables[J]. Acta Ecologica Sinica, 2009, 29(4): 1697-1703. [吴乃成,唐涛,黎道丰,等. 雅砻江(锦屏段)及其主要支流底栖藻类群落与环境因子的关系[J]. 生态学报,2009. 29(4): 1697-1703.].》Google Scholar
|
[13] |
Liu H P, Ye S W, Yang X F, et al. Spatio-temporal dynamics of aquatic organism community and their relationships to environment in Niyang River, Tibet: 2. periphytic algae[J]. Journal of Lake Sciences, 2013, 25(6): 907- 915. [刘海平,叶少文,杨雪峰,等. 西藏尼洋河水生生物群落时空动态及与环境因子关系:2.着生藻类[J]. 湖泊科学,2013, 25(6): 907- 915.].》Google Scholar
|
[14] |
Qu X D, Cao M, Shao M L, et al. Macrobenthos in Jinping reach of Yalongjiang River and its main tributaries[J]. Chinese Journal of Applied Ecology, 2007, 18 (1): 158-162. [渠晓东,曹 明,邵美玲,等. 雅砻江(锦屏段)及其主要支流的大型底栖动物[J]. 应用生态学报,2007, 18(1): 158-162.].》Google Scholar
|
[15] |
Ma B S, Xu B, Wei K J, et al. Macroinvertebrate community structure and its relation to the environmental conditions in the middle Anning River[J]. Acta Hydrobiologica Sinica, 2019, 43(3): 643-653. [马宝珊,徐滨,魏开金,等. 安宁河中游底栖动物群落结构及其与环境因子的关系[J]. 水生生物学报. 2019, 43(3): 643-653.].》Google Scholar
|
[16] |
Ma B S, Xu B, Wei K J, et al. Zooplankton resource and its relation to the environmental conditions in the Anning River[J]. Freshwater Fisheries, 2017, 47(6): 56-64. [马宝珊,徐滨,魏开金,等. 安宁河浮游动物资源现状及其与环境因子的关系[J]. 淡水渔业,2017, 47(6): 56-64.].》Google Scholar
|
[17] |
Ma B S, Xu B, Wei K J, et al. Phytoplankton community structure and its relation to the environmental conditions in the middle Anning River[J]. Chinese Journal of Ecology, 2020, 39(10): 3332-3341. [马宝珊,徐滨,魏开金,等. 安宁河中游浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志,2020, 39(10): 3332-3341.].》Google Scholar
|
[18] |
Ma B S, Xu B, Wei K J, et al. Periphytic algal community and its relation to the environmental conditions in the middle Anning River[J]. Freshwater Fisheries, 2020, 50(6): 30-39. [马宝珊,徐滨,魏开金等. 安宁河中游着生藻类群落结构及其与环境因子的关系[J]. 淡水渔业,2020, 50(6): 30-39.].》Google Scholar
|
[19] |
Chen B, Meng X C, Zhang D, et al. Longitudinal patterns in taxonomic and functional organizations of fish assemblages in the Xin’an River[J]. Acta Ecologica Sinica, 2019, 39(15): 5730-5745. [陈兵,孟雪晨,张东,等. 河流鱼类分类群和功能群的纵向梯度格局—以新安江流域为例[J]. 生态学报,2019, 39(15): 5730-5745.].》Google Scholar
|
[20] |
Barbour M T, Gerritsen J, Snyder B D, et al. Rapid bioassessment for use in streams and wadeable rivers: periphyton, bethic macroinvertebrates and fish. Second edition[M]. Washington D C: USA, Environment Protection Agency, Office of Water, 1999: 240..》Google Scholar
|
[21] |
Jiang X M, Xie Z C, Chen Y F. Longitudinal patterns of macroinvertebrate communities in relation to environmental factors in a Tibetan-plateau river system[J]. Quaternary International, 2013, 304: 107-114..》Google Scholar
|
[22] |
Wang Z Y, Ge J W, Li J F, et al. Relationship between periphyton distribution and water quality of Gufu River of Three Gorges Reservoir Area[J]. Plant Science Journal, 2013, 31(3): 219-227. [王自业,葛继稳,李建峰,等. 三峡库区古夫河着生藻类分布与水质因子的关系[J]. 植物科学学报,2013, 31(3): 219-227.].》Google Scholar
|
[23] |
Hu H J, Wei Y X. The freshwater algae of China—systematics, taxonomy and ecology[M]. Beijing: Science Press. 2006: 9-478. [胡鸿钧,魏印心. 中国淡水藻类—系统、分类及生态[M]. 北京:科学出版社,2006: 9-478.].》Google Scholar
