中国水产科学  2022, Vol. 29 Issue (02): 295-303  DOI: 10.12264/JFSC2021-0195
0

引用本文 

彭彪彪, 王思凯, 赵峰, 杨刚, 庄平. 长江口盐沼湿地3种亚生境中国花鲈的碳、氮稳定同位素特征及基础食源差异[J]. 中国水产科学, 2022, 29(2): 295-303. DOI: 10.12264/JFSC2021-0195.
PENG Biaobiao, WANG Sikai, ZHAO Feng, YANG Gang, ZHUANG Ping. Carbon and nitrogen isotopic characteristics and food source differences of Lateolabrax maculatus in three sub habitats of salt marsh wetland in the Yangtze River Estuary[J]. Journal of Fishery Sciences of China, 2022, 29(2): 295-303. DOI: 10.12264/JFSC2021-0195.

基金项目

国家重点研发计划项目(2018YFD0900905);中国水产科学研究院东海水产研究所基本科研业务费项目(2021M04);农业农村部财政专项(CJDC-2017-23);中国水产科学研究院基本科研业务费专项资金项目(2020TD13).

作者简介

彭彪彪(1994–),男,硕士研究生,研究方向为水生生态学. E-mail: a18437923323@126.com

通信作者

庄平,研究员,研究方向为水生生物学. E-mail: pzhuang@ecsf.ac.cn

文章历史

收稿日期:2021-04-29
修改日期:2021-06-24
长江口盐沼湿地3种亚生境中国花鲈的碳、氮稳定同位素特征及基础食源差异
彭彪彪1,2,3,4,王思凯1,3,4,赵峰1,2,3,4,杨刚1,2,3,4,庄平1,2,3,4,     
1. 中国水产科学研究院东海水产研究所,农业农村部东海与长江口渔业资源环境科学观测实验站,上海 200090
2. 上海海洋大学,上海 201306
3. 上海长江口渔业资源增殖与生态修复工程技术研究中心,上海 200090
4. 中国水产科学研究院长江口渔业生态重点实验室,上海 200090
摘要:为探讨长江口九段沙盐沼湿地3种亚生境中基础食源对中国花鲈(Lateolabrax maculatus)的贡献,明确长江口中国花鲈碳(δ13C)、氮(δ15N)稳定同位素特征及其基础食源差异,于2019年5—10月,在光滩、植被区和潮沟3种亚生境进行插网调查采样并采集各类潜在基础食源,运用稳定同位素技术并结合多源线性混合模型分析中国花鲈基础食源差异。单因素方差分析结果显示3种亚生境中国花鲈的δ13C无显著差异(P>0.05); 植被区与光滩亚生境和潮沟亚生境中的δ15N值均存在显著性差异(P<0.05); 随体长增大δ13C和δ15N值呈增加趋势;不同月份中国花鲈的δ13C和δ15N聚类分析结果表明,7月与其他月份(5、6、8、9、10月)的同位素值差异较大,其中δ13C值随月份递增逐渐增加,δ15N值7月骤减。利用多源线性混合模型(IsoSource)估算主要基础食源对中国花鲈的碳源贡献,结果显示3种亚生境各基础食源组成和贡献率相似,悬浮颗粒物(Suspended particulate organic matter, POM)和C4植物互花米草(Spartina alterniflora)碎屑是中国花鲈的主要碳源,其次为藻类,C3植物海三棱藨草(Scirpus mariqueter)和芦苇(Phragmites australis)碎屑的碳源贡献最小。随体长增大POM的贡献率逐渐减小,互花米草的贡献率逐渐增大,随着生长中国花鲈基础食源由POM为主(>70%)转变为以POM (50%~66%)和互花米草(32%~47%)为主。7月各碳源对中国花鲈的贡献率较其他月份差异较大,主要是由POM的贡献率骤增和藻类的贡献率减少引起的,其根本原因可能是由于受长江径流量影响。研究表明,3种亚生境中国花鲈的基础食源组成和贡献率无明显差异,但在不同亚生境所摄食饵料生物可能存在差异;在生长过程中3种亚生境中国花鲈的基础食源均由POM为主转变为以POM和互花米草为主,原因可能是中国花鲈在生长过程中食性发生转变。
关键词长江口    盐沼湿地    中国花鲈    稳定同位素    基础食源    
Carbon and nitrogen isotopic characteristics and food source differences of Lateolabrax maculatus in three sub habitats of salt marsh wetland in the Yangtze River Estuary
PENG Biaobiao1,2,3,4,WANG Sikai1,3,4,ZHAO Feng1,2,3,4,YANG Gang1,2,3,4,ZHUANG Ping,1,2,3,4    
1. Scientific Observing and Experimental Station of Fishery Resources and Environment of the East China Sea and Yangtze Estuary, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
2. Shanghai Ocean University, Shanghai 201306, China
3. Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
4. Key Laboratory of Fisheries Ecology of the Yangtze Estuary, Chinese Academy of Fishery Sciences, Shanghai 200090, China
Abstract:In order to investigate the contribution of basic food sources to Lateolabrax maculatus in three sub habitats of Jiuduansha salt marsh wetland in the Shanghai and to determine the stable isotope characteristics of carbon (δ13C) and nitrogen (δ15N) and the variation characteristics of basic food sources of this species, a survey was conducted in the mudflat, Scirpus mariqueter vegetation area and tidal creek from May to October in 2019. The results of one-way analysis of variance showed that there were no significant difference in δ13C among the three sub habitats. There were significant differences in δ15N between vegetation area and mudflat sub habitats, and there were significant differences in δ15N between vegetation area and the tidal creek sub habitat (P<0.05). Increasing with body length δ13C and δ15N value showed an increasing trend, and δ13C value of L. maculatus in Jiuduansha salt marsh gradually increased each month, while δ15N value decreased sharply in July. The cluster analysis of monthly average δ13C and δ15N showed that July had little similarity with the other months (May, June, August, September, and October). The results showed that the composition and contribution rate of basic food sources in the three sub habitats are similar, and suspended particulate organic matter (POM) and Spartina alterniflora were the main carbon sources, followed by microalgae, Scirpus mariqueter and Phragmites australis contributed the least to the carbon source of maculatus. The contribution rate of POM decreased, while that of S. alterniflora increased with the increase in body length. With the growth of L. maculatus, the main food source for it changed from POM (>70%) to POM (50%–66%) and S. alterniflora (32%–47%). The results showed that the feeding habits of L. maculatus changed in the juvenile stage. The contribution rates of carbon sources to L. maculatus in July were different from those in other months. The change was mainly caused by the sudden increase in the POM contribution rate and the decrease in the algae contribution rate. The internal reason may be affected by the Yangtze River runoff. Conclusion: there were no significant differences in the composition and contribution rate of basic food sources of L. maculatus among the three sub habitats, but there may be differences in the feeding in different sub habitats; During the growth process, the basic food source of of L. maculatus in the three sub habitats changed from POM to POM and S. alterniflora, which may be due to the change of feeding habits of L. maculatus during the growth process.
Key wordsYangtze River Estuary    salt marshes wetland     Lateolabrax maculatus     stable isotopes    basic food source    

