中国水产科学  2021, Vol. 28 Issue (04): 1-12  DOI: 10.12264/JFSC2020-0302
0

引用本文 

任崇兰, 张俊波, 尹方, 朱文斌, 刘家林, 万荣. 浙江南部近海海洋生物脂肪酸含量及组成分析. 中国水产科学, 2021, 28(04): 1-12. DOI: 10.12264/JFSC2020-0302.
REN Chonglan, ZHANG Junbo, YIN Fang, ZHU Wenbin, LIU Jialin, WAN Rong. Fatty acid contents and composition of marine species from the offshore waters of southern Zhejiang, East China Sea. , 2021, 28(04): 1-12. DOI: 10.12264/JFSC2020-0302.

基金项目

国家自然科学基金项目(41807341);上海市青年东方学者项目(QD2017038).

作者简介

任崇兰(1997–), 女, 硕士研究生, 研究方向为海洋生态学. E-mail: renchonglan_cz88@163.com

通信作者

通信作者: 张俊波, 副教授, 研究方向为海洋生态学. E-mail: jb_zhang@shou.edu.cn

文章历史

收稿日期:2020-09-29
修改日期:2020-10-20
浙江南部近海海洋生物脂肪酸含量及组成分析
任崇兰1,张俊波1,2,3,4,尹方5,朱文斌6,刘家林7,万荣1,2,     
1. 上海海洋大学海洋科学学院, 上海 201306
2. 国家远洋渔业工程技术研究中心, 上海 201306
3. 上海海洋大学水产科学国家级实验教学示范中心, 上海 201306
4. 大洋渔业资源可持续开发省部共建教育部重点实验室, 上海 201306
5. 上海海事大学海洋科学与工程学院, 上海 100194
6. 浙江省海洋水产研究所, 浙江 舟山 316021
7. 赣榆区宋庄镇农业技术服务中心, 江苏 连云港 222144
摘要:为探讨浙江南部近海常见海洋生物脂肪酸的特点, 采集31种海洋生物, 包括海鱼类20种, 甲壳类9种, 头足类2种, 每种3份样品, 共93个样本, 采用Folch法提取脂肪酸, 以气相色谱-质谱法测定其脂肪酸构成及含量。分析不同海洋生物间总脂(TFA)、饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、多不饱和脂肪酸(PUFA)、n-6系列多不饱和脂肪酸(n-6 PUFA)、n-3系列多不饱和脂肪酸(n-3 PUFA)、二十二碳六烯酸(C22:6n3, DHA)和二十碳五烯酸(C20:5n3, EPA)含量的差异。结果显示, 海鱼类、甲壳类和头足类总脂含量范围分别为18.74~153.90, 24.65~62.81, 37.23~92.18 mg/g; DHA+EPA含量范围分别为4.32~38.31, 7.22~22.86, 12.48~49.61 mg/g。浙江南部近海31种海洋生物的n-3 PUFA、EPA和DHA含量均与总脂含量呈正相关(P<0.01), 主要脂肪酸构成具有种属差异, PUFA和n-3 PUFA百分含量与物种食性有关, 摄食浮游植物、底栖藻类的物种高于摄食鱼类等游泳动物的物种。
关键词海洋生物    脂肪酸    组成分析    浙江南部近海    
Fatty acid contents and composition of marine species from the offshore waters of southern Zhejiang, East China Sea
REN Chonglan1,ZHANG Junbo,1,2,3,4,YIN Fang5,ZHU Wenbin6,LIU Jialin7,WAN Rong1,2    
1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
2. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
4. Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Minstry of Education, Shanghai 201306, China
5. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 100194, China
6. Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, China
7. Agricultural Technology Service Center of Songzhuang Town, Ganyu District, Lianyungang 222144, China
Abstract:The offshore waters of southern Zhejiang are rich in fishery resources and marine species; however, with the influences of overfishing, environmental pollution and other factors, fishery resources have been sharply reduced. Information on fatty acid content and composition can be used to evaluate the nutritive value of a species. In addition, because of the biological specificity of fatty acids, essential fatty acids are transmitted stably between species and can track food sources and indicate trophic relationships among species. There are many studies analyzing the fatty acid contents of marine species, but there are few reports on the fatty acid contents of marine species specifically along the coast of Zhejiang Province, and few species have been involved. The purpose of this study was to provide references for consumers to choose seafood reasonably, as well as to provide basic data for the construction of food webs in the offshore waters of southern Zhejiang by exploring the characteristics of fatty acids in common marine species from these waters. This included an analysis of the nutritional value of fatty acids and exploring the relationship between fatty acid content and dietary habits. A total of 31 marine species were collected, including 20 marine fishes, 9 types of crustaceans, and 2 types of cephalopods. Three samples were randomly selected from each species for a total of 93 samples. Fatty acids were extracted using Folch’s method (chloroform-methanol solution, V : V = 2 : 1), were methyl esterified, and were then separated and detected using gas chromatography-mass spectrometry. Differences in the composition of the total lipids (TFA), saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-6 series of polyunsaturated fatty acids (n-6 PUFA), n-3 series of polyunsaturated fatty acids (n-3 PUFA), docosahexaenoic acid (C22:6n3, DHA), and eicosapentaenoic acid (C20:5n3, EPA) were analyzed. The results showed that the total lipid content of the marine fishes, crustaceans, and cephalopods ranged from 18.74–153.90 mg/g, 24.65–62.81 mg/g, and 37.23–92.18 mg/g respectively; the ranges of DHA+EPA content were 4.32–38.31 mg/g, 7.22–22.86 mg/g, and 12.48–49.61 mg/g, respectively. The contents of n-3 PUFA, EPA, and DHA in the 31 marine species from the offshore waters of southern Zhejiang were positively correlated with the content of TFA (P<0.01). There were significant differences among the 31 species of marine organisms in the offshore waters of southern Zhejiang. The average DHA/EPA ratios in marine fish and crustaceans in this study were 4.20 and 1.45, respectively. Additionally, the contents of DHA and EPA in crustaceans were relatively similar, whereas the content of DHA in marine fish was higher than that of EPA. DHA has been shown to be more effective than EPA at regulating blood pressure; thus, a higher intake of marine fish may help prevent cardiovascular disease. The mean ratios of SFA, MUFA, and PUFA in marine fish, crustaceans, and cephalopods (Uroteuthis duvauceli and Octopus variabilis) were 1.25 : 0.84 : 1, 1 : 0.67 : 1.75, 1 : 0.18 : 1.56, and 1 : 0.32 : 1.47, respectively; compared with the recommended ratio of 1 : 1 : 1, the content of MUFA was low. Therefore, consumers should consume a variety of seafood products to ensure a balanced intake of fatty acids. In addition, the results showed that the percentages of PUFA and n-3 PUFA were related to the dietary habits of the species, revealing that the species that mainly prey upon phytoplankton and benthic algae expressed higher contents than those of species that mainly prey upon swimming animals, such as fish.
Key wordsmarine species    fatty acid    composition analysis    offshore waters of southern Zhejiang    

