中国水产科学  2022, Vol. 29 Issue (02): 220-233  DOI: 10.12264/JFSC2021-0168
0

引用本文 

段鹏飞, 田永胜, 李振通, 李子奇, 陈帅, 黎琳琳, 王心怡, 王林娜, 刘阳, 李文升, 王晓梅, 李波. 棕点石斑鱼(♀)×蓝身大斑石斑鱼(♂)杂交后代与棕点石斑鱼低氧耐受能力初步研究[J]. 中国水产科学, 2022, 29(2): 220-233. DOI: 10.12264/JFSC2021-0168.
DUAN Pengfei, TIAN Yongsheng, LI Zhentong, LI Ziqi, CHEN Shuai, LI Linlin, WANG Xinyi, WANG Linna, LIU Yang, LI Wensheng, WANG Xiaomei, LI Bo. Hypoxia tolerance of Epinephelus fuscoguttatus (♀)×E. tukula (♂) hybrids and E. fuscoguttatus[J]. Journal of Fishery Sciences of China, 2022, 29(2): 220-233. DOI: 10.12264/JFSC2021-0168.

基金项目

山东省泰山产业领军人才工程项目(LJNY202109);财政部和农业农村部国家现代农业产业技术体系资助项目(CARS-47);山东省农业良种工程项目(2019LZGC020);中国水产科学研究院基本科研业务费项目(2020XT06,2020TD19,2020TD25);中国水产科学研究院黄海水产研究所基本科研业务费项目(20603022019002).

作者简介

段鹏飞(2000–),男,硕士研究生,研究方向为水产种质资源与苗种工程. E-mail: duanpf_gs@163.com

通信作者

田永胜,研究员,博士,研究方向为鱼类种质冷冻保存及遗传育种. E-mail: tianys@ysfri.ac.cn

文章历史

收稿日期:2021-04-27
修改日期:2021-07-14
棕点石斑鱼(♀)×蓝身大斑石斑鱼(♂)杂交后代与棕点石斑鱼低氧耐受能力初步研究
段鹏飞1,3,田永胜1,2,李振通1,3,李子奇1,3,陈帅1,3,黎琳琳1,4,王心怡1,3,王林娜1,2,刘阳1,2,李文升5,王晓梅5,李波5,     
1. 中国水产科学研究院黄海水产研究所,农业农村部海洋渔业可持续发展重点实验室,山东 青岛 266071
2. 青岛海洋科学与技术试点国家实验室,海洋渔业科学与食物产出过程功能实验室,山东 青岛 266071
3. 上海海洋大学水产与生命学院,上海 201306
4. 中国农业科学院,北京 100081
5. 莱州明波水产有限公司,山东 莱州 261400
摘要:为了研究棕点石斑鱼(Epinephelus fuscoguttatus, ♀)与蓝身大斑石斑鱼(E. tukula, ♂)杂交后代(简称金虎石斑鱼)和棕点石斑鱼的低氧耐受能力,采用封闭式呼吸室测定棕点石斑鱼和金虎石斑鱼幼鱼的耗氧率与窒息点,在正常溶氧[(5.71±0.31) mg/L]和溶解氧下降至4.0 mg/L、3.0 mg/L、2.0 mg/L、1.0 mg/L、0.4 mg/L处1 h后以及恢复正常溶氧水平3 h后,采取棕点石斑鱼和金虎石斑鱼幼鱼的肝脏组织,测定其部分抗氧化酶活性与能量利用的相关指标。研究结果显示,在水温(31.18±0.38) ℃时金虎石斑鱼幼鱼的耗氧率为0.16 mg/(g·h),显著高于其母本棕点石斑鱼幼鱼(P<0.05); 棕点石斑鱼与金虎石斑鱼幼鱼的窒息点分别为0.22 mg/L、0.24 mg/L,二者差异不显著(P>0.05); 溶解氧浓度下降和复氧的全过程中,棕点石斑鱼幼鱼肝脏中超氧化物歧化酶(superoxide dismutase, SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、乳酸脱氢酶(lactate dehydrogenase, LDH)活性和乳酸(lactic acid, LD)含量以及金虎石斑鱼幼鱼肝脏中SOD、过氧化氢酶(catalase, CAT)、GSH-Px、总抗氧化能力(total antioxidant capacity, T-AOC)、LDH酶活性变化显著(P<0.05),但棕点石斑鱼肝脏中T-AOC和CAT活性和金虎石斑鱼肝脏LD含量变化不显著(P>0.05); 复氧3 h后,棕点石斑鱼肝脏中的SOD活性升高16.7%, GSH-Px活性升高42.5%, LD含量升高2.8%,均显著高于常氧对照组水平(P<0.05),而金虎石斑鱼除GSH-Px活性没有恢复至对照水平外(P<0.05),其余指标均与对照组无显著差异(P>0.05); 在溶解氧变动的过程中,金虎石斑鱼肝脏SOD、GSH-Px、CAT以及T-AOC活性激活程度分别达到29.1%、17.9%、42.4%、76.0%,均高于棕点石斑鱼肝脏中相应抗氧化酶活性激活程度的最大值。研究结果表明,金虎石斑鱼相对于棕点石斑鱼耗氧率略高,且其低氧耐受能力较好,可以进行大规模高密度养殖;在受到缺氧胁迫后,金虎石斑鱼较棕点石斑鱼能够更高效地激活抗氧化防御系统,且金虎石斑鱼在受到低氧胁迫后比棕点石斑鱼有更好的恢复能力。
关键词棕点石斑鱼    蓝身大斑石斑鱼    杂交    耗氧率    窒息点    低氧耐受能力    
Hypoxia tolerance of Epinephelus fuscoguttatus (♀)×E. tukula (♂) hybrids and E. fuscoguttatus
DUAN Pengfei1,3,TIAN Yongsheng,1,2,LI Zhentong1,3,LI Ziqi1,3,CHEN Shuai1,3,LI Linlin1,4,WANG Xinyi1,3,WANG Linna1,2,LIU Yang1,2,LI Wensheng5,WANG Xiaomei5,LI Bo5    
1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
3. College of Fishers and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
4. Chinese Academy of Agricultural Sciences, Beijing 100081, China
5. Laizhou Mingbo Aquatic Co., Ltd., Laizhou 261400, China
Abstract:Hypoxia is a common stress phenomenon in aquaculture. Hypoxia tolerance of fish is an important indicator of fish resistance. To study the hypoxia tolerance of juveniles of tiger groupers (Epinephelus fuscoguttatus) and the hybrids, named jinhu groupers (E. fuscoguttatus♀×E. tukula♂), a closed breathing chamber was used to measure the oxygen consumption rate and suffocation point. In addition, the gradual hypoxia method was used to measure indicators of antioxidant enzyme activity and energy utilization in the liver by sampling the liver tissues of the individuals after 1 h at various dissolved oxygen levels [normal (5.71±0.31) mg/L, 4 mg/L, 3 mg/L, 2 mg/L, 1 mg/L, and 0.4 mg/L] and after 3 h at a normoxic level. The experimental results showed that when the water temperature was at (31.18±0.38) ℃, the oxygen consumption rate of jinhu grouper juveniles was 0.16 mg/(g·h), which was significantly higher than that of the female tiger grouper juveniles (P<0.05). The suffocation points of tiger grouper and jinhu grouper juveniles were 0.22 mg/L and 0.24 mg/L, respectively, and the difference between the two species was not significant. During the process of decreasing dissolved oxygen concentration and returning to normal dissolved oxygen, there was a significant difference (P<0.05) between superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lactate dehydrogenase (LDH) enzyme activities and lactic acid (LD) content in the liver of tiger grouper juveniles, as well as SOD, catalase (CAT), GSH-Px, total antioxidant capacity (T-AOC), LDH enzyme activities in the liver of jinhu grouper juveniles. However, the activity change of T-AOC and CAT in the liver of tiger grouper juveniles and the content of LD in the liver of jinhu grouper juveniles were not significant. After 3 h of reoxygenation, the activity of SOD in the liver of tiger groupers increased by 16.7% and that of GSH-Px increased by 42.5%, while the content of LD increased by 2.8%. There were significant differences in these indicators between the reoxygnation group and the normoxic group (P<0.05). However, there were no significant differences in the indicators of jinhu grouper juveniles compared with the normoxic group, except for the activity of GSH-Px (P<0.05). During the change in dissolved oxygen level, the activation levels of SOD, GSH-Px, CAT, and T-AOC in the liver of jinhu groupers reached 29.1%, 17.9%, 42.4%, and 76.0%, respectively, which were higher than the maximum activation levels of corresponding antioxidant enzymes in tiger grouper livers. The experimental results showed that jinhu groupers had a slightly higher oxygen consumption rate than tiger groupers and that their hypoxia tolerance was higher. Thus, jinhu groupers can be cultured on a large scale and in high density. After being subjected to hypoxia stress, compared with tiger groupers, jinhu groupers could efficiently activate the antioxidant defense system to protect the body from oxidative damage and had a faster recovery ability after hypoxia.
Key words Epinephelus fuscoguttatus      Epinephelus tukula     hybrid    oxygen consumption rate    suffocation point    hypoxia tolerance    