盐沼湿地具有较高的初级生产力,生境类型和基础食源类型多样,食物网结构和碳流途径比较复杂[1-2],为众多水生生物的生长、繁殖提供了必要的生存空间和适宜的生态条件,支撑着流域和近海渔业的可持续发展[3]。随着全球经济快速发展,地球上几乎所有的生态系统都受到人类活动的干扰。有研究表明,全球约65%的水域生态系统正遭受物种入侵、过度捕捞、水质污染和气候变化等因素的威胁[4]。这些干扰因素一方面直接影响了鱼类的洄游、索饵、繁育习性,继而影响鱼类资源群体补充;另一方面导致水域生态基础碳源组成发生改变,间接影响了鱼类的食源甚至食性,从而导致了鱼类资源衰退。

长江口盐沼湿地在维持河口生态系统健康、促进渔业可持续发展与保护河口水生动物资源等方面具有十分重要的作用。稳定同位素常用于食物网结构研究,如蔡德陵等[5-6]利用碳稳定同位素对崂山湾水体和潮间带食物网结构进行了研究;也可用于辨别有机质的最初来源和营养结构研究[7-8],而关于一些重要鱼种在不同亚生境和不同生活史阶段的基础食源的研究还未见报道。

中国花鲈(Lateolabrax macultus)为长江口的重要经济鱼类,是长江口主要的传统捕捞对象之一。中国花鲈属凶猛的肉食性鱼类,成体以吞食活体动物为生,其生活习性为终年栖息于近海,尤喜栖息于河口咸淡水水域,早春游向近岸和河口区索饵,秋季产卵后游向较远的深海越冬。冬季栖于水深10~14 m处,春季栖于8~9 m处,夏末秋初于河口附近活动[9]。长江河口区是中国花鲈的育肥场,亲鱼成熟前要在长江口大量捕食,为成熟后到邻近海域进行产卵繁殖储存能量。所以长江口的生态环境直接影响中国花鲈的捕食效率,而中国花鲈的捕食作用,也影响着长江口整个生态系统食物链[10]。明确中国花鲈的基础食源特征,有助于了解盐沼湿地生态系统中的能量流动和物质循环过程,更有助于对渔业资源的管理和可持续利用进行有效的评估。碳(δ13C)、氮(δ15N)稳定同位素分析方法已广泛应用于水域生态学研究中,成为食物网构建与食源追踪十分有效的手段[11-13]