脂肪酸是生物体的重要组分, 主要依赖食物摄取, 在生物体消化吸收过程中结构相对稳定, 能够反映其长期摄食累积特征, 因此常被用于物种的营养价值评价、食性评估以及食物网研究[1]。近年来, 国内外已有很多脂肪酸含量及组成分析方面的报道[2-6], 如南海海域金线鱼科(Nemipteridae)[2]及枪乌贼科(Loliginidae)[3]脂肪酸含量分析, 广东湛江海域狗母鱼科(Synodontidae)[4]及虾虎鱼科(Gobiidae)[5]脂肪酸含量分析, 广东沿海经济鱼类脂肪酸含量分析[6]等。浙江南部近海因受沿岸流和台湾暖流的交汇影响, 环境适宜, 营养盐及饵料丰富, 是众多海洋生物的栖息地[7], 也是多种经济鱼类及虾蟹类的重要产出地[8]。高颐雄等[9]对舟山地区的海水鱼类脂肪酸含量进行分析; 张志超等[10]对浙江东部海域渔场海产品的脂肪酸含量分析, 主要涉及的组分为DHA (C22:6n3)和EPA (C20:5n3)两种。然而, 针对浙江南部沿海海洋生物脂肪酸含量及组成的研究鲜有报道, 浙江海域海洋生物脂肪酸研究的全面性还有待进一步完善。

因此, 本研究选取浙江南部近海为研究区域, 研究对象涵盖海鱼类、甲壳类及头足类等31种海洋生物, 系统分析该区域海洋生物内脂肪酸含量、食性相关性及其营养价值, 以期为渔业资源的保护和合理开发利用、海产品的营养价值评价提供参考, 并为后续开展食物网研究提供基础数据。

1 材料与方法 1.1 样品采集

2019年4月自浙江南部近海采集31种海洋生物(基本食性信息见表1), 每个物种采集样品3份, 共计93份, 采样站位如图1所示。

1.2 样本处理

样本解冻后取肌肉(海鱼类取第一背鳍附近白肌, 蟹类取螯部或腹部肌肉, 虾类取腹部肌肉, 头足类取胴体肌肉), 超纯水漂洗后经冷冻干燥机(Christ Alpha 1-4) –55 ℃冷冻干燥24 h, 用混合型球磨仪(Retsch MM440)磨至粉状, 封装待用。

表1  浙江南部近海常见海洋生物基本信息 Tab. 1 Basic information of common marine species in the offshore waters of southern Zhejiang
图1  研究区域及采样站点 Fig. 1 The study area and sampling stations

脂质提取参照Folch法[25], 称0.2 g粉末于离心管中, 加15 mL三氯甲烷–甲醇溶液(V : V= 2 : 1), 浸泡20 h以上; 以3000 r/min离心10 min, 取上清液, 加4 mL 0.9%氯化钠溶液, 静置约2 h; 取下层溶液于圆底烧瓶中水浴蒸发得到粗脂。