石斑鱼是鲈形目(Perciformes)、鲈亚目(Percoidei)、石斑鱼科(Epinephelidae)鱼类的统称,其广泛分布于太平洋、大西洋和印度洋的热带与亚热带海域,是一种肉质鲜美、营养丰富、脂肪含量少,同时具有重要商业价值的鱼类[1]。据2020年中国渔业统计年鉴相关数据显示,2019年海水石斑鱼养殖产量达到183127 t,相比2018年增长14.76%,现已发展成为我国南北方养殖的一种优质名贵鱼类[2]。棕点石斑鱼(Epinephelus fuscoguttatus)俗称老虎斑,体呈淡黄褐色,其生长速度慢,生长周期较长,但是由于在其繁殖季节容易获得大量优质卵,并且抗病能力强,可以作为母本与其他石斑鱼雄鱼杂交以获得优良养殖品种,如珍珠龙胆石斑鱼(E. fuscoguttatus♀×E. lanceolatus♂)已大量养殖[3]; 蓝身大斑石斑鱼(E. tukula)俗名金钱斑,体表淡灰褐色,全身遍布较大的陈褐色斑点,是石斑鱼中的大型种类之一,具有肉味鲜美、生长速度快的特点,使其成为一种重要的海水经济鱼类[4]

棕点石斑鱼与蓝身大斑石斑鱼是我国南方沿海地区的重要养殖鱼类,但两者在繁殖习性、生长水温、地理分布等方面均存在一定程度的生殖隔离,给大规模人工杂交培育增加了技术难度。田永胜等[5]在国内外首次利用超低温冷冻保存的方法建立了蓝身大斑石斑鱼的精子冷冻库,并利用其冷冻精子与棕点石斑鱼卵进行杂交育种实验,获得了具有高受精率、高孵化率、低畸形率并且生长快等优势的杂交子代(以下简称“金虎石斑鱼”),克服了两种亲本在人工繁育时间的隔离。目前对金虎石斑鱼的研究主要集中在与亲本的形态差异分析[6]、后代生长发育分析[5]、子代的染色体核型分析[7]以及遗传多样性研究[8]等方面,对于金虎石斑鱼抗逆性的相关研究还未见报道。

氧气在水生动物的生长发育过程中发挥着十分重要的作用[9],然而在水产养殖过程中,水中溶解氧水平往往容易受到温度、富营养化、水体污染、表层水与深层水的交换、突变天气以及高密度养殖等自然和人为环境变化的影响[10-11]。水体溶解氧浓度突然降低往往会引起鱼类摄食量减少、生长速度缓慢、生殖力下降、免疫能力降低等不良现象的发生,严重时甚至引起死亡[12-13]。鱼类的低氧耐受能力不仅是抗逆性评估的重要参考,也是评价是否为水产养殖良种的重要指标。目前对于低氧胁迫对鱼类的研究主要集中在呼吸代谢、组织损伤、能量代谢、氧化应激[14-17]等方面,而对于石斑鱼类,尤其是新获得的杂交品种金虎石斑鱼及其母本棕点石斑鱼的低氧相关研究还未见报道。

本研究以相同养殖条件下的杂交金虎石斑鱼与其母本棕点石斑鱼为研究对象,比较研究了两种鱼的耗氧率与窒息点以及低氧胁迫下抗氧化酶、乳酸脱氢酶活性以及乳酸含量的变化,评价棕点石斑鱼和金虎石斑鱼幼鱼的耐低氧能力,以期为金虎石斑鱼苗种运输、成鱼养殖等过程中的溶氧水平和放养密度的确定提供理论参考,同时为石斑鱼杂交育种提供生理学依据。

1 材料与方法 1.1 实验材料

本实验所用棕点石斑鱼与金虎石斑鱼均由山东省烟台市莱州明波水产公司同批次繁育提供。在实验开始前挑选体质健康、无病无伤、规格一致的棕点石斑鱼与金虎石斑鱼,初始体重分别为(33.06±4.66) g、(34.26±3.85) g,全长分别为(11.63±0.97) cm、(13.06±0.78) cm,对其进行为期14 d的暂养驯化使其适应实验室环境。驯化期间溶解氧为(5.62±0.31) mg/L,温度(29.97±0.84) ℃,每天早晚各投食1次,早晨排污换水1次并检查实验鱼的生长状况,日换水量不超过养殖水体总体积的2/3。

1.2 实验设计 1.2.1 耗氧率的测定实验

参考熊向英等[14]及陈婉情等[18]的研究,选取容积为5 L的实验盒作为呼吸室,在(31.18±0.38) ℃的水温下分别测定棕点石斑鱼与金虎石斑鱼的耗氧率。在暂养实验水池中选取规格一致(表1)的棕点石斑鱼和金虎石斑鱼各4尾分别缓慢放入自制呼吸室中,每个呼吸室中放同种鱼两尾,待鱼适应1 h后处于较好状态时开始实验。往呼吸室中缓慢补注满水后采用保鲜膜密封,四周用透明胶带加固并盖好盒盖扣紧,以确保呼吸室的密封性良好,并将其置于暂养实验水池中水浴,使温度与暂养条件相同。以相同操作设置一个空白对照组,用于矫正实验前后溶解氧质量浓度。实验共持续2 h,在实验开始前和结束时均用碘量瓶采样,快速固定并保存用于测定溶解氧质量浓度。实验结束后,用滤纸吸干实验幼鱼体表水分并称重,记录数据。此实验共重复进行6次。

1.2.2 窒息点的测定实验

在暂养实验水池中随机选取体重和全长相差不大(表1)的棕点石斑鱼和金虎石斑鱼各18尾,分别缓慢置于6个容积为5 L呼吸室中,每个呼吸室中同种鱼6尾,待鱼适应1 h处于较好状态后开始实验,封闭操作同1.2.1。在实验开始前利用碘量瓶采样,快速固定并测定溶解氧质量浓度,以50%的鱼死亡时的溶解氧质量浓度作为鱼的窒息点[18]

表1  实验所用棕点石斑鱼与金虎石斑鱼记录 Tab. 1  Records of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatus used in the experiment
1.2.3 低氧胁迫实验

在驯养结束以后,挑选体质健康的金虎石斑鱼与棕点石斑鱼(表1)进行实验,将金虎石斑鱼与棕点石斑鱼各70尾分别饲养于4个相同规模的实验水池(d=60 cm, h=45 cm,实际容水120 L)中,两种鱼各设两个平行,每个平行放同种鱼35尾。实验开始前在每个平行各取3尾鱼作为对照组采样,并标记为C组。0 h采样结束后立刻向各水池通入氮气使溶解氧在10 min内降至预定值(图1),并通过调节水流大小使溶解氧维持在预定值1 h后每个平行各取3尾鱼采样,记为H1组。随后向各水池继续通氮气降低溶氧,并依次在预定溶氧处停留1 h后采样,每个平行每个时间点各取3尾鱼,依次记为H2、H3、H4、H5组。低氧胁迫阶段结束后,恢复正常流水和充气,使溶氧快速恢复至5.5 mg/L以上,在恢复3 h后再次取样,记为R组。整个实验期间每隔10 min用养殖用溶氧仪(OxyGuard Handy Polaris)测定并记录溶解氧质量浓度。