本研究基于稳定同位素技术结合IsoSource模型分析,探讨长江口九段沙盐沼湿地3种亚生境中基础食源对中国花鲈的贡献,明确长江口中国花鲈碳、氮稳定同位素特征和基础食源变化特征,以期为中国花鲈资源保护和可持续利用提供科学依据,为长江口盐沼湿地生态修复提供基础资料。

1 研究方法 1.1 研究区域概况

研究地点位于上海九段沙湿地国家级自然保护区(31°03ʹN~31°38ʹN, 121°50ʹE~122°05ʹE)(图1),该区域受到亚热带季风气候的影响,四季分明,冬季寒冷干燥,夏季暖热多雨,年均降水量1145 mm,年平均气温15.7 ℃。1月最低,平均4.2 ℃; 7月最高,平均27.3 ℃。九段沙附近潮汐属于非正规半日浅海潮,平均潮差2.67 m,最大潮差4.62 m。冬季为枯水季节(11—1月),被高盐度咸水控制,夏季为丰水季节(7—9月),被低盐度江水控制[14]

图1  本研究采样位置 Fig. 1  Sampling locations of this study
1.2 样品采集

于2019年5—10月,利用插网在光滩、植被区[主要为海三棱藨草(Scirpus mariqueter)]和潮沟中各设一站点进行调查,每次调查插网连续收集3 d渔获物,对中国花鲈进行生物学测量,包括全长、体长(精确到1 mm)、体重(精确到0.01 g)等。选取每个月3种亚生境捕获的部分中国花鲈,共141尾,取其第一背鳍与侧线鳞之间肌肉进行稳定同位素分析。每月采集潜在的碳源,包括互花米草(Spartina alterniflora)、海三棱藨草(Scirpus mariqueter)、芦苇(Phragmites australis)、藻类、悬浮颗粒有机物(suspended particulate organic matter, POM)。在各样点附近的潮沟中各采集2 L潮水,用灼烧过(450 ℃, 12 h)的GF/F玻璃纤维滤膜(Whatman)和真空泵过滤系统过滤获得POM样品。所有样品采集后迅速放入保温瓶中冷藏,带回实验基地−20 ℃冷冻保存。

所有用于进行稳定同位素分析的样品在冷冻干燥机中冻干至恒重,然后用研钵研磨粉碎,用1 mol/L HCl 酸化去除碳酸盐成分(仅在测定碳稳定同位素比值进行此操作)。酸化后样品再次烘干并研磨成细粉末状,经60目筛网过滤后装入离心管中干燥器保存。本实验中所有样品的稳定同位素比值由上海化工研究院有限公司测定,仪器型号为DEL TAplus XP (分析精度:13C<0.1‰, 15N< 0.2‰。稳定C、N同位素的自然丰度表示为:δ(X)= [(Rsample/Rstandard)‒1]×1000,式中X表示13C或者15N的丰度,R表示13C : 12C或15N : 14N。其中碳的标准物质是箭石Pee Dee Belemnite (PDB),氮的标准物质是空气中的氮气。

1.3 数据分析

在SPSS 23.0中对所测各类潜在碳源样品、中国花鲈样品的稳定同位素比值进行成对样本t检验、方差分析,以探讨其变化特征。

利用多源线性混合模型估算各种碳源对中国花鲈的相对贡献率[15-16],录入的数据根据消费者的营养级校正基础食物源的碳、氮稳定同位素值,具体方法参照曾艳艺等[17]和Wang等[18]。所有需要标准化的数据采用离差标准化。

2 结果与分析 2.1 中国花鲈碳、氮稳定同位素特征

单因素方差分析显示同一月份中九段沙盐沼湿地3种亚生境中国花鲈的δ13C和δ15N值无显著性差异(P>0.05)。3种亚生境中国花鲈的δ13C值变化范围在−26.21‰~−14.42‰,平均值为−19.39‰; δ15N值变化范围在6.44‰~14.42‰,平均值为10.94‰。植被区与光滩亚生境中国花鲈的δ15N值存在显著性差异(P<0.05),植被区与潮沟亚生境中的中国花鲈的δ15N值也存在显著性差异(P<0.05)。

中国花鲈的碳、氮稳定同位素值在月份间存在差异,其中δ13C随月份逐渐增加,δ15N在5月和6月逐渐增加,在7月骤减后继续增加(图2)。月平均δ13C和δ15N聚类分析表明,7月与其他月份(5、6、8、9、10月)相似性较小(<40%),九段沙盐沼湿地中国花鲈依据月份δ13C和δ15N可分为7月与其他月份两大类(图3)。

2.2 体长与同位素的关系

为分析中国花鲈体长与碳、氮稳定同位素的关系,将中国花鲈体长及其碳、氮稳定同位素数值进行分组并由小到大编号(图4)。结果表明δ13C随体长增大而增大,δ15N总体上逐渐增加。