脂肪酸甲酯化采用三氟化硼–甲醇法[26], 在上步圆底烧瓶中加4 mL 0.5 mol/L氢氧化钠-甲醇溶液, 水浴回流8 min; 加4 mL 14%三氟化硼甲醇溶液回流25 min; 加4 mL正己烷回流萃取2 min; 冷却后加10 mL氯化钠饱和溶液, 振荡后静置分层2 h; 吸取正己烷层(上层), 按1 : 1比例加50 mg/L十九烷酸甲酯(C19:0)内标待测。

脂肪酸测定采用气相色谱–质谱联用仪(7890B/5977A, Agilent), 毛细管柱型号Agilent HP-88 (60 m×0.25 nm×0.20 μm), 载气为高纯氦气, 分流比10 : 1, 进样口温度设为250 ℃。升温程序参见文献[27]。

1.3 数据处理

以37种脂肪酸甲酯混标为标准品, C19:0为内标, 对比保留时间定性, 内标法定量[27]。计算每种脂肪酸的质量分数(mg/g)及相对百分比(%)。采用SPSS 23.0统计软件分析数据, 以Pearson相关系数表征总脂含量与各脂肪酸间的关联, 以P<0.05作为具有统计学差异的判断标准。

2 结果与分析 2.1 海水鱼类

表2 展示了20种海鱼肌肉组织中各类脂肪酸的含量水平, SFA、MUFA、PUFA、n-3 PUFA、n-6 PUFA、DHA和EPA含量范围分别为7.12~58.68, 1.76~59.62, 8.23~47.79, 5.58~40.42, 1.91~7.48, 1.34~25.10, 0.87~13.21 mg/g, 均与总脂含量(18.74~ 153.90 mg/g)呈正相关(R2=0.965, 0.977, 0.773, 0.745, 0.786, 0.639和0.807, P<0.001), 表明物种各类脂肪酸的摄入量均随总脂摄入量升高而升高。浙江南部近海不同品种海鱼间的不饱和脂肪酸含量差别较大, 除斑鰶(8.23 mg/g)和孔虾虎鱼(8.30 mg/g)外, 其余18种海鱼富含PUFA (>10 mg/g), 显示出较高的营养价值。C16:0为20种海鱼中含量最多的SFA, 平均占总量的65.68%。C18:1n9c是除龙头鱼和皮氏叫姑鱼外海鱼中含量最多的MUFA, 平均占MUFA总量的66.88%; 其次为C16:1n7 (19.99%)。斑鰶、鳓、黄鲫和刀鲚中含量最高的n-6 PUFA是C22:2n6, 平均占总量的48.12%, C20:4n6是其余16种海鱼中含量最高的n-6 PUFA, 平均占51.15%。在20种海鱼中, DHA/ EPA的波动范围较大(0.35~8.95), 平均值为4.20, DHA含量显著高于EPA含量(P<0.001)。DHA+ EPA含量最高的是刀鲚, 含量最低的是孔虾虎鱼; 龙头鱼中DHA和刀鲚中EPA含量最高, 斑鰶和孔虾虎鱼中分别含量最低。浙江南部近海20种海鱼中SFA、MUFA及PUFA的平均比例为1.25 : 0.84 : 1, 与张红霞等[28]报道的我国南海38种海鱼类SFA、MUFA及PUFA的平均比例0.91 : 0.64 : 1, 以及张文凤等[6]报道的广东沿海海域21种海鱼类MUFA、PUFA的平均比例1.6 : 1具有一定差异性, 表明海鱼中各类脂肪酸含量之比或受地域和品种的影响。

2.2 甲壳类

表3可见, 在采集的9种甲壳类中, 总脂含量范围为24.65~62.81 mg/g, 其中日本蟳的总脂含量最高(62.81 mg/g), 隆线强蟹最低(24.65 mg/g)。SFA总量范围为6.13~18.27 mg/g, 与总脂含量呈正相关(R2=0.961, P<0.001)。C16:0为9种甲壳类中含量最多的SFA, 平均占SFA总量的58.30%。MUFA总量范围为3.87~13.59 mg/g, 与总脂含量呈正相关(R2=0.896, P<0.001)。C18:1n9c是所有甲壳类样品中含量最多的MUFA, 平均占MUFA总量的65.51%, 其次是C16:1n7, 平均占24.66%。PUFA总量范围为13.21~30.95 mg/g, 与总脂含量呈正相关(R2=0.987, P<0.001)。n-3 PUFA总量范围为9.15~24.98 mg/g, 其中DHA的含量范围为4.03~14.03 mg/g, 是甲壳类中含量最多的n-3 PUFA, 平均占总量的49.11%; 其次是EPA (2.98~ 8.83 mg/g), 平均占35.78%。DHA+EPA含量范围为7.22~22.86 mg/g, DHA/EPA平均比值为1.45, 表明甲壳类的DHA与EPA含量较为相近。日本蟳DHA和EPA含量最高, 隆线强蟹DHA和中华管鞭虾EPA含量最低。n-6 PUFA总量范围为3.87~6.97 mg/g, 脊尾白虾、葛氏长臂虾和日本蟳中含量最高的n-6 PUFA是C22:2n6, 占总量的47.30%; 其他6种甲壳类中含量最高的n-6 PUFA为C20:4n6, 平均占56.64%。9种甲壳类的n-3 PUFA、n-6 PUFA、DHA和EPA总含量均与总脂含量呈正相关(R2=0.986, 0.755, 0.878和0.858, P<0.001), SFA、MUFA和PUFA的平均比例为1 : 0.67 : 1.75。