图1  实验水质溶解氧变动记录C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平(>5.5 mg/L) 3 h. Fig. 1  Records about changes in dissolved oxygen in the experimental groupsC: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level (>5.5 mg/L) for 3 h.
1.3 测定指标与方法 1.3.1 溶解氧浓度计算

耗氧率和窒息点中溶解氧质量浓度使用碘量法测定,计算公式如下:

$A{\rm{ = }}\frac{{C{\rm{ \times }}V{\rm{ \times 8}}}}{{{V_0}}} \times {\rm{1000}}$

式中,A为样品中的溶解氧质量浓度,单位:mg/L; C为滴定时使用硫代硫酸钠的浓度,单位:mol/L; V为滴定样品时使用硫代硫酸钠的体积,单位:mL; V0为滴定时实际水样的体积,单位:mL。

1.3.2 耗氧率计算

依据下列公式计算每尾鱼单位时间、单位体重的相对耗氧率:

${Q_{\rm{O}}}{\rm{ = }}\frac{{V{\rm{ \times (}}{A_{\rm{1}}} - {A_{\rm{2}}}{\rm{ + }}\Delta A{\rm{)}}}}{{W{\rm{ \times }}T}}$

式中,QO为相对耗氧率,单位:mg/(g·h); V为呼吸室的实际容积,单位:mg/L; A1为实验前呼吸室中海水的溶解氧质量浓度,单位:mg/L; A2为实验后呼吸室中海水的溶解氧质量浓度,单位:mg/L; ∆A为溶解氧质量浓度的矫正系数;W为幼鱼的体重,单位:g; T为实验持续的时间,单位:h。

1.3.3 肝脏酶活性的测定

1.2.3中,依据设定好的时间点将鱼置于含有鱼用麻醉剂MS-222的溶液中麻醉,随后迅速解剖,分离出肝脏并装于2 mL冻存管中后迅速置于液氮中速冻,分装保存于液氮之中。肝脏总抗氧化能力(total antioxidant capacity, T-AOC)、超氧化物歧化酶(superoxide dismutase, SOD)活性、过氧化氢酶(catalase, CAT)活性、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)活性、乳酸脱氢酶(lactate dehydrogenase, LDH)活性以及乳酸(lactic acid, LD)含量的测定均采用南京建成生物工程研究所的试剂盒,依各试剂盒说明书严格按步骤操作测定。

1.4 数据分析

实验数据均用平均数±标准差($\bar{x}\pm \text{SD}$)来表示,利用Excel 2010软件对数据进行常规整理后,利用IBM SPSS Statistics 23.0软件进行独立样本T检验(independent-sample t-test),或经方差同质性检验后进行单因素方差分析(one-way ANOVA),采用LSD法进行各处理平均数之间的差异显著性比较,置信水平选择P<0.05,作图采用Origin 2018软件。

2 结果与分析 2.1 棕点石斑鱼与金虎石斑鱼幼鱼的耗氧率与窒息点

研究结果表明(表2),在水温为(31.18±0.38) ℃时金虎石斑鱼幼鱼的耗氧率为0.16 mg/(g·h),显著高于其母本棕点石斑鱼幼鱼耗氧率0.14 mg/(g·h) (P<0.05)。棕点石斑鱼与金虎石斑鱼幼鱼的窒息点分别为0.22 mg/L、0.24 mg/L,二者差异不显著(P>0.05)。

表2  同水温下棕点石斑鱼与金虎石斑鱼幼鱼窒息点和耗氧率比较 Tab. 2  Comparison of suffocation points and oxygen consumption rates of juvenile Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatus in the same water temperature
2.2 溶氧下降和复氧下肝脏酶活性和乳酸含量的变化

对两种鱼肝脏中抗氧化酶、LDH活性以及LD含量6种指标分别进行测定,得出在溶氧开始变动后棕点石斑鱼与金虎石斑鱼SOD活性分别为447~600 U/mg prot、464~613 U/mg prot, CAT活性分别为24~33 U/mg、18~33 U/mg, GSH-Px活性分别为210~414、174~344 U, T-AOC活性分别为0.7~1.2 U/mg prot、0.5~1.0 U/mg prot, LD含量分别为0.4~0.6 mmol/g prot、0.2~0.4 mmol/g prot, LDH活性分别为763~1496 U/g prot、789~1199 U/g prot。经单因素方差分析(one-way ANOVA),除棕点石斑鱼T-AOC和CAT活性以及金虎石斑鱼LD含量变化受溶氧变动的影响不显著外,其余指标受溶氧变动的影响均显著(P<0.05)(表3)。

2.2.1 肝脏总抗氧化能力和抗氧化酶活性的变化

图2图3可以看出,在溶氧下降过程中,棕点石斑鱼和金虎石斑鱼肝脏中SOD和CAT活性均呈先上升后下降的趋势。棕点石斑鱼和金虎石斑鱼肝脏中SOD活性分别在H3、H2组时达到最大值,相比对照组显著提高28.2% (P<0.05)、29.1% (P<0.05),随后均略有下降。恢复常氧3 h后,棕点石斑鱼肝脏中SOD活性提高16.7%,并与对照组差异显著(P<0.05),金虎石斑鱼肝脏中SOD活性则降低1.7%,与对照无显著差异(P>0.05),但恢复至常氧水平。在H2组时,金虎石斑鱼肝脏中SOD活性较对照组显著升高29.1% (P<0.05),且显著高于棕点石斑鱼肝脏中SOD活性(P<0.05); 棕点石斑鱼和金虎石斑鱼肝脏中CAT活性分别在H4、H2组时提高35.7% (P<0.05)、42.4% (P<0.05),达到最大值。恢复3 h后,棕点石斑鱼和金虎石斑鱼肝脏中CAT活性较H5组分别升高了5.0%、20.5%,且二者与对照组均无显著差异(P>0.05)。在H3、H4组时,与对照组相比,金虎石斑鱼肝脏中CAT活性下降了6.9%、20.7%,均显著低于棕点石斑鱼肝脏中CAT活性(P<0.05)。

表3  溶氧变动对棕点石斑鱼和金虎石斑鱼肝脏抗氧化酶、LDH活性以及LD含量影响的方差分析结果 Tab. 3  Variance analysis result for liver antioxidant enzyme, LDH activity and LD content of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatus affected by dissolved oxygen changes

图4所示,棕点石斑鱼肝脏中GSH-Px活性随溶解氧浓度下降整体呈现出降低的趋势,在H4组时下降到最低值,H3、H4、H5组较对照组分别显著下降26.9% (P<0.05)、46.9% (P<0.05)、46.9% (P<0.05); 金虎石斑鱼肝脏中GSH-Px活性随溶解氧浓度下降呈现出先升高再降低后又升高的变化趋势,相比于对照组H3组显著降低了39.5% (P<0.05),下降到了最低值,且显著低于棕点石斑鱼(P<0.05),随后有所上升;恢复常氧3 h后,棕点石斑鱼肝脏中GSH-Px活性较低氧H5组时显著升高了42.5% (P<0.05),金虎石斑鱼则显著下降了44.3% (P<0.05),且二者之间差异显著(P<0.05),与常氧对照组相比棕点石斑鱼和金虎石斑鱼肝脏GSH-Px活性分别显著降低24.3% (P<0.05)、40.4% (P<0.05)。

图2  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中SOD活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71± 0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 2  Effects of decreased dissolved oxygen and reoxygenation on SOD activity in the livers of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.

