中国水产科学  2022, Vol. 29 Issue (06): 890-902  DOI: 10.12264/JFSC2021-0148
0

引用本文 

王树茂, 王秀华, 朱娜, 王枫林, 董宣, 张庆利, 杨国梁, 高阳. 江苏高邮罗氏沼虾池塘养殖可培养微生物组成调查[J]. 中国水产科学, 2022, 29(6): 890-902. DOI: 10.12264/JFSC2021-0148.
WANG Shumao, WANG Xiuhua, ZHU Na, WANG Fenglin, DONG Xuan, ZHANG Qingli, YANG Guoliang, GAO Yang. The composition of cultivable bacteria in the pond aquaculture system of Macrobrachium rosenbergii in Gaoyou City, Jiangsu Province[J]. Journal of Fishery Sciences of China, 2022, 29(6): 890-902. DOI: 10.12264/JFSC2021-0148.

基金项目

国家重点研发计划“蓝色粮仓科技创新”重点专项(2019YFD0900105);广西创新驱动发展专项(桂科AA17204044);“科技助力经济2020”重点专项(SQ2020YFF0425682);中国水产科学研究院黄海水产研究所基本科研业务费项目(20603022018001).

作者简介

王树茂(1995–),男,硕士研究生,研究方向为对虾疾病防控及益生菌开发. E-mail:1648416398@qq.com

通信作者

王秀华,研究员,研究方向为水产养殖动物疾病防控. E-mail:wangxh@ysfri.ac.cn

文章历史

收稿日期:2021-04-07
修改日期:2021-04-27
江苏高邮罗氏沼虾池塘养殖可培养微生物组成调查
王树茂1,2,王秀华2,朱娜2,王枫林2,董宣2,张庆利2,杨国梁3,高阳1,     
1. 浙江海洋大学水产学院,浙江 舟山 316022
2. 中国水产科学研究院黄海水产研究所,农业农村部海水养殖病害防治重点实验室,青岛市海水养殖流行病学与生物安保重点实验室,山东 青岛 266071
3. 江苏数丰水产种业有限公司,江苏 高邮 225654
摘要:为了探明罗氏沼虾(Macrobrachium rosenbergii)池塘养殖环境中重要微生物的组成,以提升健康养殖管理技术,分别于2019年7月、8月和10月,在江苏高邮市罗氏沼虾主养区开展了罗氏沼虾池塘养殖系统可培养环境微生物的组成调查。采用LB培养基分离纯化了罗氏沼虾肝胰腺、肠道、鳃及养殖水体中可培养的细菌,利用细菌16S rRNA基因分子鉴定技术对分离菌株进行初步鉴定;采用高通量测序技术分析了“铁壳”虾(养殖期生长缓慢)及铜绿微囊藻暴发池塘水环境微生物群落组成。以达卡气单胞菌(Aeromonas dhakensis)为受试病原菌,分析了池塘养殖系统中潜在病原拮抗菌的种类及效果。3次调查共分离可培养细菌605株,成功鉴定601株,分别属于37个属119种,其中罗氏沼虾体内分离到菌株23属76种,养殖水体中分离到28属81种。确定了池塘养殖系统中存在气单胞菌(Aeromonas spp.)、肠杆菌(Enterobacter spp.)、乳球菌(Lactococcus spp.)、弧菌(Vibrio spp.)等属的潜在病原菌。发生“铁壳”虾症的虾池优势环境微生物种类组成及占比与健康虾池相近,但微小杆菌属(Exiguobacterium)与不动杆菌属(Acinetobacter)细菌占比高于健康虾池。铜绿微囊藻暴发影响环境微生物的组成结构,嗜水气单胞菌属细菌占比增大。从池塘养殖系统筛选到甲基营养型芽孢杆菌(Bacillus methylotrophicus)、贝莱斯芽孢杆菌(B. velezensis)、解淀粉芽孢杆菌(B. amyloliquefaciens)等潜在益生菌对气单胞菌具有较强拮抗作用。调查结果可为掌握罗氏沼虾池塘养殖系统细菌性病原组成及建立防控技术提供理论依据。
关键词罗氏沼虾    养殖池塘    可培养细菌    病原菌    益生菌    
The composition of cultivable bacteria in the pond aquaculture system of Macrobrachium rosenbergii in Gaoyou City, Jiangsu Province
WANG Shumao1,2,WANG Xiuhua,2,ZHU Na2,WANG Fenglin2,DONG Xuan2,ZHANG Qingli2,YANG Guoliang3,GAO Yang1    
1. Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
3. Jiangsu Shufeng Prawn Breeding Co. LtD., Gaoyou 225654, China
Abstract:Giant freshwater prawn Macrobrachium rosenbergii is an important aquaculture species in inland areas of East and South China. In the past decade, prawn disease has occurred frequently during the grow-out stage, mainly due to pathogenic bacteria, which have caused different diseases in different regions. Gaoyou City in Jiangsu Province is the core aquaculture zone of M. rosenbergii in China, however the prawns cultivated in this region suffer from "Dixing disease" during summer. This disease causes prawns to die every day, with lower daily mortality over a long period. Since 2012, another disease has appeared, which causes prawns to grow slowly and develop precocity (commonly known as "iron prawn syndrome" prawn). Both these diseases have caused great economic losses to the prawn industry. In the mid-late grow-out stages, Cyanobacteria blooms have caused the pond water to deteriorate, indirectly affecting prawn production. Microbes in the aquaculture environment are closely related to the health of farmed animals, and the flora structure in the intestinal tract and pond environment of healthy prawn are significantly different from those of a diseased prawn pond. To better understand the composition of dominant bacteria in the aquaculture system of M. rosenbergii and improve the management technology, the composition of cultivable bacteria in the prawn and pond water was investigated in Gaoyou City in July, August, and October 2019. Luria-Bertani medium was used to separate and purify the cultivable bacteria from the hepatopancreas, intestines, gills, and pond water of prawn. Subsequently, the isolated bacteria were identified using 16S rRNA gene sequencing. High-throughput sequencing technology was employed to analyze the microbial community composition in a pond of the prawn affected by "iron prawn syndrome " and in a pond with a bloom of Microcystis aeruginosa. Additionally, the species of antagonistic bacteria, and their effects on prawn pathogens in the aquaculture system, were screened and analyzed using Aeromonas dhakensis as a test pathogen. A total of 605 cultivable bacteria were isolated and 601 strains were successfully identified, belonging to 37 genera and 119 species. Among them, 76 species in 23 genera were isolated from prawn and 81 species in 28 genera were isolated from pond waters. Investigation results confirmed the existence of potential pathogens in the pond system, belonging to genera such as Aeromonas spp., Enterobacter spp., Lactococcus spp., and Vibrio spp. The species composition and proportion of dominant environmental microorganisms in ponds with "iron shell" prawn are similar to those of healthy prawn ponds, but bacteria in the genera Exiguobacterium and Acinetobacter had higher proportions in disease-affected ponds than those in healthy pond . The blooming of M. aeruginosa could affect the species and structure of environmental microflora and lead to an increase in the proportion of Aeromonas bacteria. Four Bacillus spp., namely B. subtilis, B. methylotrophicus, B. velezensis, and B. amyloliquefaciens, were screened as potential probiotics and were found to have a strong antagonistic effect on Aeromonas spp. These results aid in clarifying the composition of bacterial pathogens in the culture system of M. rosenbergii and provide a theoretical basis for establishing prevention and control technologies for prawn disease.
Key words Macrobrachium rosenbergii     aquaculture pond    cultivable bacteria    pathogenic bacteria    probiotics    

