中国水产科学  2022, Vol. 29 Issue (07): 969-979  DOI: 10.12264/JFSC2021-0574
0

引用本文 

刘若晖, 宋超, 杨刚, 赵峰, 张涛, 耿智, 冯广朋, 胡丽娟, 彭彪彪, 庄平. 长江口刀鲚群体形态差异研究[J]. 中国水产科学, 2022, 29(7): 969-979. DOI: 10.12264/JFSC2021-0574.
LIU Ruohui, SONG Chao, YANG Gang, ZHAO Feng, ZHANG Tao, GENG Zhi, FENG Guangpeng, HU Lijuan, PENG Biaobiao, ZHUANG Ping. Morphological variation among different populations of Coilia nasus in the Yangtze Estuary[J]. Journal of Fishery Sciences of China, 2022, 29(7): 969-979. DOI: 10.12264/JFSC2021-0574.

基金项目

上海市科技兴农项目(2019-02-08-00-07-F01129);国家重点研发计划项目(2019YFD0901202, 2019YFD0901205);农业农村部农业资源环境情况调查项目(17210163).

作者简介

刘若晖(1995–),女,硕士研究生,研究方向为水生生物生理生态. E-mail: lrhsunshine@163.com

通信作者

通信作者:赵峰,研究员,研究方向为渔业生态和保护生物学,E-mail: zhaof@ecsf.ac.cn
庄平,研究员,研究方向为水生生物学,E-mail: pzhuang@ecsf.ac.cn

文章历史

收稿日期:2021-11-29
修改日期:2022-01-15
长江口刀鲚群体形态差异研究
刘若晖1,2,宋超2,3,4,杨刚2,3,4,赵峰1,2,3,4,张涛2,3,4,耿智2,3,4,冯广朋1,2,3,4,胡丽娟1,2,彭彪彪1,2,庄平1,2,3,4,     
1. 上海海洋大学,水产科学国家级实验教学示范中心,上海 201306
2. 中国水产科学研究院东海水产研究所,农业农村部东海与长江口渔业资源环境科学观测实验站,上海 200090
3. 上海长江口渔业资源增殖与生态修复工程技术研究中心,上海 200090
4. 中国水产科学研究院长江口渔业生态重点实验室,上海 200090
摘要:为了研究长江口刀鲚(Coilia nasus)群体组成,将采自长江口南支和北支、崇明内河、浙江嵊泗共160尾刀鲚进行传统形态学研究和框架模型的构建,对获得的形态变量数据进行多元统计分析,研究结果:(1) 长江口不同刀鲚群体间形态变异很小;(2) 组间差异主要为躯干横向和头长的差异,躯干横向为差异的主要变异方向,头长为次要的变异方向;(3) 北支群体的判别准确率最高(95%),判别效果最好;(4) 聚类结果也呈现出类似的结果,南支群体和内河群体聚为一组,和嵊泗群体聚为一大支,最后和北支群体聚类。研究结果表明,长江口不同刀鲚群体间的躯干横向和头长的差异可能由摄食和栖息地利用差异造成。
关键词长江口    刀鲚    形态差异    框架结构    多元统计分析    
Morphological variation among different populations of Coilia nasus in the Yangtze Estuary
LIU Ruohui1,2,SONG Chao2,3,4,YANG Gang2,3,4,ZHAO Feng,1,2,3,4,ZHANG Tao2,3,4,GENG Zhi2,3,4,FENG Guangpeng1,2,3,4,HU Lijuan1,2,PENG Biaobiao1,2,ZHUANG Ping,1,2,3,4    
1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
2. Scientific Observing and Experimental Station of Fishery Resources and Environment of the East China Sea and Yangtze Estuary, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
3. Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
4. Key Laboratory of Fisheries Ecology of the Yangtze Estuary, Chinese Academy of Fishery Sciences, Shanghai 200090, China
Abstract:The morphological variations among different populations of Coilia nasus, collected from the south branch (NZ) and north branch (BZ) of the Yangtze Estuary, Neihe of Chongming (NH) and Shengsi (SS) in Zhejiang Province, were assessed to determine the population compositions using traditional morphology and the truss network model. All morphological variable data were analyzed using multivariate statistical approaches, such as one-way analysis of variance (ANOVA), principal component analysis (PCA), discriminate function analysis (DFA), and cluster analysis (CA). ANOVA revealed significant differences in all morphological variables among the groups, except head length behind the eyes, tail length, the dorsal origin of the caudal fin-origin of the pelvic fin, termination of the anal fin-origin of the anal fin, the origin of the anal fin-origin of the pelvic fin, and end of operculum-end of operculum (P<0.05). Based on the coefficient of variation (CV), the morphological variation among different C. nasus populations in the Yangtze Estuary was very small. The differences among the groups were mainly due to differences in the lateral trunk and head length. The lateral trunk was the primary variation axis, while the head length was the secondary variation axis. The stepwise discriminant comprehensive rate was 80.60%, and the cross-validated comprehensive discriminant rate was 76.30%. The BZ group had the best discrimination accuracy rate (95%), indicating the best discriminant effect, while the NH group had the lowest discrimination accuracy. According to the CA results, the four populations can be divided into three groups: Group I, the NZ and NH populations; group II, the SS population; and group III, the BZ population. The results of CA were similar to those of DFA, indicating the homogeneity and heterogeneity of the population differences. The lateral trunk and head length were identified as the main differences among the different populations of C. nasus in the Yangtze Estuary, which may be caused by differences in diet and habitat use.
Key wordsthe Yangtze Estuary     Coilia nasus     morphological variation    truss network    multivariate analysis    