图5所示,棕点石斑鱼肝脏中T-AOC活性受低氧胁迫和复氧的影响不显著,整体趋势呈上升下降交替波动,但在H2、H3组时均显著高于金虎石斑鱼肝脏中T-AOC活性(P<0.05); 金虎石斑鱼肝脏中T-AOC活性H4组时迅速升高76.0% (P<0.05),达到峰值后随溶解氧的降低呈下降趋势,其余组较对照组略有变化,但差异均不显著(P>0.05)。恢复常氧3 h后,棕点石斑鱼肝脏中T-AOC活性升高22.0%,而金虎石斑鱼肝脏中T-AOC活性降低12.3%,显著低于棕点石斑鱼(P<0.05),但二者均与常氧对照组无显著差异(P>0.05)。

图3  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中CAT活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 3  Effects of decreased dissolved oxygen and reoxygenation on CAT activity in the livers of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
图4  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中GSH-Px活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 4  Effects of decreased dissolved oxygen and reoxygenation on GSH-Px activity in the livers of and Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
2.2.2 肝脏乳酸含量和乳酸脱氢酶活性的变化

图6可以得出,棕点石斑鱼和金虎石斑鱼肝脏中LD含量随溶解氧浓度的降低均呈现先升高后降低的变化趋势,且在H2、H3组时二者的差异显著(P<0.05)。棕点石斑鱼肝脏中LD含量在H1、H2、H3、H4组时较对照组分别显著升高10.0%、53.3%、34.5%、65.9% (P<0.05),并在H4组时达到最大值,随后便显著下降了26.1% (P<0.05),但与对照组并无显著差异(P>0.05)。在恢复常氧3 h后,棕点石斑鱼肝脏中LD含量上升2.8%,显著高于对照组26.0% (P<0.05); 金虎石斑鱼肝脏中LD含量则下降了35.9%,与常氧对照组无显著差异(P>0.05),且显著低于棕点石斑鱼肝脏中LD含量(P<0.05)。

图7 显示出棕点石斑鱼肝脏中LDH活性随着溶解氧浓度的下降而呈先升高再下降的趋势,在H3组时LDH活性较对照组升高72.2%,与其他组别差异显著(P<0.05),且显著高于金虎石斑鱼(P<0.05); 金虎石斑鱼肝脏中LDH活性在H1、H3、H4组时,相比于对照组分别显著降低了34.2% (P<0.05)、33.8% (P<0.05)、34.1% (P<0.05),但在H5组时LDH活性较对照组上升35.7%,与常氧对照组无显著差异(P>0.05)。在复氧3 h后,棕点石斑鱼与金虎石斑鱼肝脏中LDH活性分别升高了40.7%、8.7%,且均与常氧对照组无显著差异(P>0.05)。

图5  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中T-AOC活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 5  Effects of decreased dissolved oxygen and reoxygenation on T-AOC activity in the liver of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
图6  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中LD含量的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 6  Effects of decreased dissolved oxygen and reoxygenation on LD content in the livers of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
3 讨论 3.1 棕点石斑鱼与金虎石斑鱼幼鱼耗氧率和窒息点的比较

标准耗氧率往往是指鱼体在禁食、保持安静状态时的耗氧率,因为此时的耗氧只是为了维持鱼类生命的能量消耗,没有进行贮藏和生长,所以经常用于表示鱼体的标准代谢[19-20]。本实验在将鱼体禁食24 h后置于简易呼吸室中测定标准耗氧率,得到在水温为(31.18±0.38) ℃时金虎石斑鱼耗氧率显著高于棕点石斑鱼,推测可能是金虎石斑鱼生长速度快、反应迅速等杂种优势所致,因为耗氧率高可能代表摄食活动强烈、能量代谢强度高以及新陈代谢快等特点[5,21]

鱼类的窒息点代表了其忍耐低氧的极限指标,窒息点越低,代表对低氧的耐受能力越强[22]。本研究测得在水温(31.18±0.38) ℃时,棕点石斑鱼与金虎石斑鱼的窒息点分别为0.22 mg/L、0.24 mg/L,不仅低于赤点石斑鱼(E. akaara)[18]、珍珠龙胆石斑鱼(E. fuscoguttatus♀×E. lanceolatus♂)[18]、青石斑鱼(E. awoara)[23]等常见养殖石斑鱼种类(表4),而且也低于驼背鲈(Cromileptes altivelis, 1.00~ 1.21 mg/L)[18]、豹纹鳃棘鲈(Plectropomus leopardus, 0.75~0.97 mg/L)[18]、半滑舌鳎(Cynoglossus semilaevis, 0.834~1.113 mg/L)[20]、大黄鱼(Pseudosciaena crocea, 1.42~2.27 mg/L)[24]、条石鲷(Oplegnathus fasciatus, 1.60~2.95 mg/L)[25]、真鲷(Pagrus major, 1.55~1.65 mg/L)[23,26]等海水养殖鱼类,同时也比草鱼(Ctenopharyngodon idellus, 0.39 mg/L)[22,26]、鳙(Aristichthys nobilis, 0.46 mg/L)[22]、鲢(Hypophthalmichthys molitrix, 0.51 mg/L)[22]、斑点叉尾鮰(Ictalurus punetaus, 0.27 mg/L)[22]、黄颡鱼(Pelteobagrus fulvidraco, 0.36 mg/L)[22]等淡水养殖鱼类低,表明棕点石斑鱼与金虎石斑鱼的耐低氧能力较好,可以进行大规模高密度养殖。限于条件,本实验未探讨窒息点和耗氧率与水温之间的关系。

表4  几种石斑鱼耗氧率和窒息点的比较 Tab. 4  Comparison of oxygen consumption rate and suffocation point of some groupers
3.2 棕点石斑鱼与金虎石斑鱼抗氧化能力的比较

鱼类缺氧不仅会影响其行为、生长和生理状况[31-32],通常还会导致活性氧(ROS)的积累[33],从而打破鱼体细胞内ROS产生和清除的动态平衡,使鱼体处于氧化应激状态[34-35]。为了尽量避免多余ROS引起过氧化反应从而对机体造成过氧化损伤,鱼类的抗氧化防御系统发挥的清除活性中间产物的抗氧化作用则至关重要,此系统由抗氧化酶(SOD、CAT、GSH-Px等)和小分子抗氧化剂(维生素、谷胱甘肽、类胡萝卜素等)组成[33-39]。一般认为,SOD、CAT、GSH-Px和T-AOC活性是检测鱼类抗氧化能力的重要指标[40-43]。肝脏是鱼类最大的腺体,是参与物质代谢最重要的器官之一[37,44],也是进行氧化反应较多的组织[12,45-48],所以本研究选择采用肝脏来评价棕点石斑鱼与金虎石斑鱼的抗氧化能力。

SOD最早在ROS的清除过程中发挥作用,是降解活性氧自由基的第一道防线,可将超氧阴离子自由基转化为H2O2,然后由CAT将H2O2催化为水和氧气,从而达到减少机体损伤、保护细胞免受伤害的目的[33-34,37,39,48-50]。本研究中,随着溶解氧浓度的下降,棕点石斑鱼与金虎石斑鱼肝脏中SOD和CAT活性均不同程度提高后又有所下降,推测溶解氧的下降使棕点石斑鱼与金虎石斑鱼肝脏产生过量的ROS而处于氧化应激状态。在卵形鲳鲹(Trachinotus ovatus)[15]、黄颡鱼(Pelteobagrus fulvidraco)[51]、翘嘴鳜(Siniperca chuatsi)[52]的研究中均有SOD和CAT活性类似趋势的报道。在溶氧下降到3 mg/L时,金虎石斑鱼肝脏中SOD活性与对照组相比突然显著升高,并且其激活程度显著高于棕点石斑鱼,表明金虎石斑鱼对于外界环境的改变而做出的反应较为迅速。金虎石斑鱼与棕点石斑鱼肝脏中SOD活性分别达到最大值后又显著下降,推测可能是因为在下降到更小溶解氧时产生了更多的活性氧自由基,SOD在清除活性氧自由基时导致了其活性的下降。

图7  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中LDH活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 7  Effects of decreased dissolved oxygen and reoxygenation on LDH activity in the livers of Epinephelus fuscoguttatus and Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybridsDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.