2.3 头足类

采集的2种头足类, 杜氏枪乌贼和长蛸总脂含量分别为92.18 mg/g和37.23 mg/g, SFA总量分别为37.87 mg/g和13.34 mg/g, 两者呈正相关(R2=0.992, P<0.01)。其中C16:0均为含量最多的SFA, 分别占总量的73.53%和50.62%。MUFA总量分别为6.97和4.24 mg/g, 杜氏枪乌贼中含量最多的MUFA是C18:1n9c, 占57.87%; 长蛸中是C20:1和C18:1n9c, 共占MUFA总量的80.09%。n-3 PUFA总量分别为49.80 mg/g和14.89 mg/g, 与总脂含量呈正相关(R2=0.986, P<0.01)。其中DHA含量最多, 分别为37.12 mg/g和8.30 mg/g, 占总量的75.58%和55.95%; 其次是EPA (12.49和4.18 mg/g), 分别占到25.04%和26.94%。2种头足类的DHA/EPA平均比值为2.61, SFA、MUFA和PUFA平均比例为1 : 0.22 : 1.54。

表2  浙江南部近海海水鱼类主要脂肪酸含量 Tab. 2 The content of main fatty acids in marine fish from the offshore water of southern Zhejiang n=3; $\bar x \pm {\rm{SD}}$
表3  浙江南部近海甲壳类与头足类主要脂肪酸含量 Tab. 3 The content of main fatty acids in crustaceans and cephalopods from the offshore water of southern Zhejiang n=3; $\bar x \pm {\rm{SD}}$
3 讨论 3.1 脂肪酸组成

研究区域内海鱼类的总脂含量范围与高颐雄等[9]的研究结果(6~132 mg/g)及张红霞等[28]的研究结果(4.6~170.86 mg/g)略有差异, 表明地域和品种是物种的脂肪酸总量的影响因素之一。高颐雄等[9]报道的浙江舟山地区的宽体舌鳎(18 mg/g)、鳓(67 mg/g)、带鱼(41 mg/g)及鮸(22 mg/g)等物种的总脂含量与本研究中同种属鱼类相近, 推测该几种海鱼在附近海域内食性波动较小; 而小黄鱼(58 mg/g)、星康吉鳗(121 mg/g)、龙头鱼(11 mg/g)及刀鲚(117 mg/g)等物种的总脂含量均高于研究区域内同种属鱼类, 推测该几种海鱼的食性受地域环境的影响较大, 今后或可对其开展食性的区域对比研究。此外, 海鱼类的DHA和EPA含量均高于张东平等[29]报道的太湖淡水鱼中DHA (0.63~ 1.26 mg/g)和EPA (0.27~0.63 mg/g), 表明海水鱼的营养价值高于淡水鱼; 并且略高于舟山地区海鱼、黄海海域海鱼及浙东渔场中海鱼中DHA含量(0.54~19.29 mg/g)和EPA含量(0.03~7.85 mg/g)[9-10,28], 推测品种、区域及季节等因素或影响海鱼类的DHA和EPA含量。同样, 甲壳类的DHA和EPA含量也略高于文献中[10]浙东渔场中甲壳类的DHA含量(1.43~3.24 mg/g)和EPA含量(0.94~2.82 mg/g), 推测种类及季节等因素或影响甲壳类的DHA和EPA含量。头足类杜氏枪乌贼的SFA、MUFA、PUFA百分含量与前期报道[30]的杜氏枪乌贼中SFA (32.93%)、MUFA (13.20%)、PUFA (53.81%)含量相近。长蛸的SFA、MUFA、PUFA百分含量与报道[31]的长蛸腕足中SFA (45.49%)、MUFA (11.44%)、PUFA (43.07%)含量较为接近; DHA+ EPA百分含量与荣成成山头长蛸(雄)中DHA+ EPA的含量(33.50%)[32]一致; 推测杜氏枪乌贼和长蛸的食性较稳定, 可能受区域及季节等因素的影响较小。此外, 本研究发现浙江南部近海海洋生物总脂含量与n-3 PUFA、DHA和EPA含量均呈正相关(P<0.01), 与现有研究结果[9-10,28]一致。