图2  长江口九段沙盐沼湿地中国花鲈不同月份的δ13C和δ15N双同位素坐标图 Fig. 2  Dual isotope plot of δ13C and δ15N of Lateolabrax macultus in different months in Jiuduansha salt marsh wetland in the Yangtze River Estuary
图3  长江口九段沙盐沼湿地中国花鲈不同月份碳、氮稳定同位素水平聚类图 Fig. 3  Cluster diagram of stable carbon and nitrogen isotope levels of Lateolabrax macultus in different months in Jiuduansha salt marsh wetland in the Yangtze River Estuary

平均δ13C值和δ15N值的聚类分析结果表明,长江口九段沙盐沼湿地中国花鲈根据体长可以划分为两组,即组Ⅰ和组Ⅱ (图5):组Ⅰ的体长范围为28~128 mm,组Ⅱ的体长范围为129~ 367 mm,组Ⅰ的δ13C值和δ15N值显著小于组Ⅱ (P<0.05),且组Ⅰ的体长明显小于组Ⅱ,说明中国花鲈碳、氮稳定同位素随生长发生明显变化,小规格个体的δ13C值和δ15N值小于大规格个体。

2.3 中国花鲈潜在碳源及贡献率估算

本研究所采集中国花鲈的潜在碳源为POM、藻类、海三棱藨草、互花米草、芦苇。这5种碳源彼此的碳、氮同位素存在显著性差异(P<0.05)。POM的碳、氮稳定同位素值在7月显著高于5月(P<0.05),其他月份无显著性差异(P>0.05)。

图4  长江口九段沙盐沼湿地中国花鲈各体长组稳定同位素组成 Fig. 4  Stable isotopic composition of different body length groups of Lateolabrax macultus in Jiuduansha salt marsh wetland in the Yangtze River Estuary
图5  长江口九段沙盐沼湿地中国花鲈不同体长组碳、氮稳定同位素水平聚类图 Fig. 5  Cluster diagram of carbon and nitrogen stable isotope levels in different body length groups of Lateolabrax macultus in Jiuduansha salt marsh wetland in the Yangtze River Estuary

利用多源线性混合模型估算主要碳源对中国花鲈的碳源贡献,结果显示,3种亚生境中各食源组成和贡献率相似,POM和互花米草是3种亚生境主要碳源,其次是藻类,海三棱藨草和芦苇对中国花鲈碳源贡献较小(表1, 图6)。

5种碳源对中国花鲈的贡献率在不同的月份存在差异(表2), POM在调查期间对中国花鲈的碳源贡献率最大且随月份变化较大;互花米草对中国花鲈的碳源贡献率排第二位,贡献率随月份逐渐增大;海三棱藨草和芦苇对中国花鲈的碳源贡献率较小且月份间的变化较小;藻类对中国花鲈的碳源贡献率不稳定,月份间的变化较大。

5种碳源对不同体长组中国花鲈的贡献率存在差异(表3),总体表现为随着体长增大,POM的贡献减小,互花米草的贡献增大,中国花鲈基础食源由POM为主(>70%)转变为以POM (50%~ 66%)和互花米草(32%~47%)为主。

表1  长江口九段沙盐沼湿地中国花鲈潜在碳源的碳、氮同位素水平 Tab. 1  Carbon and nitrogen isotopes level of potential carbon source of Lateolabrax macultus in Jiuduansha salt marsh wetland in the Yangtze River Estuary
图6  5种碳源对长江口九段沙盐沼湿地不同亚生境中国花鲈的贡献率 Fig. 6  Contribution rates of five carbon sources to Lateolabrax macultus in different sub habitats in Jiuduansha salt marsh wetland in the Yangtze River Estuary
表2  长江口九段沙盐沼湿地5种碳源在不同月份对中国花鲈的贡献率 Tab. 2  Contribution rates of five carbon sources to Lateolabrax macultus in different months in Jiuduansha salt marsh wetland in the Yangtze River Estuary %
表3  长江口九段沙盐沼湿地5种碳源对不同体长组中国花鲈的贡献率 Tab. 3  Contribution rates of 5 carbon sources to different body length groups of Lateolabrax macultus %
3 讨论 3.1 中国花鲈的碳、氮同位素特征

本研究结果显示中国花鲈的碳、氮稳定同位素值跨度较大,且略大于孙培英[19]所报道的范围,经仔细比较发现这些差异可能与所采集样本的体长有关,孙培英所采集的中国花鲈的体长范围为68~265 mm,而本研究所采集样本体长范围为28~ 367 mm,体长跨度几乎涵盖整个幼鱼阶段的体长范围,而此阶段是中国花鲈食性转变时期,所以其对应的同位素值变化幅度也较大。鱼类较大跨度的碳、氮稳定同位素值与其复杂多样的饵料来源有关[20],且孙帼英等[21]在分析长江口中国花鲈胃含物时发现中国花鲈摄食饵料既有浮游动物又有鱼虾蟹类等,因此推测本研究中国花鲈较大跨度的碳、氮稳定同位素值与中国花鲈在长江口盐沼湿地的摄食多样性有关。