肝脏中CAT活性分别在棕点石斑鱼与金虎石斑鱼肝脏中SOD活性达到最大值之后才开始下降,这可能是因为肝脏中高活性的SOD清除活性氧自由基时生成了大量的H2O2,鱼体迅速提高CAT活性来清除H2O2,从而避免H2O2与O2反应生成毒性更大的其他ROS,这与在虹鳟和硬头鳟幼鱼[44]以及条石鲷幼鱼[47]受盐度胁迫时的变化模型相似。在恢复溶氧3 h后,金虎石斑鱼肝脏中SOD活性已与对照组无显著差异,而棕点石斑鱼肝脏中SOD活性显著高于对照组水平,表明棕点石斑鱼在复氧3 h后仍然可能处于应激状态,说明金虎石斑鱼在受到低氧胁迫后较棕点石斑鱼有较好的恢复能力。

GSH-Px作为另一重要抗氧化酶具有清除细胞内多余H2O2的作用,通常以谷胱甘肽作为底物发挥此功能,同时也对清除脂质过氧化产物以及有毒物质有促进作用,从而间接地保护细胞膜结构和功能的完整性[49,53]。在本实验中,金虎石斑鱼肝脏中GSH-Px活性在受到低氧胁迫后呈先小幅升高再下降又升高的趋势,与CAT活性变化趋势相反,可能与GSH-Px和CAT之间协同清除H2O2的作用有关[54]。该特征在银鲳(Pampus argenteus)[37]、河川沙塘鳢(Odontobutis potamophilus)[39]等鱼的研究中也有体现,表明GSH-Px与CAT之间存在浓度互补作用。但在溶解氧下降到0.4 mg/L时,金虎石斑鱼肝脏中GSH-Px活性显著升高,推测低氧水平可能致使金虎石斑鱼产生了较多的脂质过氧化物;而棕点石斑鱼肝脏中GSH-Px活性整体呈下降趋势,在溶氧1 mg/L与0.4 mg/L显著下降到最低,可能由于低氧环境产生了大量的过氧化物,暂时超过了鱼体的承受范围,其毒性抑制了GSH-Px酶活性所致。

T-AOC是机体内抗氧化酶体系和抗氧化物体系抗氧化能力的总和,是可以用于衡量机体抗氧化系统功能状况的一种综合性指标,其活性是反映机体抗氧化能力的重要参数。姜景腾等[55]在研究低氧胁迫对真鲷(Pagrosomus major, ♀)与黑鲷(Sparus macrocephlus, ♂)杂交子一代体内酶活力的影响中发现,低氧(1.83 mg/L)胁迫后肝脏中T-AOC活性在短时间内迅速上升54.1%,但随着胁迫时间的延长杂交鲷肝脏中T-AOC活性逐渐下降,并低于对照组水平,这与本研究结果相似。本实验中,棕点石斑鱼肝脏中T-AOC活性激活程度为15.9%~32.4%,且受溶解氧变动的影响差异不显著;而金虎石斑鱼肝脏中T-AOC活性激活程度为2.8%~76.0%,明显高于棕点石斑鱼,表明金虎石斑鱼较棕点石斑鱼能够高效地对低氧胁迫和复氧做出响应来有效地清除多余的ROS,从而应对应激带来的氧化压力。

3.3 棕点石斑鱼与金虎石斑鱼无氧代谢能力的比较

一般认为鱼类在受到低氧胁迫时,体内有氧代谢水平可能会受到不同程度的抑制,从而出现机体所需能量供给不足的现象,于是为了尽可能地延长在低氧环境中的存活时间,通常会采取提高无氧代谢比率的方式来满足对能量需求[16,34,56]。而LD作为无氧代谢的一种产物,可以将其作为评价鱼类无氧代谢能力的重要指标[34,57]; LDH是重要的无氧代谢标志酶,不仅可以催化丙酮酸生成无氧代谢的最终产物LD,也可以催化LD使其脱去全部吸附的氢原子,从而实现丙酮酸与LD之间的还原和氧化反应,因此其活性在一定程度上也可以反映无氧代谢的水平[16,58-59]

本研究中,在溶解氧开始下降后棕点石斑鱼与金虎石斑鱼肝脏中LD浓度均有所上升,但是金虎石斑鱼肝脏中LD浓度的变化并不显著。肝脏中LD的积累说明在低氧条件下棕点石斑鱼与金虎石斑鱼有氧呼吸可能受阻,导致了ATP供应不足,从而转变为厌氧代谢模式为机体供能,这与熊向英等[14]研究的鲻(Mugil cephalus)幼鱼低氧(1.66 mg/L)胁迫下的LD积累结果类似。李洪娟等[17]在研究急性低氧胁迫(2.64 mg/L)对军曹鱼(Rachycentron canadus)能量利用的影响时发现,在低氧3 h后肝脏中LDH活性急剧上升,本研究中棕点石斑鱼LDH活性变化与此相似。本研究中,棕点石斑鱼在溶氧下降到2 mg/L时其肝脏中LDH活性显著提升72.2%, LDH活性升高意味着将更多的丙酮酸转化为LD,从而导致了LD积累,以供机体提高厌氧代谢比率来应对低氧环境,这也与对卵形鲳鲹[60]的研究结果相似。但是在溶解氧开始下降后,金虎石斑鱼肝脏中LDH活性均有所抑制,推测与金虎石斑鱼肝脏中LD浓度的变化不显著有关,具体机制需更进一步研究。