3.2 脂肪酸的平衡膳食

浙江南部近海甲壳类的DHA与EPA含量相近, 与张志超等[10]的研究结果类似; 而海鱼类的DHA/EPA的比值波动范围较大, DHA含量显著高于EPA (P<0.001), 可能是由于甲壳类物种间食性相近(表1), 而海鱼类食性相对复杂, 食源不同或造成DHA与EPA的含量差异。据报道, DHA在血压调节方面比EPA更有效[33-34], 由此建议居民多摄入海鱼类以预防心血管疾病。本研究中海鱼类、甲壳类、头足类的SFA、MUFA和PUFA的比例与日常膳食推荐比例[35]相比, MUFA含量均偏低, 且并未发现SFA、MUFA和PUFA的比例为1 : 1 : 1的物种, 表明摄取单一物种难以满足营养要求, 建议居民合理搭配, 避免长期摄入单一物种, 以确保脂肪酸的平衡摄入。n-3 PUFA、n-6 PUFA在膜结构中起重要作用, 彼此生理功能不同, 却竞争相同的酶, 因此维持n-3和n-6 PUFA的平衡对人体健康至关重要[36], n-6/n-3是一个重要的营养价值评价指标。FAO/WHO推荐在日常膳食中n-6/n-3最佳比例为5 : 1~10 : 1[36], 但目前人类膳食中n-6/n-3 PUFA比例严重失调, 甚至高达30 : 1, n-3 PUFA严重不足[37-38]。本研究区域内海洋生物的n-6/n-3均小于1 : 1, 说明海产品的n-3 PUFA含量普遍高于n-6 PUFA, 具有较高的营养价值, 可作为补充n-3 PUFA的良好食源, 建议居民日常膳食中适当摄入海产品, 以维持体内n-3和n-6 PUFA的平衡。此外, 本研究所测脂肪酸含量为单位干重含量, 烹饪工艺、冷冻冷藏工艺及时长等因素对脂肪酸含量的影响还有待进一步研究。

3.3 脂肪酸组成与食性

研究区域甲壳类的PUFA、n-3 PUFA百分含量最高且波动范围较小, 物种间百分含量相近, 从食性角度分析(表1), 均为浮游生物食性或底栖生物食性, 摄食浮游植物、底栖藻类。这是由于水生异养生物自身不能合成n-6、n-3 PUFA, 而藻类作为海洋生态系统的初级生产力, 可合成高度不饱和脂肪酸[39], 如红藻、甲藻、金藻等富含C20:4n6、EPA、DHA等PUFA[40]。海鱼类的PUFA、n-3 PUFA百分含量波动范围较大, 含量较高的物种(宽体舌鳎、鮸、星康吉鳗、小黄鱼和细条天竺鲷等), 均直接或间接以藻类为食, 如鮸为底栖食性, 摄食底栖藻类; 细条天竺鲷主要摄食浮游动物。而主要摄食鱼类等游泳动物的物种, 如海鳗、龙头鱼和皮氏叫姑鱼等, 其PUFA、n-3 PUFA百分含量稍低。综上分析, PUFA和n-3 PUFA百分含量与物种食性相关, 摄食浮游植物、底栖藻类的物种高于摄食鱼类等游泳动物的物种, 这与张文凤等[6]对广东经济鱼类的研究结果相类似。另外, 本研究中斑鰶较高的20:5n-3和16:1n-7含量, 且20:5n-3/22:6n-3>1[41], 表现出一定的硅藻食性, 但PUFA、n-3 PUFA百分含量却较低, 结合吕末晓[11]的斑鰶幼鱼的浮游植物摄食量随体长而变的研究结果, 推测由于体长等因素导致斑鰶的摄食习性发生转变, 对藻类的摄食量降低, 但成体体长与浮游植物摄食量及PUFA、n-3 PUFA含量的具体关系则有待进一步研究。

本研究全面分析了浙江南部近海主要海洋生物的脂肪酸含量及组成, 为我国近海生态系统食物网研究提供基础数据, 也为海产品消费者提供科学的指导, 有助于合理搭配膳食, 保证SFA、MUFA和PUFA的平衡摄入。