罗氏沼虾(Macrobrachium rosenbergii)自1976年引入我国,经过40余年的发展,现已成为我国华东、华南内陆地区淡水养殖的重要品种,年产量已超过13万t[1]。随着罗氏沼虾养殖产业的发展,近年来,罗氏沼虾的病害问题呈逐年加重的趋势,目前报道的病原主要有导致苗期大批死亡的阴沟肠杆菌(Enterobacter cloacae)、创伤弧菌(Vibrio vulnificus)[2]、幼虾期诺达病毒[3-4]及导致养殖期发病的嗜水气单胞菌(Aeromonas hydrophila)、费时柠檬酸杆菌(Citrobacter freundii)、普通变形杆菌(Proteus vulgaris)、豚鼠气单胞菌(A.caviae)等[5-7]

水产养殖环境微生物与养殖动物的健康密切相关,健康虾的肠道及其养殖环境中的菌群结构与发病虾的有较大的差别[8]。环境中益生菌能够通过减少氨氮等有害物质的积累而改善养殖环境、增加虾的免疫机能、降低病原菌的致病力[9]。池塘养殖系统中,菌藻之间也存在相互作用[10],耐硼赖氨酸芽孢杆菌(Lysinibacillus boronitolerans)、微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)等菌对蓝藻具有良好的降解效果[11-12]。研究调查养殖环境中的微生物菌群结构,有助于掌握养殖动物的健康状况及池塘微生态系统的功能,为可持续养殖提供技术指导。

自2005年始,江苏高邮地区罗氏沼虾普遍出现夏季高温期发病死亡(俗称“滴星病”)[13],而2012年后,罗氏沼虾在养殖中后期出现了生长缓慢、性早熟现象(俗称“铁壳”虾)[14-15],给养殖产业带来了严重的经济损失。在养殖中后期,蓝藻暴发也会导致罗氏沼虾养殖水环境的恶化[16],间接影响罗氏沼虾的养殖生产。为了探讨环境微生物组成对罗氏沼虾健康养殖的影响,本研究于2019年在江苏省高邮市的罗氏沼虾主养区开展了养殖池塘环境可培养细菌的分离鉴定,并对发生“铁壳”虾及蓝藻的池塘环境微生物开展了微生物组学分析,旨在为罗氏沼虾健康养殖及疾病防控研究提供理论支持。

1 材料与方法 1.1 培养基

LB固体培养基(g/L):胰蛋白胨10.0、酵母提取物5.0、氯化钠10.0、琼脂17.0,蒸馏水溶解,培养基于121 ℃灭菌20 min。

1.2 采样点及采样时间

样品采样点如图1所示,位于江苏省高邮市罗氏沼虾主要的养殖区,采样时间分别为2019年7月15日、8月25日和10月29日。8月的水样中有3个分别来自正常生长、出现“铁壳”虾及出现严重铜绿微囊藻水华的养虾池塘,10月样品为温棚中养殖的罗氏沼虾。