参考文献
[1]
Ding S X, Liu Q H, Wu H H, et al. A review of research advances on the biology and artificial breeding of groupers[J]. Journal of Fishery Sciences of China, 2018, 25(4): 737-752. [丁少雄,刘巧红,吴昊昊,等. 石斑鱼生物学及人工繁育研究进展[J]. 中国水产科学,2018, 25(4): 737-752.].》Google Scholar
[2]
Wu B, Xie J. Effects of the dissolved oxygen level and the vibration on oxidative stress of grouper during water transport[J]. Food & Machinery, 2019, 35(8): 137-142, 182. [吴波,谢晶. 溶解氧水平和振动对有水活运过程中石斑鱼氧化应激的影响[J]. 食品与机械,2019, 35(8): 137-142, 182.].》Google Scholar
[3]
Chen C, Kong X D, Li Y L, et al. Embryonic and morphological development in the larva, juvenile, and young stages of Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂)[J]. Progress in Fishery Sciences, 2014, 35(5): 135-144. [陈超,孔祥迪,李炎璐,等. 棕点石斑鱼(♀)×鞍带石斑鱼(♂)杂交子代胚胎及仔稚幼鱼发育的跟踪观察[J]. 渔业科学进展,2014, 35(5): 135-144.].》Google Scholar
[4]
Li Z T, Tian Y S, Cheng M L, et al. Comparison of development and growth of hybrid Chromileptes altivelis (♀) × Epinephelus tukula (♂)[J]. South China Fisheries Science, 2020, 16(1): 17-26. [李振通,田永胜,成美玲,等. 驼背鲈(♀)×蓝身大斑石斑鱼(♂)杂交子代发育及生长比较[J]. 南方水产科学,2020, 16(1): 17-26.].》Google Scholar
[5]
Tian Y S, Tang J, Ma W H, et al. Development and growth of hybrid offspring of brown grouper Epinephelus fuscoguttatus (♀) × blue speckled grouper Epinephelus tulcula (♂) using cryopreserved sperm[J]. Progress in Fishery Sciences, 2019, 40(6): 36-47. [田永胜,唐江,马文辉,等. 蓝身大斑石斑鱼冷冻精子(♂)与棕点石斑鱼(♀)杂交后代发育及生长特征分析[J]. 渔业科学进展,2019, 40(6): 36-47.].》Google Scholar
[6]
Wu Y P, Tian Y S, Li Z T, et al. Analysis on morphological difference between hybrid Epinephelus fuscoguttatus ♀ × E. tukula ♂ and its parents[J]. Journal of Guangdong Ocean University, 2019, 39(6): 17-22. [吴玉萍,田永胜,李振通,等. 棕点石斑鱼(♀)×蓝身大斑石斑鱼(♂)杂交后代与亲本的形态差异[J]. 广东海洋大学学报,2019, 39(6): 17-22.].》Google Scholar
[7]
Wu Y P, Tian Y S, Li Z T, et al. Karyotype analysis of hybrids of Epinephelus fuscoguttatus (♀) × Epinephelus tukula (♂)[J]. Journal of Guangdong Ocean University, 2021, 41(1): 119-123. [吴玉萍,田永胜,李振通,等. 棕点石斑鱼(♀)与蓝身大斑石斑鱼(♂)杂交子代核型分析[J]. 广东海洋大学学报,2021, 41(1): 119-123.].》Google Scholar
[8]
Wu Y P, Tian Y S, Wang L N, et al. Genetic diversity analysis of Epinephelus fuscoguttatus (♀) and E. tukula (♂) hybrids[J]. Progress in Fishery Sciences, 2021, 42(6): 25-32. [吴玉萍,田永胜,王林娜,等. 棕点石斑鱼(♀)与蓝身大斑石斑鱼(♂)及其杂交子代遗传多样性分析[J]. 渔业科学进展,2021, 42(6): 25-32.].》Google Scholar
[9]
Terova G, Rimoldi S, Corà S, et al. Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax)[J]. Aquaculture, 2008, 279(1-4): 150-159..》Google Scholar
[10]
Zhao L L, Sun J L, Liang J, et al. Enhancing lipid metabolism and inducing antioxidant and immune responses to adapt to acute hypoxic stress in Schizothorax prenanti[J]. Aquaculture, 2020, 519: 734933..》Google Scholar
[11]
Zeng L, Wang Y H, Ai C X, et al. Effects of β-glucan on ROS production and energy metabolism in yellow croaker (Pseudosciaena crocea) under acute hypoxic stress[J]. Fish Physiology and Biochemistry, 2016, 42(5): 1395-1405..》Google Scholar
[12]
Wang M, Wu F L, Xie S G, et al. Acute hypoxia and reoxygenation: Effect on oxidative stress and hypoxia signal transduction in the juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture, 2021, 531: 735903..》Google Scholar
[13]
Ding J, Liu C, Luo S Y, et al. Transcriptome and physiology analysis identify key metabolic changes in the liver of the large yellow croaker (Larimichthys crocea) in response to acute hypoxia[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109957..》Google Scholar
[14]
Xiong X Y, Huang G Q, Peng Y H, et al. Effect of hypoxia on growth performance, energy metabolism and oxidative stress of Mugil cephalus[J]. Journal of Fisheries of China, 2016, 40(1): 73-82. [熊向英,黄国强,彭银辉,等. 低氧胁迫对鲻幼鱼生长、能量代谢和氧化应激的影响[J]. 水产学报,2016, 40(1): 73-82.].》Google Scholar
[15]
Chen S X, Wang P F, Ou Y J, et al. The effect of acute and chronic hypoxia stress on liver tissue structure and oxidation in juvenile golden pompano (Trachinotus ovatus)[J]. Chinese Journal of Zoology, 2016, 51(6): 1049-1058. [陈世喜,王鹏飞,区又君,等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志,2016, 51(6): 1049-1058.].》Google Scholar
[16]
Guo Z X, Zeng Z Q, Huang J S, et al. Effects of acute hypoxia on oxidative stress, energy utilization and carbohydrate metabolism in liver of large-sized juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2020, 40(3): 134-140. [郭志雄,曾泽乾,黄建盛,等. 急性低氧胁迫对大规格军曹鱼幼鱼肝脏氧化应激、能量利用及糖代谢的影响[J]. 广东海洋大学学报,2020, 40(3): 134-140.].》Google Scholar
[17]
Li H J, Chen G, Guo Z X, et al. Oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress[J]. Haiyang Xuebao, 2020, 42(4): 12-19. [李洪娟,陈刚,郭志雄,等. 军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J]. 海洋学报,2020, 42(4): 12-19.].》Google Scholar
[18]
Chen W Q, Wu H X, Wu L, et al. Oxygen consumption rate and suffocation point of the juveniles for five species of mariculture fish[J]. Journal of Marine Sciences, 2015, 33(2): 76-81. [陈婉情,吴洪喜,吴亮,等. 5种海水养殖鱼类幼鱼的耗氧率及窒息点[J]. 海洋学研究,2015, 33(2): 76-81.].》Google Scholar
[19]
Person-Le Ruyet J, Mahé K, Le Bayon N, et al. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax[J]. Aquaculture, 2004, 237(1-4): 269-280..》Google Scholar
[20]
Wang Z S, Huang J T, Peng B. Oxygen consumption and asphyxiation in Cynoglossus semilaevis[J]. Fisheries Science, 2004, 23(4): 3-7. [王资生,黄金田,彭斌. 半滑舌鳎耗氧率和窒息点的初步研究[J]. 水产科学,2004, 23(4): 3-7.].》Google Scholar
[21]
Sun X Y, Huang X L, Huang Z, et al. Diet feeding, oxygen consumption rhythm and gastrointestinal evacuation time of Trachinotus ovatus[J]. South China Fisheries Science, 2019, 15(5): 77-83. [孙莘溢,黄小林,黄忠,等. 卵形鲳鲹摄食、耗氧节律和胃肠排空时间的研究[J]. 南方水产科学,2019, 15(5): 77-83.].》Google Scholar
[22]
Yu L N, Yang D, Liu H Y, et al. Correlation between hemoglobin and asphyxiation point in twelve species of freshwater fish[J]. Chinese Journal of Zoology, 2017, 52(3): 478-484. [余来宁,杨东,刘红艳,等. 十二种淡水鱼类血红蛋白与窒息点的相关分析[J]. 动物学杂志,2017, 52(3): 478-484.].》Google Scholar
[23]
Dai Q N, Zhao L L. Study on oxygen consumption rate of Epinephelus awoara[J]. Fisheries Science, 1994, 13(3): 6-9. [戴庆年,赵莉莉. 青石斑鱼耗氧率研究[J]. 水产科学,1994, 13(3): 6-9.]https://kns.cnki.net/KCMS/detail/detail.aspx? filename=CHAN403.001&dbname=CJFD&dbcode=CJFQ.》Google Scholar
[24]
Zhang X S, Wang Y. Studies on oxygen consumption rate and suffocation point of Pseudosciaena crocea fry[J]. Journal of Economic Animal, 2007, 11(3): 148-152, 158. [张学舒,王英. 大黄鱼鱼苗耗氧率和窒息点的研究[J]. 经济动物学报,2007, 11(3): 148-152, 158.].》Google Scholar
[25]
Sun Z Z, Xu Y J, Han B, et al. Study on the oxygen consumption rate and asphyxiation point of rock bream Oplegnathus fasciatus[J]. Progress in Fishery Sciences, 2009, 30(5): 27-33. [孙中之,徐永江,韩兵,等. 条石鲷的耗氧率与窒息点研究[J]. 渔业科学进展,2009, 30(5): 27-33.] https://kns.cnki.net/KCMS/detail/detail.aspx?filename=HYSC200905007&dbname=CJFD&dbcode=CJFQ.》Google Scholar