参考文献
[1]
Dalsgaard J, St John M, Kattner G, et al. Fatty acid trophic markers in the pelagic marine environment[J]. Advances in Marine Biology, 2003, 46: 225-340..》Google Scholar
[2]
Zhuang H Q, Liu J Q, Cui L, et al. Analysis of muscle fatty acids in eight species of threadfin bream (Nemipteridae) in the South China Sea[J]. Modern Food Science and Technology, 2018, 34(3): 218-225. [庄海旗, 刘江琴, 崔燎, 等. 南海海域8种金线鱼肌肉的脂肪酸分析[J]. 现代食品科技, 2018, 34(3): 218-225.].》Google Scholar
[3]
Lin D M, Zhu K, Qian W G, et al. Fatty acid comparison of four sympatric loliginid squids in the northern South China Sea: Indication for their similar feeding strategy[J]. PLoS One, 2020, 15(6): e0234250..》Google Scholar
[4]
Zhuang H Q, Liu J Q, Cui L, et al. Analysis of fatty acid composition in muscle of four species of lizardfishes (Synodontidae)[J]. Fisheries Science, 2020, 39(4): 602-608. [庄海旗, 刘江琴, 崔燎, 等. 4种狗母鱼科鱼类肌肉脂肪酸分析[J]. 水产科学, 2020, 39(4): 602-608.].》Google Scholar
[5]
Zhuang H Q, Liu J Q, Cui L, et al. Analysis of fatty acids in the muscle of 10 species of Gobiidae in Zhanjiang sea area[J]. Journal of Guangdong Medical University, 2018, 36(1): 56-60,63. [庄海旗, 刘江琴, 崔燎, 等. 广东湛江海域10种虾虎鱼肌肉中脂肪酸含量分析[J]. 广东医科大学学报, 2018, 36(1): 56-60,63.].》Google Scholar
[6]
Zhang W F, Huang W X. The levels and evaluation of component characteristics of unsaturated fatty acids in Guangdong economic fish species[J]. Environmental Chemistry, 2020, 39(5): 1181-1191. [张文凤, 黄伟雄. 广东经济鱼类不饱和脂肪酸的含量分析与组成特征评价[J]. 环境化学, 2020, 39(5): 1181-1191.].》Google Scholar
[7]
Dong J R, Hu C Y, Shui Y Y, et al. Fish community structure and its relationships with environmental factors in the southern inshore waters of Wenzhou[J]. Journal of Fishery Sciences of China, 2017, 24(2): 209-219. [董静瑞, 胡成业, 水玉跃, 等. 温州南部沿岸海域鱼类群落特征及其与环境因子的关系[J]. 中国水产科学, 2017, 24(2): 209-219.].》Google Scholar
[8]
Dai X J, Yang Z J, Tian S Q, et al. Taxonomic diversity of fish species in the off southern Zhejiang, East China Sea[J]. Haiyang Xuebao, 2019, 41(8): 43-51. [戴小杰, 杨志金, 田思泉, 等. 浙江南部近海鱼类分类多样性研究[J]. 海洋学报, 2019, 41(8): 43-51.].》Google Scholar
[9]
Gao Y X, Yue B, Yu X W, et al. Fatty acid composition of edible marine fish in Zhoushan, Zhejiang Province[J]. Chinese Journal of Preventive Medicine, 2013, 47(6): 552-555. [高颐雄, 岳兵, 余新威, 等. 浙江省舟山地区海水鱼类中脂肪酸含量调查[J]. 中华预防医学杂志, 2013, 47(6): 552-555.].》Google Scholar
[10]
Zhang Z C, Yu X W, Fang L, et al. Eicosapentaenoic acid and docosahexaenoic acid content analysis of marine products from the East Zhejiang Fishery[J]. Chinese Journal of Health Laboratory Technology, 2015, 25(7): 1046-1048. [张志超, 余新威, 方力, 等. 浙东渔场海产品中EPA和DHA含量分析[J]. 中国卫生检验杂志, 2015, 25(7): 1046-1048.].》Google Scholar
[11]
Lü M X. Study on the diet composition of juvenile of Liza haematocheila and Konosirus punctatus and its relationship with ambient phytoplankton[D]. Shanghai: Shanghai Ocean University, 2016. [吕末晓. 鮻、斑鰶幼鱼食物组成及其与环境浮游植物的关系研究[D]. 上海: 上海海洋大学, 2016.].》Google Scholar
[12]
Yu J, Zhao M, Chen P M, et al. Food habits of 8 species of economical fishes in the Pearl River estuary shallow waters[J]. Journal of Southern Agriculture, 2016, 47(3): 483-488. [余景, 赵漫, 陈丕茂, 等. 珠江口浅海8种经济鱼类的食性研究[J]. 南方农业学报, 2016, 47(3): 483-488.].》Google Scholar
[13]
Xu C, Wang S K, Zhao F, et al. Trophic structure of food web and its variation on aquatic animals in the Yangtze estuary[J]. Acta Hydrobiologica Sinica, 2019, 43(1): 155-164. [徐超, 王思凯, 赵峰, 等. 长江口水生动物食物网营养结构及其变化[J]. 水生生物学报, 2019, 43(1): 155-164.].》Google Scholar
[14]