1.3 实验方法 1.3.1 可培养菌株分离纯化

于每个样品采集点随机抽取不同虾池中的罗氏沼虾3尾,在无菌环境下取样品虾的部分肝胰腺、中肠道和鳃丝,相同的3份组织合并成一个样品,加入10倍体积的PBS研磨成匀浆,于LB平板上画线分离。同样取养殖池中层水样用PBS稀释10倍,取100 µL涂布LB平板,于28 ℃恒温培养箱中培养12~ 16 h后,根据各平板中菌落的形态、颜色、表面光滑度及边缘整齐度等特征,区分不同的菌落,并进行纯化培养,对菌落不易分离的平板进行再次分离纯化。纯化后的菌株进行编号及保藏,用于进一步鉴定。

1.3.2 菌株的分子生物学鉴定

用细菌16S rRNA序列扩增、测序及比对方法对所分离的细菌进行初步鉴定[17],扩增产物委托生工生物工程(上海)股份有限公司分析,所得序列在NCBI数据库中进行同源性比对,待鉴定菌种对比的菌株相似率大于99.0%判定为同一个种,记为鉴定成功,用于统计分析。

1.3.3 主要潜在病原菌与病原拮抗菌(芽孢杆菌属)种类组成分析

参照已报道的罗氏沼虾致病菌种类[4-6],分析罗氏沼虾池塘养殖系统中分离的气单胞菌属内细菌组成。具体方法是将所获得的目标菌株16S rRNA序列在GenBank数据库中利用BLAST进行同源性比对,选取同源性较高的序列,利用MEGA 5.0 进行多重比较后通过邻接法构建系统发育树,根据属内各种间的遗传距离,分析各种的进化关系。用同样方法对池塘养殖系统中分离的芽孢杆菌属细菌进行系统发育树构建,确定各种的进化关系。

1.3.4 发生“铁壳”虾及富含蓝藻虾池中微生物多样性分析

于8月的样品采集中,分别采集发生“铁壳”虾症状及出现铜绿微囊藻水华的养殖池池水,用于微生物多样性分析,每个样品设置3个平行池,生长正常池塘水为对照组。取养殖池中层水样50 mL,经0.22 μm滤膜抽滤,收集菌藻混合物样品用于后续微生物多样性分析。高通量微生物多样性分析委托上海美吉生物医药科技有限公司完成。

1.3.5 养殖环境中达卡气单胞菌拮抗菌筛选

以分离的潜在病原菌达卡气单胞菌(A. dhakensis)为被拮抗菌,从分离的芽孢杆菌中挑选52株21种芽孢杆菌为潜在病原拮抗菌,分别接种至LB液体培养基,在 28 ℃温度下以180 r/min转速振荡培养20 h, 5000 g离心,取沉淀用PBS分别稀释成1.0×107 CFU/mL的菌悬液。取100 μL达卡气单胞菌菌悬液均匀涂布于LB平板上,利用牛津杯在培养基上等距打4个孔,其中2个孔各加入20 µL的待测芽孢杆菌菌液,另2个孔各加入无菌PBS缓冲液为阴性对照,每种菌设置2个平行平板,28 ℃培养24 h,采用十字交叉法测量抑菌圈直径大小。抑菌圈直径=测量直径−牛津杯直径。

2 结果与分析 2.1 养殖基本情况及样品采集信息

高邮市罗氏沼虾的养殖方式主要为土塘养殖,养殖池面积在0.2~2.0 hm2,池深平均在1.5 m左右,养殖池配备增氧机,养殖池排污不畅,放苗密度在90~120尾/m2,放苗方式为2次投放温室大棚苗,投喂配合饵料,日投喂2次。2019年7月、8月、10月共采集样品51个,其中有罗氏沼虾样品36个,养殖水体样品15个,采集于13个不同苗种来源的养殖场。样品采集地点分布见图1,不同采集批次的样品占比见图2a,不同样品的占比见图2b。7、8、10月的样品量分别为42.0%、40.0%、18.0%;鳃丝、肝胰腺、肠道及水样的占比分别为14.0%、26.0%、36.0%、24.0%。

2.2 可培养细菌分离及鉴定结果

3次采样共分离单菌落605个,对所分离的细菌进行初步鉴定,共成功鉴定出菌株601株,分属于37属119种,其中罗氏沼虾体内有细菌23属76种,养殖水体中有28属81种,在水体和罗氏沼虾体内均可检出的细菌归为13个属,分别为不动杆菌属(Acinetobacter)气单胞菌属(Aeromonas)节杆菌属(Arthrobacter)芽孢杆菌属(Bacillus)柠檬酸杆菌属(Citrobacter)肠杆菌属(Enterobacter)微小杆菌属(Exiguobacterium)克雷伯氏菌属(Klebsiella)乳球菌属(Lactococcus)泛菌属(Pantoea)变形杆菌(Proteus)葡萄球菌属(Staphylococcus)弧菌属(Vibrio),涉及38个种。罗氏沼虾体内和养殖水体中细菌分离鉴定结果详情见表1