|
[24] |
Zhu H Z, Chen J Y. Bacillariophyta of the Xizang Plateau[M]. Beijing: Science Press. 2000: 87-341. [朱蕙忠,陈嘉佑.中国西藏硅藻[M]. 北京:科学出版社,2000: 87-341.].》Google Scholar
|
[25] |
Yang W, Zhang T T, Sun Y S, et al. Community structure characteristics of phytoplankton in small lakes of Huaibei excavating coal subsidence region[J]. Freshwater Fisheries, 2020, 50(1): 51-59. [杨威,张婷婷,孙雨琛,等. 淮北采煤塌陷区小型湖泊浮游植物群落结构特征[J]. 淡水渔业,2020, 50(1): 51-59.].》Google Scholar
|
[26] |
Belaoussoff S, Kevan P G, Murphy S, et al. Assessing tillage disturbance on assemblages of ground beetles (Coleoptera: carabidae) by using a range of ecological indices[J]. Biodiversity and Conservation, 2003, 12(5): 851-882..》Google Scholar
|
[27] |
Ter Braak C J F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis[J]. Ecology, 1986, 67(5): 1167-1179..》Google Scholar
|
[28] |
Wu N C. Using benthic algal communities to assess the impacts of small hydropowers on river ecosystem- a case study of Xiangxi River[D]. Wuhan: Institute of Hydrobiology, the Chinese Academy of Sciences, 2006: 24-41. [吴乃成. 应用底栖藻类群落评价小水电对河流生态系统的影响-以香溪河为例[D]. 武汉:中国科学院水生生物研究所,2006: 24-41.].》Google Scholar
|
[29] |
Jansen L S, O'Dowd A, Bouma-Gregson K. A comparison of benthic algal and macroinvertebrate communities in a dammed and undammed Mediterranean river (Eel River watershed, California, USA)[J]. River Research and Applications, 2020, 36(8): 1668-1681..》Google Scholar
|
[30] |
Jiang X M, Xiong J, Xie Z C, et al. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quaternary International, 2011, 244: 289-295..》Google Scholar
|
[31] |
Fullerton A H, Torgersen C E, Lawler J J, et al. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures[J]. Hydrological Processes, 2015, 29(22): 4719-4737..》Google Scholar
|
[32] |
Jo Y M, Oh J M, Yoo J G. Environmental characterization of periphyton community[J]. Journal of Ocean University of China, 2006, 5(4): 305-310..》Google Scholar
|
[33] |
Wei L L, Zhou Q, Xie C X, et al. Community structure of periphyton and biological assessment of water quality in the Yili River, Xinjiang Uyghur Autonomous Region[J]. Journal of Hydroecology, 2015, 36(6): 29-38. [韦丽丽,周琼,谢从新,等. 新疆伊犁河周丛藻类群落结构及其水质生物学评价[J]. 水生态学杂志,2015, 36(6): 29-38.].》Google Scholar
|
[34] |
Rott E, Cantonati M, Füreder L, et al. Benthic algae in high altitude streams of the Alps–a neglected component of the aquatic biota[J]. Hydrobiologia, 2006, 562: 195–216..》Google Scholar
|
[35] |
Asaeda T, Son D H. Spatial structure and populations of a periphyton community: a model and verification[J]. Ecological Modelling, 2000, 133(3):195-207..》Google Scholar
|
[36] |
Yang Q R, Chen Q W, Ma X F. Status of fish resources and protection measures in the lower reaches of Yalong River[J]. Journal of Hydroecology, 2011, 32(3): 94-98. [杨青瑞,陈求稳,马徐发. 雅砻江下游鱼类资源调查及保护措施[J]. 水生态学杂志,2011, 32(3): 94-98.].》Google Scholar
|
[37] |
Ru H J, Zhang Y, Li Y F, et al. Community composition and status of fish resources in Anning River[J]. Journal of Hydroecology, 2016, 37(5): 68-74. [茹辉军,张燕,李云峰,等. 雅砻江支流安宁河鱼类群落组成及资源现状[J]. 水生态学杂志,2016, 37(5): 68-74.].》Google Scholar
|