本研究结果还显示长江口中国花鲈的碳、氮稳定同位素值随个体生长呈增大趋势,小规格个体的碳、氮稳定同位素值显著小于大规格个体。说明中国花鲈在生长发育过程中,随着个体增大,取食范围扩大,食性发生转变。这与孙帼英等[21]对长江口中国花鲈胃含物分析结果相似:中国花鲈幼鱼摄食饵料以枝角类、桡足类、涟虫等浮游动物为主,稍大个体摄食饵料以鱼虾蟹等为主。此外李斌[22]和陈展彦[23]在研究蒙古鲌(Culter mongolicus)时发现相似的规律:小规格个体蒙古鲌的碳、氮稳定同位素值显著小于大规格个体,并用稳定同位素证实蒙古鲌的食性在生长过程中发生了由杂食性偏肉食性到向肉食性的转变。有研究者认为鱼类碳、氮同位素随体长的变化是由鱼类体内蛋白质和脂肪酸的含量变化引起的[24-25]。也有研究者认为这种变化与鱼类食性变化有关,如Pilati等[24]发现美洲真鰶(Dorosoma cepedianum)的碳、氮同位素值随生长而增大,并认为这与其由食浮游动物转变为食沉积物有关。综上所述中国花鲈的碳、氮稳定同位素值随个体生长而增大,且与中国花鲈的食性变化有关。

碳同位素可以用来反映鱼类不同空间分布的差异。Gning等[26]研究发现黑鳍缩口银鲈(Eucinostomus molanopterus)在低盐区和高盐区δ13C存在显著差异。Hiroshige等[27]发现近岸日本鳀(Engraulis japonicus)的δ13C显著高于离岸区。本研究中中国花鲈的δ13C在长江口盐沼湿地3种亚生境中无显著性差异。分析原因可能是中国花鲈游泳能力较强,有较大的捕食范围,同一条鱼可能在3种亚生境均有摄食,而非限定在某一生境,3种亚生境对于中国花鲈来说可能是较小的空间尺度,因此中国花鲈的碳稳定同位素在3种亚生境未表现出明显的差异。为进一步探讨中国花鲈的碳稳定同位素特征,可在更大空间尺度上开展相关研究,丰富研究结果。

氮同位素与摄食相关,会随营养级升高有明显富集[28-29],鱼类摄食不同的饵料生物就会导致氮同位素的差异。有研究表明3种亚生境饵料生物存在差异,周晓等[30]发现长江口九段沙湿地海三棱藨草植被区的大型底栖动物物种数高于光滩;袁兴中等[31]发现崇明东滩海三棱藨草植被区的大型底栖动物物种数高于光滩中大型底栖动物物种数。不同亚生境的消费者所摄食的饵料种类不同,叶锦玉[32]研究发现斑尾刺虾虎鱼(Acanthogobius ommaturus)在海三棱藨草植被区偏向于摄食多毛类等底栖动物,在潮沟和光滩亚生境偏向于摄食虾和鱼类。因此本研究认为中国花鲈的氮稳定同位素在3种亚生境的差异是由于其所摄食饵料生物的不同。

3.2 中国花鲈的基础食源特征

由于长江口盐沼湿地生态系统基础能量来源复杂,根据长江口盐沼湿地水利条件和植被特征,将中国花鲈的潜在食物源分为POM、藻类、互花米草、海三棱藨草和芦苇。本研究表明在生长过程中3种亚生境中国花鲈的基础食源均由POM为主转变为以POM和互花米草为主。出现这种变化的原因可能是中国花鲈生长过程中摄食饵料生物发生了变化:中国花鲈幼鱼时期摄食饵料以枝角类、桡足类、涟虫等浮游动物为主,而浮游动物主要的食物来源为水中的POM[33-35],因此小规格中国花鲈的基础碳源主要来源于POM。稍大个体的中国花鲈摄食饵料以鱼、虾、蟹等为主,这些饵料生物多食碎屑腐殖质。互花米草是长江口入侵植物,在九段沙湿地更是大面积分布成为绝对优势种[36],每年会生产大量的碎屑。有研究表明入侵植物互花米草可以通过鱼类、昆虫、蟹类、螺类等进入食物网[37-40],进而传递到中国花鲈等高级消费者。根据最佳摄食理论,随着个体增大,鱼类捕食的饵料生物也越大[41],洪巧巧等[10]在研究中国花鲈的食性时发现中国花鲈的体长与其饵料生物的体长成正相关,饵料生物越大,营养级越高,富集来自互花米草的碳就越多[6],因此随体长增大互花米草对中国花鲈的食源贡献增大,POM的食源贡献减小。