[26]
Dong C Y, Zhang J R. A preliminary measurement on suffocation point and oxygen consumption rate of Pagrosomus major[J]. Journal of Fisheries of China, 1992, 16(1): 75-79. [董存有,张金荣. 真鲷窒息点与耗氧率的初步测定[J]. 水产学报,1992, 16(1): 75-79.].》Google Scholar
[27]
Liang H F, Huang D K, Wu Y H, et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)[J]. Progress in Fishery Sciences, 2014, 35(2): 30-34. [梁华芳,黄东科,吴耀华,等. 温度和盐度对龙虎斑耗氧率和排氨率的影响[J]. 渔业科学进展,2014, 35(2): 30-34.]https://kns.cnki.net/KCMS/detail/detail. aspx?filename=HYSC201402005&dbname=CJFD&dbcode=CJFQ.》Google Scholar
[28]
Xing D C, Song X F, Peng L, et al. Effects of temperature and salinity on oxygen consumption rate and ammonia excretion rate of junevile Epinephelus groupers[J]. Fishery Modernization, 2017, 44(3): 7-14. [邢道超,宋协法,彭磊,等. 温度与盐度对云龙石斑鱼幼鱼耗氧率和排氨率的影响[J]. 渔业现代化,2017, 44(3): 7-14.].》Google Scholar
[29]
Huang J S, Chen G, Zhang J D, et al. Effects of temperature, pH and body wet weigh on oxygen consumption rate and ammonia excretion rate of orange-spotted grouper Epinephelus coioides juveniles cultured in low-salt water[J]. Chinese Journal of Zoology, 2016, 51(6): 1038-1048. [黄建盛,陈刚,张健东,等. 温度、pH及体重对低盐水体下斜带石斑鱼幼鱼耗氧率与排氨率的影响[J]. 动物学杂志,2016, 51(6): 1038-1048.].》Google Scholar
[30]
Chen G H, Zhang H Z, Chen X F. Study on the baby fish oxygen consumption of Epinephelus fario[J]. Natural Science Journal of Hainan University, 1999, 17(3): 259-264. [陈国华,章华忠,陈雪芬. 鲑点石斑鱼幼鱼耗氧率的研究[J]. 海南大学学报(自然科学版), 1999, 17(3): 259-264.].》Google Scholar
[31]
Sun J L, He K, Liu Q, et al. Inhibition of fatty acid oxidation induced by up-regulation of miR-124 and miR-205 during exposure of largemouth bass (Micropterus salmoides) to acute hypoxia[J]. Aquaculture, 2020, 529: 735679..》Google Scholar
[32]
Li M X, Wang X D, Qi C L, et al. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress[J]. Aquaculture, 2018, 495: 187-195..》Google Scholar
[33]
Wang W J, Li X L, Zhu J Y, et al. Antioxidant response to salinity stress in freshwater and marine Bangia (Bangiales, Rhodophyta)[J]. Aquatic Botany, 2019, 154: 35-41..》Google Scholar
[34]
Chang Z C, Wen H S, Zhang M Z, et al. Effects of dissolved oxygen levels on oxidative stress response and energy utilization of juvenile Chinese sea bass (Lateolabrax maculatus) and associate physiological mechanisms[J]. Periodical of Ocean University of China, 2018, 48(7): 20-28. [常志成,温海深,张美昭,等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报(自然科学版), 2018, 48(7): 20-28.]https://kns.cnki.net/KCMS/detail/ detail.aspx?filename=QDHY201807003&dbname=CJFD&dbcode=CJFQ.》Google Scholar
[35]
Magouz F I, Mahmoud S A, El-Morsy R A A, et al. Dietary menthol essential oil enhanced the growth performance, digestive enzyme activity, immune-related genes, and resistance against acute ammonia exposure in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2021, 530: 735944..》Google Scholar
[36]
Zhao Y J, Di G L, Jiang X Y, et al. Responses of antioxidant defenses to hypoxia in freshwater fish[J]. Fisheries Science, 2016, 35(5): 591-596. [赵燕静,狄桂兰,蒋昕彧,等. 淡水鱼类对低氧的抗氧化防护响应[J]. 水产科学,2016, 35(5): 591-596.].》Google Scholar
[37]
Yin F, Sun P, Peng S M, et al. Effects of low salinity stress on the antioxidant enzyme activities in juvenile Pampus argenteus liver and the APTase activities in its gill and kidney[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 1059-1066. [尹飞,孙鹏,彭士明,等. 低盐度胁迫对银鲳幼鱼肝脏抗氧化酶、鳃和肾脏ATP酶活力的影响[J]. 应用生态学报,2011, 22(4): 1059-1066.].》Google Scholar
[38]
Dong X Q, Zhang D M, Chen Y K, et al. Effects of antimicrobial peptides (AMPs) on blood biochemical parameters, antioxidase activity, and immune function in the common carp (Cyprinus carpio)[J]. Fish & Shellfish Immunology, 2015, 47(1): 429-434..》Google Scholar
[39]
Jia X Q, Zhang H Y, Wang L, et al. Effect of hypoxia stress on the antioxidant enzyme and ATP enzyme activity in tissues of Odontobutis potamophila[J]. Marine Fisheries, 2017, 39(3): 306-313. [贾秀琪,张宏叶,王丽,等. 低氧胁迫对河川沙塘鳢抗氧化酶及ATP酶活性的影响[J]. 海洋渔业,2017, 39(3): 306-313.].》Google Scholar
[40]
Bian P J, Qiu C G, Xu S L, et al. Effects of salinity on growth, activity of non-specific immune and antioxidant enzymes in obscure puffer Takifugu obscures[J]. Acta Hydrobiologica Sinica, 2014, 38(1): 108-114. [边平江,邱成功,徐善良,等. 盐度对暗纹东方鲀生长、非特异性免疫和抗氧化酶活力的影响[J]. 水生生物学报,2014, 38(1): 108-114.].》Google Scholar
[41]
Kong Y D, Li M, Chu G S, et al. The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology[J]. Aquaculture, 2021, 531: 735852..》Google Scholar
[42]
Pan G P, Liu B W, Zhou W Y. The effects of cold stress on the antioxidant defense and immune parameters of juvenile Epinephelus moara[J]. Journal of Shanghai Ocean University, 2016, 25(1): 78-85. [潘桂平,刘本伟,周文玉. 低温胁迫对云纹石斑鱼幼鱼抗氧化和免疫指标的影响[J]. 上海海洋大学学报,2016, 25(1): 78-85.].》Google Scholar
[43]
Wei J, Tian L, Wang Y K, et al. Effects of salinity, photoperiod, and light spectrum on larval survival, growth, and related enzyme activities in the giant freshwater prawn, Macrobrachium rosenbergii[J]. Aquaculture, 2021, 530: 735794..》Google Scholar
[44]
Yang J W, Zhou Y G, Huang M, et al. Comparative studies on digestive and antioxidant enzyme activities between juvenile rainbow (Oncorhynchus mykiss) and steelhead trout (O. mykiss)[J]. Periodical of Ocean University of China, 2019, 49(3): 119-128. [杨静雯,周演根,黄铭,等. 盐度对虹鳟和硬头鳟幼鱼消化酶和抗氧化酶活性的比较研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 119-128.].》Google Scholar
[45]
Li W F, Zhang X P, Song W H, et al. Effects of Bacillus preparation added to culture water on immunity and antioxidant activities in grass carp (Ctenopharyngodon idella)[J]. Journal of Fishery Sciences of China, 2012, 19(6): 1027-1033. [李卫芬,张小平,宋文辉,等. 养殖水体中添加芽孢杆菌对草鱼免疫和抗氧化功能的影响[J]. 中国水产科学,2012, 19(6): 1027-1033.].》Google Scholar
[46]
Zhang C J, Zhang Y L, Gao Q X, et al. Effect of low salinity stress on antioxidant function in liver of juvenile Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 59-64. [张晨捷,张艳亮,高权新,等. 低盐胁迫对黄姑鱼幼鱼肝脏抗氧化功能的影响[J]. 南方水产科学,2015, 11(4): 59-64.].》Google Scholar
[47]
Sun P, Yin F, Peng S M, et al. Effects of salinity on the activity of antioxidant enzymes in livers of juvenile Oplegnathus fasciatus[J]. Marine Fisheries, 2010, 32(2): 154-159. [孙鹏,尹飞,彭士明,等. 盐度对条石鲷幼鱼肝脏抗氧化酶活力的影响[J]. 海洋渔业,2010, 32(2): 154-159.].》Google Scholar
[48]
Lushchak V I, Bagnyukova T V, Lushchak O V, et al. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues[J]. The International Journal of Biochemistry & Cell Biology, 2005, 37(6): 1319-1330..》Google Scholar
[49]
Nam S E, Haque M N, Shin Y K, et al. Constant and intermittent hypoxia modulates immunity, oxidative status, and blood components of red seabream and increases its susceptibility to the acute toxicity of red tide dinoflagellate[J]. Fish & Shellfish Immunology, 2020, 105: 286-296..》Google Scholar