刀鲚(Coilia nasus)隶属鲱形目(Clupeiformes)、鳀科(Engraulidae)、鲚属(Coilia),广泛分布于我国的东海、黄海、渤海水域以及相连的通海江河中,是一种具有极高经济价值和营养价值的洄游型鱼类[1]。长江口是我国最大的河口渔场,是刀鲚重要的洄游通道、索饵场和育幼场,是刀鲚鱼汛的孕育场,然而自20世纪70年代以来[2],由于过度捕捞、环境污染、栖息地破坏等,长江刀鲚资源量不断下降,甚至无法成汛[3],并表现出个体小型化、产卵时间提前[4-5]等特征。有研究表明,虽然刀鲚生长潜力仍然存在,但是仔、稚鱼资源大量出现与繁殖群体资源严重匮乏的极不平衡现象使得刀鲚资源保护刻不容缓[6]

对长江口刀鲚资源的合理管理和保护依赖于对刀鲚基础生物学信息的掌握,如种群结构[7]、发育分期和发育模式[8]等,研究生物学信息有助于管理策略的完善及长江口生物多样性的保护[9],进而促进长江刀鲚资源量的恢复。目前较多学者从分子遗传[10]、历史生物地理学[11]、系统发生[12]、形态学[13]等角度来揭示物种的基础生物学信息,其中形态学方法相对较为经济、易操作[14],是种群鉴定、分类管理常采用的方法[15]。鱼群间形态的稳定性差异可以反映种群的数量特征(出生率和死亡率等)和空间特征(时空分布等)[15-16],还可以阐明种内变异[17-19]。以往的刀鲚形态学研究中,以较大地理范围内不同刀鲚群体的形态对比为主,鲜见在一个较小的复杂多变的地理范围内的刀鲚形态特征差异研究,因此本研究采用框架模型法结合传统形态学特征,将研究地点聚焦在长江口(121°E~123°E),以确定长江口南支和北支以及近海刀鲚群体之间的形态差异,揭示长江口刀鲚的种群组成特征,为长江口刀鲚资源的动态变化以及相关管理策略的制定和完善提供基础资料。

1 材料与方法 1.1 研究地点和样品采集

本研究的刀鲚样品,采集于长江口南支(NZ)和北支(BZ)、崇明内河(NH)、浙江嵊泗(SS),具体站位如图1所示。样品现场冷冻保存后带回实验室进行计数、测量,其主要基础生物学信息如表1所示。