本研究中POM对中国花鲈的食源贡献随季节逐渐增大,在7月显著增大,这种变化可能与POM组成和径流量有关。有研究表明POM在生态系统中的贡献率与季节有着明显的联系[20,42],此外宁加佳等[43]在研究水库颗粒有机物的碳、氮同位素特征时发现POM的碳、氮同位素在5月和7月较高可能与较高的外源有机物比例有关,且径流量与POM的δ13C值呈及其显著的相关关系。7月正值长江口丰水期,因此7月POM对中国花鲈的食源贡献显著增大可能与此月份的径流量有关。这也揭示了外部环境的变化会影响中国花鲈的基础能量来源。

4 小结

本研究以长江口盐沼湿地优势种中国花鲈为研究对象,利用碳、氮稳定同位素技术探究其碳、氮稳定同位素特征及食源差异,得到如下结论:

(1) 中国花鲈在3种亚生境的δ13C值无显著性差异,藨草亚生境与光滩亚生境和潮沟亚生境中的中国花鲈的δ15N值存在显著性差异(P< 0.05)。中国花鲈在3种亚生境中的基础食源无差异,但所摄食饵料生物存在差异。

(2) POM和互花米草是中国花鲈主要碳源,其贡献率在3种亚生境间相似。7月各碳源对中国花鲈的贡献率较其他月份差异较大,变化主要是由于POM的贡献率骤增和藻类的贡献率减少引起的,其原因可能是受长江径流量影响。

(3) 随着中国花鲈生长发育,其基础食源由POM为主(>70%)转变为以POM (50%~66%)和互花米草(32%~47%)为主,说明中国花鲈在幼鱼阶段食性发生转变。