[50]
Yang M, Sun S M, Fu H T, et al. Hypoxia and reoxygenation on antioxidant enzyme activities and histological structure of Macrobrachium nipponense[J]. Journal of Fishery Sciences of China, 2019, 26(3): 493-503. [杨明,孙盛明,傅洪拓,等. 低氧和复氧对日本沼虾抗氧化酶活力及组织结构的影响[J]. 中国水产科学,2019, 26(3): 493-503.].》Google Scholar
[51]
Sun J X, Han G K, Liu Y, et al. The growth characteristics and hypoxia tolerant ability of yellow catfish and hybrid catfish[J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1271-1279. [孙俊霄,韩广坤,刘娅,等. 杂交黄颡鱼与普通黄颡鱼幼鱼生长性能及耐低氧能力的比较[J]. 水生生物学报,2019, 43(6): 1271-1279.].》Google Scholar
[52]
Xu C, Ding W D, Cao Z M, et al. Effects of acute hypoxia stress on antioxidant enzymes, respiratory related enzymes and expression of related genes in mandarin fish (Siniperca chuatsi)[J]. Journal of Southern Agriculture, 2020, 51(3): 686-694. [徐畅,丁炜东,曹哲明,等. 急性低氧胁迫对翘嘴鳜抗氧化酶、呼吸相关酶活性及相关基因表达的影响[J]. 南方农业学报,2020, 51(3): 686-694.].》Google Scholar
[53]
Han S Y, Wang M Q, Liu M, et al. Comparative sensitivity of the hepatopancreas and midgut in the white shrimp Litopenaeus vannamei to oxidative stress under cyclic serious/medium hypoxia[J]. Aquaculture, 2018, 490: 44-52..》Google Scholar
[54]
Xiong H L, Jiang Z Y, Zhang R X, et al. Effects of enrofloxacin hydrochloride on activities of superoxide dismutase, catalase and glutathione peroxidase in liver of juvenile hybrid sturgeon[J]. Fisheries Science, 2017, 36(5): 601-605. [熊铧龙,蒋左玉,张儒学,等. 盐酸恩诺沙星对杂交鲟幼鱼肝脏抗氧化酶活性的影响[J]. 水产科学,2017, 36(5): 601-605.].》Google Scholar
[55]
Jiang J T, Wu X F, Jiang H L. Hypoxia-induced Metabolic and Antioxidant Enzymatic Activies in the P. major ♀ × S. macrocephalus ♂ F1[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2010, 23(4): 10-14. [姜景腾,吴雄飞,蒋宏雷. 低氧胁迫对真鲷(♀)与黑鲷(♂)杂交子一代体内酶活力的影响[J]. 宁波大学学报(理工版), 2010, 23(4): 10-14.].》Google Scholar
[56]
Cooper R U, Clough L M, Farwell M A, et al. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus[J]. Journal of Experimental Marine Biology and Ecology, 2002, 279(1-2): 1-20..》Google Scholar
[57]
He W, Cao Z D, Fu S J. Effects of temperature and hypoxia on lactate and carbohydrate level in silver carp (Hypophthalmichthys molitrix)[J]. Journal of Chongqing Normal University (Natural Science), 2013, 30(5): 27-31. [何伟,曹振东,付世建. 温度和低氧对白鲢乳酸与糖水平的影响[J]. 重庆师范大学学报(自然科学版), 2013, 30(5): 27-31.].》Google Scholar
[58]
Wang W Z, Zeng Z Q, Huang J S, et al. Effects of hypoxia stress on antioxidation, immunity and energy metabolism of juvenile cobia, Rachycentron canadum[J]. Journal of Guangdong Ocean University, 2020, 40(5): 12-18. [王维政,曾泽乾,黄建盛,等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报,2020, 40(5): 12-18.].》Google Scholar
[59]
Wang Q F, Shen W L, Liu C, et al. Effects of multi-environmental factors on physiological and biochemical responses of large yellow croaker, Larimichthys crocea[J]. Chemosphere, 2017, 184: 907-915..》Google Scholar
[60]
Ou Y J, Chen S X, Wang P F, et al. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hypoxia stress[J]. South China Fisheries Science, 2017, 13(3): 120-124. [区又君,陈世喜,王鹏飞,等. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学,2017, 13(3): 120-124.].》Google Scholar
表1  实验所用棕点石斑鱼与金虎石斑鱼记录 Tab. 1  Records of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatus used in the experiment
图1  实验水质溶解氧变动记录C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平(>5.5 mg/L) 3 h. Fig. 1  Records about changes in dissolved oxygen in the experimental groupsC: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level (>5.5 mg/L) for 3 h.
表2  同水温下棕点石斑鱼与金虎石斑鱼幼鱼窒息点和耗氧率比较 Tab. 2  Comparison of suffocation points and oxygen consumption rates of juvenile Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatus in the same water temperature
表3  溶氧变动对棕点石斑鱼和金虎石斑鱼肝脏抗氧化酶、LDH活性以及LD含量影响的方差分析结果 Tab. 3  Variance analysis result for liver antioxidant enzyme, LDH activity and LD content of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatus affected by dissolved oxygen changes
图2  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中SOD活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71± 0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 2  Effects of decreased dissolved oxygen and reoxygenation on SOD activity in the livers of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
图3  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中CAT活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 3  Effects of decreased dissolved oxygen and reoxygenation on CAT activity in the livers of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
图4  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中GSH-Px活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 4  Effects of decreased dissolved oxygen and reoxygenation on GSH-Px activity in the livers of and Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
图5  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中T-AOC活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 5  Effects of decreased dissolved oxygen and reoxygenation on T-AOC activity in the liver of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
图6  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中LD含量的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 6  Effects of decreased dissolved oxygen and reoxygenation on LD content in the livers of Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybrids and Epinephelus fuscoguttatusDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
表4  几种石斑鱼耗氧率和窒息点的比较 Tab. 4  Comparison of oxygen consumption rate and suffocation point of some groupers
图7  溶氧下降和复氧对棕点石斑鱼和金虎石斑鱼肝脏中LDH活性的影响同一种鱼上标不同字母表示不同组间差异显著(P<0.05); *表示同一组两种鱼差异显著(P<0.05). C:常氧对照组[(5.71±0.31) mg/L]; H1:溶解氧降至4.0 mg/L并维持1 h; H2:溶解氧降至3.0 mg/L并维持1 h; H3:溶解氧降至2.0 mg/L并维持1 h; H4:溶解氧降至1.0 mg/L并维持1 h; H5:溶解氧降至0.4 mg/L并维持1 h; R:恢复常氧水平3 h. Fig. 7  Effects of decreased dissolved oxygen and reoxygenation on LDH activity in the livers of Epinephelus fuscoguttatus and Epinephelus fuscoguttatus (♀)×Epinephelus tukula (♂) hybridsDifferent letters in the same fish indicate significant difference among different groups (P<0.05). * means significant difference between the two fishes in the same group (P<0.05). C: normal oxygen control group [(5.71±0.31) mg/L]; H1: Dissolved oxygen decreased to 4.0 mg/L and maintained for 1 h; H2: Dissolved oxygen decreased to 3.0 mg/L and maintained for 1 h; H3: Dissolved oxygen decreased to 2.0 mg/L and maintained for 1 h; H4: Dissolved oxygen decreased to 1.0 mg/L and maintained for 1 h; H5: Dissolved oxygen decreased to 0.4 mg/L and maintained for 1 h; R: Dissolved oxygen recovered to normal level for 3 h.
棕点石斑鱼(♀)×蓝身大斑石斑鱼(♂)杂交后代与棕点石斑鱼低氧耐受能力初步研究
段鹏飞,田永胜,李振通,李子奇,陈帅,黎琳琳,王心怡,王林娜,刘阳,李文升,王晓梅,李波,