图1  刀鲚采样位点图 Fig. 1  Sampling sites of Coilia nasus
表1  刀鲚主要基础生物学信息 Tab. 1  The main basic biological information of Coilia nasus n=4; $\bar{x}\pm \text{SD}$
1.2 样品数字化处理

将解冻后的样本擦拭干净并平铺在泡沫板上,调整鳍条的位置,使背鳍、腹鳍、胸鳍的基点清晰可见。每个样本编号后拍照。

1.3 形态学变量

本研究利用传统形态学测量和框架模型对4个站点的刀鲚进行测量。传统形态学性状测量包括11个形态变量(图2),即全长(total length, TL)、体长(body length, BL)、体高(body depth, BD)、头高(head depth, HD)、头长(head length, HL)、眼后头长(head length behind eyes, HBE)、躯干长(skeletal trunk length, STL)、尾长(tail length, TaL)、吻长(snout length, SL)、眼径(eye diameter, ED)、尾柄高(caudal peduncle height, CPH)。框架模型在鱼体上选取12个解剖学同源坐标点,构建三角形将同源坐标点连接获得32个形态变量(图3)[20-21]。所有的形态变量精确至0.01 cm;重量用电子称称量,精确至0.01 g。

图2  刀鲚传统形态学测量图TL:全长;BL:体长;BD:体高;HD:头高;HL:头长;HBE:眼后头长;STL:躯干长;TaL:尾长;SL:吻长;ED:眼径;CPH:尾柄高. Fig. 2  Traditional morphology for measurement of Coilia nasusTL: total length; BL: body length; BD: body depth; HD: head depth; HL: head length; HBE: head length behind eyes; STL: skeletal trunk length; TaL: tail length; SL: snout length; ED: eye diameter; CPH: caudal peduncle height.
图3  刀鲚框架结构图12个解剖学坐标点之间构建形成32个框架数据. 1. 吻前端;2. 额骨末端;3. 背鳍起点;4. 背鳍末端;5. 尾鳍背部起点;6. 尾鳍末端;7. 臀鳍末端;8. 臀鳍起点;9. 腹鳍起点;10. 间鳃盖骨末端;11. 鳃盖骨末端;12. 胸鳍起点. Fig. 3  Truss network of Coilia nasus showing the 32 variables extracted from 12 anatomic landmarks1. Tip of the snout; 2. End of the frontal bone; 3. Origin of dorsal fin; 4. End of dorsal fin; 5. Dorsal origin of caudal fin; 6. End of caudal fin; 7. End of anal fin; 8. Origin of anal fin; 9. Origin of pelvic fin; 10. End of interoperchulum; 11. End of operculum; 12. Origin of pectoral fin.
1.4 数据分析

传统形态学测量和框架测量共计形态变量43个。为减小由于样品异速生长造成的误差,所有的形态变量参照Elliott等[22]提出的公式进行统一标准化处理:

${\rm{Ms}} = {\rm{Mo}}{({\rm{Ls}}/{\rm{Lo}})^b}$

式中,Ms为标准化后的数据,Mo为测量的形态变量值,Ls为4个群体中所有个体的体长的算术平均数,Lo为个体的标准长度,即体长,b值为异速生长公式${\rm{Mo}} = a{\rm{L}}{{\rm{o}}^b}$的指数,用来评估所有群体每个形态变量之间的差异。经过标准化处理后舍去体长变量。

形态变量数据均采用Image-pro Plus 6.0进行测量、Microsoft Excel 2010进行数据收集、SPSS 25.0和Origin 2019进行数据分析和作图。本研究运用单因素方差分析检验长江口不同区域刀鲚群体间形态是否存在显著差异。根据公式${\rm{CV(}}\% ) = $$100 \times {\rm{SD}}/\bar x$计算变异系数来衡量群体之间的变异程度,其中SD为标准差,$\bar x$为每个群体指标的均值,当CV<25%时,表明变异程度较小[8]。利用主成分分析、判别分析、聚类分析等多元统计方法来分析群体之间的差异性。