图1  样品采集地 Fig. 1  Locations of sampling sites
图2  不同采用批次样品量占比(a)及样品源占比(b) Fig. 2  Proportion of samples collected in different sampling batch (a) and proportion of sample source (b)
表1  罗氏沼虾体内和养殖水体中可培养细菌分离鉴定结果 Tab. 1  Identification results of culturable bacteria in Macrobrachium rosenbergii and pond water
2.3 不同月份罗氏沼虾池塘养殖系统内可培养菌群变化

跟踪7、8、10月取样点罗氏沼虾体内及水体中可分离细菌的组成变化,统计结果见图3所示,7月从罗氏沼虾体内和水体中分离鉴定出78个菌株,有16个属34种菌,种类最多的为芽孢杆菌属,占比为34.6%;其次微小杆菌属(Exiguobacterium)占20.5%;气单胞菌属、肠杆菌属及弧菌数占比均为5.1%。8月共分离鉴定出菌株356株,分属于32个属96种菌,种类最多的为气单胞菌属,占22.8%;其次为肠杆菌属(13.8%)。10月共分离鉴定出167株菌,分属于13属28种,气单胞菌属占比最高,为47.3%;其次为柠檬酸杆菌属,占比12.0%。比较3次采样,气单胞菌属细菌检出率呈递增趋势,芽孢杆菌呈递减趋势。

2.4 潜在病原气单胞菌属内细菌组成分析

选取罗氏沼虾体内和水体中分离出的潜在病原气单胞菌属26种,根据其16S rRNA序列,构建属内细菌系统发育树,结果见图4。从图4可知,分离的气单胞菌属细菌中在进化关系上有两个类群,其中达卡气单胞菌(A. dhakensis)、水族气单胞菌(A. aquarioum)、豚鼠气单胞菌(A. caviae)、斑点气单胞菌(A. punctata)及嗜水气单胞菌为一个类群,代表菌株分别为082501AT、082517BL、102911C6、082505CL;维氏气单胞菌(A. veronii)与简达气单胞菌(A. jandaei)、舒伯特气单胞菌(A. schubertii)为另一个类群。维氏气单胞菌中有3株遗传上不在一个分支,代表菌株分别为082505aT、10297C3L、10295G5。

图3  罗氏沼虾体内和养殖池水体中3批次样品中各属细菌的检出率 Fig. 3  The detection rate of bacteria in Macrobrachium rosenbergii and pond water in three batches of samples at genus level
2.5 潜在益生菌芽孢杆菌属细菌的类群分析

3次细菌调查中共分离到芽孢杆菌51株,随机挑取20株菌分析种间进化关系见图5,可以看出,所分离的芽孢杆菌可分为4个类群,类群1内种类丰富,其中贝莱斯芽孢杆菌(B. velezensis) 071503g1、071503N2与枯草芽孢杆菌(B. subtilis) 08253CE、082515GE亲缘关系较近,聚为一支,其他短小芽孢杆菌(B. pumilus) 08255JE、071502w4、病研所芽孢杆菌(B. idriensis) 08253HE、印度芽孢杆菌(B. indicus) 08256AE、黄海芽孢杆菌(B. marisflavi) 08256RL蜡样芽胞杆菌(B. cereus) 082515XL、08253BL、08252BE亲缘关系相对较远。类群2有环状芽孢杆菌(B. circulans) 082512EE和巨大芽孢杆菌(B. megaterium) 08253AE、082512PL两个种。堀越氏芽胞杆菌(B. horikoshii) 08258RE、082512RE和耐冷芽孢杆菌(B. psychrotolerans) 082507RE分别在另外的分支上。

2.6 高通量测序分析结果

对健康、发生“铁壳”虾及蓝藻水华的罗氏沼虾池塘水体的菌群进行高通量测序分析,统计各个门的占比结果(样品中检出率>1%的门计入本统计)见图6,可以看出,不同来源样品中,优势门类均为放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)及蓝藻门(Cyanobacteria),但在健康虾池及发生“铁壳”虾病的虾池中,放线菌门、变形菌门、拟杆菌门及蓝藻门的占比相近,而发生蓝藻水华的虾池中,放线菌门的占比低于未发生蓝藻水华的两个池,且蓝藻的占比高于另外的两个池。发生“铁壳”虾的虾池中,厚壁菌门的微生物占比均高于健康虾池及蓝藻暴发虾池。表明蓝藻的发生影响养殖系统中菌群的结构。

图4  罗氏沼虾体内和养殖池水体中分离出的气单胞菌属菌株基于16S rRNA基因的发育进化树 Fig. 4  Phylogenetic tree based on 16S rRNA gene of Aeromonas spp. isolated from Macrobrachium rosenbergii and pond water

在属分类水平上,健康、“铁壳”虾及发生蓝藻水华的罗氏沼虾池塘水体的菌群组成(全部样品中检出率>1%的属计入本统计)如图7所示。可以看出,发生蓝藻水华的虾池中,微囊藻属(Microcystis)、黄杆菌属(Flavobacterium)及气单胞菌属的微生物占比高于健康及“铁壳”虾的虾池,而hgcI_clade占比远低于健康及发生“铁壳”虾的虾池。而“铁壳”虾池中微小杆菌属(Exiguobacterium)与不动杆菌属(Acinetobacter)细菌占比高于健康虾池与蓝藻水华虾池。