Hu C Y, Shui Y Y, Tian K, et al. Functional group classification and niche identification of major fish species in the Qixing Islands Marine Reserve, Zhejiang Province[J]. Biodiversity Science, 2016, 24(2): 175-184. [胡成业, 水玉跃, 田阔, 等. 浙江七星列岛海洋特别保护区主要鱼类功能群划分及生态位分析[J]. 生物多样性, 2016, 24(2): 175-184.].》Google Scholar
[15]
Liu X F, Liu H, Xue Y, et al. Feeding ecology of Conger myriaster in Haizhou Bay[J]. Journal of Fishery Sciences of China, 2015, 22(3): 517-527. [刘西方, 刘贺, 薛莹, 等. 海州湾星康吉鳗的摄食生态特征[J]. 中国水产科学, 2015, 22(3): 517-527.].》Google Scholar
[16]
Ren X M, Xu B D, Zhang C L, et al. The composition of and variations in the trophic guilds of fish assemblages in Haizhou Bay and adjacent waters[J]. Journal of Fishery Sciences of China, 2019, 26(1): 141-150. [任晓明, 徐宾铎, 张崇良, 等. 海州湾及邻近海域鱼类群落的营养功能群及其动态变化[J]. 中国水产科学, 2019, 26(1): 141-150.].》Google Scholar
[17]
Cao Y. Genetic diversity of 3 Sparid species in coastal waters of China based on mitochondrial control region sequences[D]. Guangzhou: Jinan University, 2016. [曹艳. 基于线粒体控制区序列的中国沿海3种鲷科鱼类遗传多样性分析[D]. 广州: 暨南大学, 2016.].》Google Scholar
[18]
Liu X F. Study on feeding ecology and food relations of two high trophic level fishes in Haizhou Bay[D]. Qingdao: Ocean University of China, 2015. [刘西方. 海州湾两种高营养级鱼类摄食生态及其食物关系研究[D]. 青岛: 中国海洋大学, 2015.].》Google Scholar
[19]
Zhang B. Preliminary studies on marine food web and trophodynamics in China coastal seas[D]. Qingdao: Ocean University of China, 2005. [张波. 中国近海食物网及鱼类营养动力学关键过程的初步研究[D]. 青岛: 中国海洋大学, 2005.].》Google Scholar
[20]
Zhang B, Tang Q S. Feeding habits of six species of eels in East China Sea and Yellow Sea[J]. Journal of Fisheries of China, 2003, 27(4): 307-314. [张波, 唐启升. 东、黄海六种鳗的食性[J]. 水产学报, 2003, 27(4): 307-314.].》Google Scholar
[21]
Wang N. Application of fatty acids biomarker in marine food web research—A case in the Yangtse River estuary sea area[D]. Shanghai: East China Normal University, 2008. [王娜. 脂肪酸等生物标志物在海洋食物网研究中的应用——以长江口毗邻海域为例[D]. 上海: 华东师范大学, 2008.].》Google Scholar
[22]
Jiang R J, Zhang S Y, Wang K, et al. Stable isotope analysis of the offshore food web of Gouqi Island[J]. Chinese Journal of Ecology, 2014, 33(4): 930-938. [蒋日进, 章守宇, 王凯, 等. 枸杞岛近岸海域食物网的稳定同位素分析[J]. 生态学杂志, 2014, 33(4): 930-938.].》Google Scholar
[23]
Huang M Z. Study on feeding habits and nutrient level of four cephalopod species from Taiwan Strait and its adjacent areas[J]. Journal of Oceanography in Taiwan Strait, 2004, 23(3): 331-340. [黄美珍. 台湾海峡及邻近海域4种头足类的食性和营养级研究[J]. 台湾海峡, 2004, 23(3): 331-340.].》Google Scholar
[24]
Li C N. Study on species diversity and community characters of marine organisms of nekton in Wenzhou Bay[D]. Zhoushan: Zhejiang Ocean University, 2017. [李超男. 温州湾游泳动物群落结构及多样性研究[D]. 舟山: 浙江海洋大学, 2017.].》Google Scholar
[25]
Folch J, Lees M, Stanley G H S. A simple method for the isolation and purification of total lipids from animal tissues[J]. Journal of Biological Chemistry, 1957, 226(1): 497-509..》Google Scholar
[26]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Animal and vegetable fats and oils— Preparation of methyl esters of fatty acids, GB/T 17376- 2008[S]. Beijing: Standards Press of China, 2009: 7-8. [中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 动植物油脂 脂肪酸甲酯制备GB/T 17376-2008[S]. 北京: 中国标准出版社, 2009: 7-8.].》Google Scholar
[27]
Wang S Q, Yang Q Y, Zhu G P, et al. Spatial and temporal variation of fatty acid composition in Argentine hake (Merluccius hubbsi) in the Southwestern Atlantic Ocean during austral spring and summer[J]. Chinese Journal of Ecology, 2018, 37(7): 2067-2075. [王少琴, 杨清源, 朱国平, 等. 西南大西洋春夏季阿根廷无须鳕脂肪酸组分的时空特性[J]. 生态学杂志, 2018, 37(7): 2067-2075.].》Google Scholar