参考文献
[1]
Pétillon J, Ysnel F, Canard A, et al. Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations[J]. Biological Conservation, 2005, 126(1): 103-117..》Google Scholar
[2]
Eslami-Andargoli L, Dale P E R, Sipe N, et al. Local and landscape effects on spatial patterns of mangrove forest during wetter and drier periods: Moreton Bay, Southeast Queensland, Australia[J]. Estuarine, Coastal and Shelf Science, 2010, 89(1): 53-61..》Google Scholar
[3]
McLusky D S, Elliott M. The Estuarine Ecosystem: Ecology, Threats and Management[M]. New York: Oxford University Press, 2004: 16-49..》Google Scholar
[4]
Vörösmarty C J, McIntyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561..》Google Scholar
[5]
Cai D L, Meng F, Han Y B, et al. Studies on 13C/12C ratios as a tracer for food web in a marine ecosystem──the trophic relations in pelagic food webs in Laoshan bay[J]. Oceanologia et Limnologia Sinica, 1999, 30(6): 671-678. [蔡德陵,孟凡,韩贻兵,等. 13C/12C比值作为海洋生态系统食物网示踪剂的研究──崂山湾水体生物食物网的营养关系[J]. 海洋与湖沼,1999, 30(6): 671-678.].》Google Scholar
[6]
Cai D L, Hong X G, Mao X H, et al. Preliminary studies on trophic structure of tidal zone in the Laoshan Bay by using carbon stable isotopes[J]. Acta Oceanologica Sinica, 2001, 23(4): 41-47. [蔡德陵,洪旭光,毛兴华,等. 崂山湾潮间带食物网结构的碳稳定同位素初步研究[J]. 海洋学报,2001, 23(4): 41-47.].》Google Scholar
[7]
Vizzini S, Mazzola A. Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon[J]. Marine Biology, 2003, 142(5): 1009-1018..》Google Scholar
[8]
Yu J, Liu M, Hou L J, et al. Food sources of macrofaunal in East Chongming salt marsh as traced by stable isotopes[J]. Journal of Natural Resources, 2008, 23(2): 319-326. [余婕,刘敏,侯立军,等. 崇明东滩大型底栖动物食源的稳定同位素示踪[J]. 自然资源学报,2008, 23(2): 319-326.].》Google Scholar
[9]
Zhuang P, Zhang T, Li S F, et al. Fishes of the Yangtze Estuary[M]. 2nd Edition. Beijing: China Agriculture Press, 2018: 365-368. [庄平,张涛,李圣法,等. 长江口鱼类[M]. 2版. 北京:中国农业出版社,2018: 365-368.].》Google Scholar
[10]
Hong Q Q, Zhuang P, Yang G, et al. Feeding habits of Lateolabrax maculatus in Yangtze River estuary[J]. Acta Ecologica Sinica, 2012, 32(13): 4181-4190. [洪巧巧,庄平,杨刚,等. 长江口中国花鲈食性分析[J]. 生态学报,2012, 32(13): 4181-4190.].》Google Scholar
[11]
Zanden M, Casselman J M, Rasmussen J B. Stable isotope evidence for the food web consequences of species invasions in lakes[J]. Nature, 1999, 401(6752): 464-467..》Google Scholar
[12]
Gu B C, Schelske C L, Hoyer M V. Stable isotopes of carbon and nitrogen as indicators of diet and trophic structure of the fish community in a shallow hypereutrophic lake[J]. Journal of Fish Biology, 1996, 49(6): 1233-1243..》Google Scholar
[13]
Schwamborn R, Giarrizzo T. Stable isotope discrimination by consumers in a tropical mangrove food web: How important are variations in C/N ratio?[J]. Estuaries and Coasts, 2015, 38(3): 813-825..》Google Scholar
[14]
Chen J K. Overview of Shanghai Jiuduansha Wetland Nature Reserve[M]. Beijing: Science Press, 2003: 13-186. [陈家宽. 上海九段沙湿地自然保护区科学考察集[M]. 北京:科学出版社,2003: 13-186.].》Google Scholar
[15]
Gregg P J. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269..》Google Scholar
[16]
Zeug S C, Winemiller K O. Evidence supporting the importance of terrestrial carbon in a large-river food web[J]. Ecology, 2008, 89(6): 1733-1743..》Google Scholar
[17]
Zeng Y Y, Lai Z N, Yang W L, et al. Trophic spectrum of fishery species from the Pearl River Estuary by stable isotope analysis[J]. Chinese Journal of Ecology, 2018, 37(1): 194- 202. [曾艳艺,赖子尼,杨婉玲,等. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志,2018, 37(1): 194-202.].》Google Scholar
[18]
Wang J Z, Gu B H, Huang J H, et al. Terrestrial contributions to the aquatic food web in the middle Yangtze River[J]. PLoS One, 2014, 9(7): e102473..》Google Scholar
[19]
Sun P Y. Carbon, nitrogen and phosphorus ecological stoichiometry of Lateolabrax macultus and Acanthogobius ommaturus in the estuary of Yangtze River, China[D]. Shanghai: East China Normal University, 2014: 1-58. [孙培英. 长江口中国花鲈和斑尾刺虾虎鱼的生态化学计量研究[D]. 上海:华东师范大学,2014: 1-58.].》Google Scholar
[20]
Chen Z Y, Wu H T, Wang Y B, et al. Research progress on food sources and food web structure of wetlands based on stable isotopes[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2389-2398. [陈展彦,武海涛,王云彪,等. 基于稳定同位素的湿地食物源判定和食物网构建研究进展[J]. 应用生态学报,2017, 28(7): 2389-2398.].》Google Scholar
[21]
Sun G Y, Zhu Y Y, Chen J G, et al. Growth and feeding habits of Japanese sea-bass, Lateolabrax japonicus, in the estuary of Yangtze River[J]. Journal of Fisheries of China, 1994, 18(3): 183-189. [孙帼英,朱云云,陈建国,等. 长江口花鲈的生长和食性[J]. 水产学报,1994, 18(3): 183-189.].》Google Scholar
[22]
Li B. Ecological studies on the fish food web structures and trophic relationships with stable isotope technology in a tributary in the Three Gorges reservoir areas (TGR)[D]. Chongqing: Southwest University, 2012: 12-39. [李斌. 三峡库区小江鱼类食物网结构、营养级关系的C、N稳定性同位素研究[D]. 重庆:西南大学,2012: 12-39.].》Google Scholar