不同虾池中不同属的微生物种类韦恩图如图8所示,可以看出,健康、发生“铁壳”虾及发生蓝藻水华的罗氏沼虾池塘水体中的分别有421、418和314属的细菌存在,其中有281个属的微生物为3类虾池共有,蓝藻水华虾池中微生物的多样性低于其他2个虾池。

图5  罗氏沼虾体内和养殖池水体中分离出的芽孢杆菌属细菌基于16S rRNA基因进化树 Fig. 5  Phylogenetic tree based on 16S rRNA gene of Bacillus spp. isolated from Macrobrachium rosenbergii and pond water
图6  罗氏沼虾不同养殖池塘水体中细菌门类占比A. 健康养殖池;B. “铁壳”虾养殖池;C. 发生蓝藻水华养殖池. Fig. 6  The proportion of bacteria at phylum level in different pond of Macrobrachium rosenbergiiA. Healthy prawn pond; B. Prawn pond with “iron shell”; C. Prawn pond with cyanobacteria bloom.
图7  罗氏沼虾不同养殖池塘水体中各属细菌占比A. 健康养殖池;B. 发生“铁壳”虾养殖池;C. 发生蓝藻水华养殖池. Fig. 7  The proportion of bacteria at genus level in different pond of Macrobrachium rosenbergiiA. Healthy prawn pond; B. Prawn pond with “iron shell”; C. Prawn pond with cyanobacteria bloom.
图8  不同罗氏沼虾养殖池塘中细菌属水平维恩图A. 健康养殖池;B. “铁壳”虾养殖池;C. 发生蓝藻水华养殖池. 图中数字为细菌属的数量. Fig. 8  Venn analysis at the genus level of bacteria in different ponds of Macrobrachium rosenbergiiA. Healthy prawn pond; B. Prawn pond with “iron shell”; C. Prawn pond with cyanobacteria bloom. The numbers are quantity of genus of bacteria in each pond.
2.7 达卡气单胞菌拮抗菌的筛选

以分离的达卡气单胞菌为被拮抗菌,以芽孢杆菌为目标拮抗菌候选菌,分析池塘养殖系统中潜在的病原拮抗菌种类,从分离的芽孢杆菌中挑选51株21种芽孢杆菌进行细菌拮抗实验,结果如表2所示。在21种的芽孢杆菌中,有5株4个种的芽孢杆菌(图9)对达卡气单胞菌具有抑菌活性,占实验芽孢杆菌总数的9.3%,其中抗菌效果最强一株为编号19071505W1的贝莱斯芽孢杆菌,其抑菌圈直径达到(10.0±0.2) mm。表明在正常的池塘养殖环境中存在有一定数量的病原拮抗菌。

表2  达卡气单胞菌拮抗菌筛选结果 Tab. 2  Screening results of antagonistic bacteria against Aeromonas dhakensis$n = 3;\bar x \pm {\rm{SE}}$
图9  5株芽孢杆菌拮抗达卡气单胞菌的效果图图9a–e分别为枯草芽孢杆菌201908253CE#、贝莱斯芽孢杆菌19071503G1、贝莱斯芽孢杆菌19071505W1、解淀粉芽孢杆菌19071503N2、甲基营养型芽孢杆菌19071503W2. 各图中1、2为测试菌株,3、4为PBS. Fig. 9  Antibacterial effect of 5 strains of Bacillus spp. against Aermonas dhakensis9a–e are plate of B. subtilis 201908253CE#, B. velezensis19071503G1, B .velezensis19071505W1, B. amyloliquefaciens 19071503N2 and B. methylotrophicus 19071503W2. 1 and 2 represent the experimental strain, 3 and 4 represent PBS.
3 讨论 3.1 罗氏沼虾池塘养殖系统中病原菌的多样性与高温期虾病的关系

在罗氏沼虾养成过程中,病原菌感染是导致虾病发生的主要原因之一[18-19],尽管罗氏沼虾对细菌病具有较强的抵抗力,但养殖中后期池塘环境会出现富营养化,有机质的增多会促进病原菌的增殖[20],同时因水体中残饵粪便积累,氨氮、亚硝氮等有害物质的浓度增大,也会降低罗氏沼虾的抵抗力[21]。本调查结果表明,养殖系统中存在多种潜在的病原菌,包括气单胞菌属、肠杆菌属、柠檬酸杆菌属、克雷伯氏菌属、变形杆菌属、弧菌属及乳球菌属的多种细菌,表明高邮地区罗氏沼虾池塘养殖系统中致病病原存在多样性,适宜条件下,任何一种或多种病原菌的大量增殖均可导致虾病暴发,高邮地区罗氏沼虾高温期出现的持续时间较长的“滴星病”的病原具有不确定性。而在分离的可疑病原菌中,有达卡气单胞菌[22-23]、肠杆菌[24]、克雷伯氏菌[25-26]及乳球菌[27-28]等为人鱼共患病原,在食品卫生方面,需要加以关注。