[28]
Zhang H X, Zhang J L, Shang X H, et al. Fatty acids content of common marine fish from Yellow Sea of China[J]. Journal of Hygiene Research, 2014, 43(3): 423-429. [张红霞, 张加玲, 尚晓虹, 等. 中国黄海海域部分海鱼脂肪酸含量分析[J]. 卫生研究, 2014, 43(3): 423-429.].》Google Scholar
[29]
Zhang D P, Zhang S H, Yu Y X, et al. Polyunsaturated fatty acids in fish from Taihu Lake and the associated risk of ingesting polychlorinated biphenyls[J]. Chinese Science Bulletin, 2012, 57(5): 324-331. [张东平, 张少欢, 余应新, 等. 太湖鱼中多不饱和脂肪酸及其与多氯联苯共摄入益害分析[J]. 科学通报, 2012, 57(5): 324-331.].》Google Scholar
[30]
Qiu Y, Zeng S K, Zhang C H, et al. Nutritional component analysis and quality evaluation of Symplectoteuthis oualaniensis and Loligo duvauceli[J]. Journal of Guangdong Ocean University, 2016, 36(1): 19-24. [邱月, 曾少葵, 章超桦, 等. 鸢乌贼和杜氏枪乌贼营养成分分析与比较[J]. 广东海洋大学学报, 2016, 36(1): 19-24.].》Google Scholar
[31]
Xue J, Ma J M, Zhang X X, et al. Analysis and quality evaluation of nutritional components in the muscle of two kinds of Octopus[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(12): 203-211. [薛静, 马继民, 张信祥, 等. 两种海洋蛸类营养成分分析与评价[J]. 中国食品学报, 2015, 15(12): 203-211.].》Google Scholar
[32]
Qian Y S, Zheng X D, Wang P L, et al. Analysis and evaluation of nutritive composition of Octopus minor in Lake Swan[J]. Marine Sciences, 2010, 34(12): 14-18. [钱耀森, 郑小东, 王培亮, 等. 天鹅湖长蛸营养成分的分析及评价[J]. 海洋科学, 2010, 34(12): 14-18.].》Google Scholar
[33]
Agren J J, Hnninen O, Julkunen A, et al. Fish diet, fish oil and docosahexaenoic acid rich oil lower fasting and postprandial plasma lipid levels[J]. European Journal of Clinical Nutrition, 1996, 50(11): 765-771..》Google Scholar
[34]
Mori T A, Bao D Q, Burke V, et al. Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans[J]. Hypertension, 1999, 34(2): 253-260..》Google Scholar
[35]
Cai M Y, Li B, Yuan X H. Fatty acid equilibrium in diet[J]. Science and Technology of Cereals, Oils and Foods, 2003, 11(2): 37-39. [蔡妙颜, 李冰, 袁向华. 膳食中的脂肪酸平衡[J]. 粮油食品科技, 2003, 11(2): 37-39.].》Google Scholar
[36]
World Health Organization, Food and Agriculture Organization of the United Nations. Fats and oils in human nutrition[R]. Report of a Joint FAO/WHO Expert Consultation. Geneva: World Health Organization, 1994, 57: 1-147..》Google Scholar
[37]
Duan Y H, Li F N, Li L L, et al. The regulation of n-6/n-3 polyunsaturated fatty acid ratio in physiological functions of the body[J]. Natural Product Research and Development, 2014, 26(4): 626-631,479. [段叶辉, 李凤娜, 李丽立, 等. n-6/n-3 多不饱和脂肪酸比例对机体生理功能的调节[J]. 天然产物研究与开发, 2014, 26(4): 626-631,479.].》Google Scholar
[38]
Gao Q X, Song D J, Jin L. Effects of dietary n-6 to n-3 polyunsaturated fatty acid ratio on health and product quality of livestock and poultry[J]. Chinese Journal of Animal Nutrition, 2013, 25(7): 1429-1436. [高巧仙, 宋代军, 靳露. 饲粮n-6/n-3多不饱和脂肪酸比例对畜禽健康和产品品质的影响[J]. 动物营养学报, 2013, 25(7): 1429-1436.].》Google Scholar
[39]
Li G Y, Deng Z Y, Fan Y W, et al. Characteristics of fatty acids in ten freshwater fish of the Poyang Lake[J]. Science and Technology of Food Industry, 2010, 31(8): 324-328. [李广焱, 邓泽元, 范亚苇, 等. 鄱阳湖10种淡水鱼脂肪酸的特性研究[J]. 食品工业科技, 2010, 31(8): 324-328.].》Google Scholar
[40]
Jiang X M, Zheng Y Z. Total lipid and fatty acid composition of 14 species of microalgae[J]. Acta Hydrobiologica Sinica, 2003, 27(3): 243-247. [蒋霞敏, 郑亦周. 14种微藻总脂含量和脂肪酸组成研究[J]. 水生生物学报, 2003, 27(3): 243-247.].》Google Scholar
[41]
Parrish C C, Abrajano T A, Budge S M, et al. Lipid and phenolic biomarkers in marine ecosystems: Analysis and applications[M]//Marine Chemistry. Heidelberg: Springer, 2000: 193-223..》Google Scholar