[23]
Chen Z Y. Study on aquatic food web structure of typical wetland in Sanjiang Plain[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2018: 21-59. [陈展彦. 三江平原典型沼泽湿地水生食物网结构研究[D]. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所), 2018: 21-59.].》Google Scholar
[24]
Pilati A, Vanni M J. Ontogeny, diet shifts, and nutrient stoichiometry in fish[J]. Oikos, 2007, 116(10): 1663-1674..》Google Scholar
[25]
Harvey C J, Hanson P C, Essington T E, et al. Using bioenergetics models to predict stable isotope ratios in fishes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(1): 115-124..》Google Scholar
[26]
Gning N, Le Loc’h F, Thiaw O T, et al. Estuarine resources use by juvenile Flagfin mojarra (Eucinostomus melanopterus) in an inverse tropical estuary (Sine Saloum, Senegal)[J]. Estuarine, Coastal and Shelf Science, 2010, 86(4): 683-691..》Google Scholar
[27]
Hiroshige T, Akinori T, Ichiro A, et al. Geographical variations in the trophic ecology of Japanese anchovy, Engraulis japonicus, inferred from carbon and nitrogen stable isotope ratios[J]. Marine Biology, 2008, 154(3): 557-568..》Google Scholar
[28]
Ke Z X, Huang L M, Xu J, et al. The stable nitrogen isotope of size-fractioned plankton and its relationship with biomass during winter in Daya Bay[J]. Acta Ecologica Sinica, 2012, 32(22): 7102-7108. [柯志新,黄良民,徐军,等. 大亚湾冬季不同粒级浮游生物的氮稳定同位素特征及其与生物量的关系[J]. 生态学报,2012, 32(22): 7102-7108.].》Google Scholar
[29]
Wang T T, Lv Z B, Li F, et al. Determination of the trophic levels of four fish species in Engraulidae and Clupeidae in Laizhou Bay based on stable carbon and nitrogen isotopes[J]. Journal of Fishery Sciences of China, 2013, 20(5): 1076- 1085. [王田田,吕振波,李凡,等. 基于稳定碳氮同位素的莱州湾4种鳀鲱科鱼类营养级研究[J]. 中国水产科学,2013, 20(5): 1076-1085.].》Google Scholar
[30]
Zhou X, Wang T H, Ge Zhen M, et al. Impact of Spartina alterniflora invasion on the macrobethos community of Jiuduansha’s intertidal mudflat in the Yangtze River estuary[J]. Biodiversity Science, 2006, 14, 165-171. [周晓,王天厚,葛振鸣,等. 长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析[J]. 生物多样性,2006, 14, 165-171.].》Google Scholar
[31]
Yuan X Z, Lu J J. Preliminary study on macrobenthic community of the creek in the tidal flat of the Changjiang Estuary[J]. Zoological Research, 2001, 22(3): 211-215. [袁兴中,陆健健. 长江口潮沟大型底栖动物群落的初步研究[J]. 动物学研究,2001, 22(3): 211-215.].》Google Scholar
[32]
Ye J Y. The temporal spatial distribution and inhabit strategy of acanthogobius ommaturus in the intertidal wetland subhabitats of the Yangtze River[D]. Shanghai: Shanghai Ocean University, 2019: 15-31. [叶锦玉. 长江口潮间带湿地亚生境中斑尾刺虾虎鱼时空分布特征和栖息策略[D]. 上海:上海海洋大学,2019: 15-31.].》Google Scholar
[33]
Sierszen M, Morrice J, Moffett M, et al. Benthic versus planktonic foundations of three Lake Superior coastal wetland food webs[J]. Journal of Great Lakes Research, 2004, 30(1): 31-43..》Google Scholar
[34]
Prins T, Smaal A, Dame R. A review of the feedbacks between bivalve grazing and ecosystem processes[J]. Aquatic Ecology, 1997, 31(4): 349-359..》Google Scholar
[35]
Xu Q. Evaluation of food sources of bivalve in seaweed and filter-feeding bivalve polyculture ecosystem[D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2007: 37-77. [许强. 贝藻混养系统中贝类食物来源的定量分析[D]. 青岛:中国科学院研究生院(海洋研究所), 2007: 37-77.].》Google Scholar
[36]
Liu Y, Li X Z, Yan Z Z, et al. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan shoal wetland of Yangtze Estuary, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2129-2134. [刘钰,李秀珍,闫中正,等. 长江口九段沙盐沼湿地芦苇和互花米草生物量及碳储量[J]. 应用生态学报,2013, 24(8): 2129- 2134.].》Google Scholar
[37]
Gratton C, Denno R F. Arthropod food web restoration following removal of an invasive wetland plant[J]. Ecological Applications, 2006, 16(2): 622-631..》Google Scholar
[38]
Quan W, Fu C, Jin B, et al. Tidal marshes as energy sources for commercially important nektonic organisms: Stable isotope analysis[J]. Marine Ecology Progress Series, 2007, 352: 89-99..》Google Scholar
[39]
Qin H, Chu T, Xu W, et al. Effects of invasive cordgrass on crab distributions and diets in a Chinese salt marsh[J]. Marine Ecology Progress Series, 2010, 415: 177-187..》Google Scholar
[40]
Maclean N. Feeding Ecology of Fish[J]. Copeia, 1995(s1-2): 754..》Google Scholar
[41]
Wu Y T, Wang C H, Zhang X D, et al. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets[J]. Biological Invasions, 2009, 11(3): 635- 649..》Google Scholar
[42]
Connolly R M, Hindell J S, Gorman D. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats[J]. Marine Ecology Progress Series, 2005, 286: 69-79..》Google Scholar
[43]
Ning J J, Liu H, Gu B H, et al. Carbon and nitrogen stable isotope characteristics of particulate organic matter and zooplankton in Liuxihe Reservoir[J]. Acta Ecologica Sinica, 2012, 32(5): 1502-1509. [宁加佳,刘辉,古滨河,等. 流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征[J]. 生态学报,2012, 32(5): 1502-1509.].》Google Scholar