3.2 发生“铁壳”虾及蓝藻水华虾池中微生物菌群组成 

水域生态系统中微生物组成复杂,含有多种细菌及藻类,各种微生物间会存在直接或间接的相互作用[29-30],微生物的组成结构对水产养殖动物健康具有重要的影响。罗氏沼虾养殖中后期,池塘富营养化加重,易导致部分虾池暴发蓝藻,影响池塘微生物菌群结构。本调查结果显示,发生蓝藻水华的虾池中,蓝藻门微囊藻属及黄杆菌属生物占比较正常虾池高,而放线菌门的微生物占比仅为正常虾池的30%,维恩分析显示池塘暴发微囊藻后,会降低属水平的生物多样性。微囊藻是一类有害藻类,产生的微囊藻毒素会在罗氏沼虾体内快速积累[31],破坏虾肝胰腺的结构[32],而放线菌是一类产生抗生素、免疫调节剂等功能化合物的微生物[33],在养殖系统中具有重要的功能,表明蓝藻暴发与养殖系统中微生物群落结构及功能的改变存在一定的关系。

高邮地区养殖罗氏沼虾已连续多年出现“铁壳”虾现象,严重影响了罗氏沼虾产量,但对“铁壳”虾的形成原因及控制方法目前尚缺少深入的研究。本研究从环境微生物层面分析了发生“铁壳”虾虾池的微生物组成结构,发现虽然发生“铁壳”虾的环境菌群中主要的门类(放线菌、变形菌、拟杆菌及蓝细门)细菌组成与正常虾池差别不大,但厚壁菌门微生物的占比远高于正常及发生蓝藻的虾池;而在属水平上,不动杆菌与微小杆菌两属微生物占比远高于正常及发生蓝藻水华虾池,该现象是否与“铁壳”虾的形成有关,尚待后续研究。

3.3 罗氏沼虾池塘养殖系统可培养菌群结构的季节变化 

水产养殖的池塘微生态系统中,微生物的群落结构会随着养殖季节及温度的变化而改变[34-35],罗氏沼虾室外养殖池塘中,菌群组成结构与养殖投入品投放、季节变化、进排水、养殖管理方式等多个方面密切相关。随着养殖中后期饲料用量的逐渐加大,水环境富营养化加重,导致环境改良剂、益生菌等动保产品投入增多,换水量增大,池塘微生物结构处于非稳定状态。调查的结果也表明,养殖系统中7月时的优势菌群为芽孢杆菌属与微小杆菌属,到8月优势菌群更替为气单胞菌属与肠杆菌属,延续到10月,优势种群依然是气单胞菌属,而柠檬酸杆菌属也有较高的占比。从不同月的优势菌群的性能看,7月的菌群结构较为健康,而8月与10月的优势菌为潜在致病菌,这种变化也提示在池塘管理方面,需要进行菌群结构的干预,采用池塘消毒方式减少致病菌的密度,并通过投放益生菌等方式,培植健康的菌群,有望达到控制虾病及蓝藻暴发的效果。

参考文献
[1]
Fishery Bureau of the Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2020: 24. [农业部渔业局. 中国渔业统计年鉴[M]. 北京:中国农业出版社,2020: 24.].》Google Scholar
[2]
Li X X, Zhou Y F, Jiang Q, et al. Virulence properties of Vibrio vulnificus isolated from diseased zoea of freshness shrimp Macrobrachium rosenbergii[J]. Microbial Pathogenesis, 2019, 127: 166-171..》Google Scholar
[3]
Qian D, Shi Z L, Cao Z, et al. Isolation and characterization of Nodavirus caused whitish muscle diseases in Macrobrachium rosenbergii larvae[J]. Journal of Fishery Sciences of China, 2003, 10(6): 457-461. [钱冬,石正丽,曹铮,等. 罗氏沼虾苗种肌肉白浊病诺达病毒的分离和特性研究[J]. 中国水产科学,2003, 10(6): 457-461.].》Google Scholar
[4]
Naveen Kumar S, Rai P, Karunasagar I, et al. Genomic and antibody-based assays for the detection of Indian strains of Macrobrachium rosenbergii nodavirus and extra small virus associated with white tail disease of Macrobrachium rosenbergii[J]. Virusdisease, 2020, 31(4): 459-469..》Google Scholar
[5]
Zhang Y P, Wang J Y, Liu W, et al. Isolation and pathogenicity of Aeromonas MrM0602 from giant freshwater prawn Macrobrachium rosenbergii[J]. Fisheries Science, 2008, 27(1): 20-23. [张友平,王军毅,刘问,等. 罗氏沼虾气单胞菌MrM0602株的分离和致病性研究[J]. 水产科学,2008, 27(1): 20-23.].》Google Scholar
[6]
Xu Y, Shen J Y, Yao J Y, et al. Studies on the main pathogens of adult prawn (Macrobrachium rosenbergii) in the Yangtze River Delta region[J]. Freshwater Fisheries, 2012, 42(5): 27-32. [徐洋,沈锦玉,姚嘉赟,等. 长三角地区罗氏沼虾成虾主要疾病的病原研究[J]. 淡水渔业,2012, 42(5): 27-32.].》Google Scholar
[7]
Guo Y, Zhou M, Li Y H, et al. Aeromonas caviae from Macrobrachium rosenbergii: Isolation and identification[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 147- 153. [郭莹,周淼,李艳和,等. 罗氏沼虾豚鼠气单胞菌的分离鉴定[J]. 中国农学通报,2020, 36(33): 147-153.].》Google Scholar
[8]
Sun F L, Wang C Z, Chen L J, et al. The intestinal bacterial community of healthy and diseased animals and its association with the aquaculture environment[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 775-783..》Google Scholar
[9]
James G, Das B C, Jose S, et al. Bacillus as an aquaculture friendly microbe[J]. Aquaculture International, 2021, 29(1): 323-353..》Google Scholar
[10]
Dong X N, Yang J, Chen Z H, et al. Isolation and identification of microcystin-degrading bacteria from internal organs of the surf fish living in Taihu Lake and its features[J]. Hubei Agricultural Sciences, 2017, 56(16): 3042-3047. [董小娜,杨洁,陈泽慧,等. 太湖激浪鱼内脏中藻毒素降解菌的筛选及其特性研究[J]. 湖北农业科学,2017, 56(16): 3042-3047.].》Google Scholar
[11]
Chen Z H, Dong X N, Shen H C, et al. Study on screening of microcystins degrading bacterial strain from reed marsh sediment of Taihu Lake and its degradation characteristics[J]. Industrial Safety and Environmental Protection, 2018, 44(5): 25-28. [陈泽慧,董小娜,沈红池,等. 太湖芦苇荡底泥中藻毒素降解菌的筛选及其特性研究[J]. 工业安全与环保,2018, 44(5): 25-28.].》Google Scholar
[12]
Liu X W, Li X Y, Shi Q L. Isolation and identification of a microcystins biodegrading bacterial strain[J]. Chinese Journal of Environmental Engineering, 2010, 4(9): 2023- 2028. [刘晓文,李现尧,史全良. 一株微囊藻毒素降解菌的分离与鉴定[J]. 环境工程学报,2010, 4(9): 2023-2028.].》Google Scholar
[13]
Su C F. Causes control and prevention of "Dixing disease" of Macrobrachium rosenbergii[J]. Fisheries Science and Technology Information, 2008, 35(2): 68-70. [苏传福. 罗氏沼虾“滴星病”的发生原因及防治[J]. 水产科技情报,2008, 35(2): 68-70.].》Google Scholar
[14]
An Z H, Sun L S, Chen J Y. Study on the causes of the “iron shell” phenomenon of Macrobrachium rosenbergii[J]. Scientific Fish Farming, 2014, (1): 56-58. [安振华,孙龙生,陈佳毅. 罗氏沼虾““铁壳””现象出现原因探究[J]. 科学养鱼,2014, (1): 56-58.].》Google Scholar
[15]
Yuan R, Zhang Z H, Chen H, et al. Phenomenon and research progress on prevention and control of ‘iron shell’ in giant freshwater prawn Macrobrachium rosenbergii[J]. Fisheries Science, 2017, 36(3): 383-390. [袁锐,张朝晖,陈辉,等. 罗氏沼虾“铁壳”现象及其防控研究进展[J]. 水产科学,2017, 36(3): 383-390.].》Google Scholar
[16]
Ye J M, Hu G D, Jiang Z H, et al. Analysis on the causes of cyanobacteria outbreak in Gaoyou Macrobrachium rosenbergii pond[J]. Journal of Aquaculture, 2014, 35(9): 22-24. [叶金明,胡庚东,姜增华,等. 高邮罗氏沼虾养殖池塘蓝藻暴发的原因分析[J]. 水产养殖,2014, 35(9): 22-24.].》Google Scholar
[17]
Bikrol A, Saxena N, Singh K. Characterization of Bradyrhizobium strains isolated from different varieties of soybean with 16SrDNA RFLP from agricultural land of Madhya pradesh, India[J]. Indian Journal of Microbiology, 2010, 50(4): 404-411..》Google Scholar
[18]
Feng Y, Yang S H, Yang Y, et al. Isolation and identification of Citrobacter freundii from diseased Giant freshwater prawn (Macrobrachium rosenbergii)[J]. Chinese Veterinary Science, 2017, 47(11): 1411-1417. [冯艺,杨树浩,杨映,等. 罗氏沼虾费氏柠檬酸杆菌的分离鉴定及药敏分析[J]. 中国兽医科学,2017, 47(11): 1411-1417.].》Google Scholar
[19]
Fan X, Zhao X X, Li Y Y, et al. Drug resistance and identification of pathogenic bacteria from Macrobrachium rosenbergii[J]. Hubei Agricultural Sciences, 2011, 50(5): 1008-1011. [樊星,赵笑笑,李阳阳,等. 罗氏沼虾仔虾病原菌的分离鉴定及耐药性试验[J]. 湖北农业科学,2011, 50(5): 1008-1011.].》Google Scholar
[20]
Zhang R Q, Su J, Ju B, et al. Effect of recirculating water treatment system on wastewater in breeding pond of Macrobrachium rosenbargii larvae[J]. Journal of Southern Agriculture, 2016, 47(1): 140-146. [张瑞祺,苏建,鞠波,等. 简装循环水处理系统处理罗氏沼虾育苗废水的效果[J]. 南方农业学报,2016, 47(1): 140-146.].》Google Scholar
[21]
Zang W L, Jiang M, Zhang J D, et al. The toxic effects of NO2--N and NH3-N on Macrobrachium rosenbergii larva[J]. Journal of Shanghai Fisheries University, 1996, 5(1): 15-22. [臧维玲,江敏,张建达,等. 亚硝酸盐和氨对罗氏沼虾幼体的毒性[J]. 上海水产大学学报,1996, 5(1): 15-22.].》Google Scholar
[22]
Huang M X, Chen H T, Li C N, et al. Rapid fulminant progression and mortality secondary to Aeromonas dhakensis septicemia with hepatitis B virus infection following the ingestion of snakehead fish in mainland China: A case report[J]. Foodborne Pathogens and Disease, 2020, 17(12): 743-749..》Google Scholar
[23]
Kitagawa H, Ohge H, Yu L S, et al. Aeromonas dhakensis is not a rare cause of Aeromonas bacteremia in Hiroshima, Japan[J]. Journal of Infection and Chemotherapy, 2020, 26(2): 316-320..》Google Scholar
[24]
Xiong L R, Feng W, Yu M J, et al. Clinical distribution and drug resistance analysis of Enterobacter cloacae[J]. International Journal of Laboratory Medicine, 2021, 42(6): 656-660. [熊丽蓉,冯伟,喻明洁,等. 阴沟肠杆菌的临床分布及耐药性分析[J]. 国际检验医学杂志,2021, 42(6): 656-660.].》Google Scholar
[25]
Teng T, Liang L G, Xie J, et al. Isolation and identification of pathogenic Klebsiella pneumoniae from Megalobrama amhlycephala[J]. Journal of Hydroecology, 2016, 37(6): 95-100. [滕涛,梁利国,谢骏,等. 团头鲂源肺炎克雷伯氏菌的分离鉴定[J]. 水生态学杂志,2016, 37(6): 95-100.].》Google Scholar
[26]
Choby J E, Howard-Anderson J, Weiss D S. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives[J]. Journal of Internal Medicine, 2020, 287(3): 283- 300..》Google Scholar
[27]
Suh Y, Ja Kim M, Seung Jung J, et al. Afebrile multi-valve infective endocarditis caused by Lactococcus garvieae: A case report and literature review[J]. Internal Medicine (Tokyo, Japan), 2016, 55(8): 1011-1015..》Google Scholar
[28]
Ricci G, Ferrario C, Borgo F, et al. Genome sequences of Lactococcus garvieae TB25, isolated from Italian cheese, and Lactococcus garvieae LG9, isolated from Italian rainbow trout[J]. Journal of Bacteriology, 2012, 194(5): 1249-1250..》Google Scholar
[29]
Cole J J. Interactions between bacteria and algae in aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1982, 13: 291-314..》Google Scholar
[30]
Sadchikov A P, Ostroumov S A. Interactions in the detritus– dissolved organic matter–bacteria–algae system in freshwater ecosystems of different trophic levels: Water quality formation[J]. Russian Journal of General Chemistry, 2020, 90(13): 2708-2716..》Google Scholar
[31]
Liu L P, Su X M, Chen T Y, et al. Evidence of rapid transfer and bioaccumulation of Microcystin-LR poses potential risk to freshwater prawn Macrobrachium rosenbergii (de Man)[J]. Aquaculture Research, 2016, 47(10): 3088-3097..》Google Scholar
[32]
Cao Q S, Wang L P, Yang H, et al. Low-dose microcystins MC-LR induced hepatopancreas injury and apoptosis in Macrobrachium rosenbergii[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 171-179. [曹清晟,王丽萍,杨辉,等. 低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡[J]. 生态毒理学报,2020, 15(2): 171-179.].》Google Scholar
[33]
Yang Y, Li K T. The overview of actinomycetes resources and its active substances[J]. Biological Disaster Science, 2019, 42(1): 7-14. [杨勇,李昆太. 放线菌资源及其活性物质研究概述[J]. 生物灾害科学,2019, 42(1): 7-14.].》Google Scholar
[34]
Luo J F, Liao Y Y, Li S D, et al. Influence of temperature on microbial community structure in a Scylla paramamosain recirculating aquaculture system[J]. Journal of Fishery Sciences of China, 2020, 27(4): 393-405. [罗金飞,廖永岩,李书迪,等. 温度对拟穴青蟹循环水养殖系统微生物群落结构的影响[J]. 中国水产科学,2020, 27(4): 393-405.].》Google Scholar
[35]
Zhong L Q, Li B, Wang M H, et al. Analysis of microbial community structure and their environmental impact factors in the sediment of channel catfish ponds[J]. Journal of Fishery Sciences of China, 2020, 27(8): 893-905. [钟立强,李冰,王明华,等. 斑点叉尾鮰养殖池塘底泥微生物群落结构特征及其影响因素[J]. 中国水产科学,2020, 27(8): 893-905.].》Google Scholar