2 结果与分析 2.1 长江口不同刀鲚群体间的形态差异表现

单因素方差分析结果(表2)显示,除HBE、TaL、5-8、6-7、7-8、1-10之外,其他形态变量在组间均存在显著性差异(P<0.05)。刀鲚群体之间的变异系数(CV)(表2)分析结果显示,SS中HBE最高(28.25%),其次为NZ中11-12 (27.48%), SS中TL最低(0.65%)。

对长江口刀鲚群体形态变量进行主成分分析,通过主成分分析碎石图(图4)可知获得的10个主成分(PC1~PC10)累计贡献率为83.32%。选取贡献率最大的前3个主成分(表3),其中PC1主要与BD、3-8、3-9、4-8、4-9、4-12形态变量有强正相关;PC2主要与HBE、1-11、1-12、2-3形态变量有强正相关性,与TaL为负相关;PC3主要与HL、STL、TaL、2-8形态变量有强相关性,其中STL为负相关,其他指标均为正相关。PC1~PC3显示的形态变量反映到形态模型(图5)中则突出显示了刀鲚群体间的主要差异集中体现在躯干横向、头长和尾长。

表2  刀鲚群体形态变量描述性统计 Tab. 2  Description statistics for morphometric variables of the Coilia nasus populations n=4; $\bar{x}\pm \text{SD}$
图4  刀鲚群体主成分分析碎石图 Fig. 4  Scree plot of the principal component analysis of the populations of Coilia nasus
2.2 长江口不同刀鲚群体之间的同质性和异质性

对不同刀鲚群体的形态变量进行逐步判别分析,根据表4的分类函数系数分别对每个群体构建判别方程式,则有,

南支刀鲚(NZ):

$\begin{array}{c} {Y_{NZ}} = 75.780{X_1} + 12.166{X_2} + 117.466{X_3} + 87.059{X_4}\\ + 66.502{X_5} + 44.686{X_6} + 122.889{X_7} - 674.859 \end{array}$

北支刀鲚(BZ):

$\begin{array}{c} {Y_{BZ}} = {\rm{ }}49.951{X_1} + 7.278{X_2} + 130.505{X_3} + 95.107{X_4} + \\ 75.408{X_5} + 23.738{X_6} + 125.980{X_7} - 658.264 \end{array}$

内河刀鲚(NH):

$\begin{array}{c} {Y_{NH}} = 71.201{X_1} + 18.850{X_2} + 119.112{X_3} + 91.624{X_4} + \\ 66.958{X_5} + 45.054{X_6} + 129.699{X_7} - 714.055 \end{array}$

嵊泗刀鲚(SS):

$\begin{array}{c} {Y_{SS}} = 50.331{X_1} + 20.263{X_2} + 128.302{X_3} + 100.256{X_4} + \\ 73.579{X_5} + 31.307{X_6} + 131.495{X_7} - 711.289 \end{array}$

在判别分析结果中(表5),逐步判别综合判别率为80.60%,交叉验证综合判别率为76.30%。逐步判别结果中,BZ判别准确率最高(95%),此结果在交叉验证中也得到证实;NZ和NH判别准确率较低,亦即错误分类率较高。

表3  刀鲚群体前三个主成分矩阵表 Tab. 3  Matrix of the first three principal components of the populations of Coilia nasus
图5  主成分PC1~PC3与刀鲚形态变量间的相关性实线表示成分与形态变量为正相关,虚线则表示成分与形态变量为负相关. 图中STL和TaL均用绿色和蓝色标示,表示该形态变量在两个成分中均有选出. Fig. 5  The correlation between PC1–PC3 and the morphological variables of Coilia nasusThe solid line indicates positive correlation between components and morphological variables, and the dotted line demonstrates that the relationship is negative correlation. In the figure, STL and TaL are marked with green and blue, showing that the morphological variables are selected in both components.
表4  刀鲚群体分类函数系数 Tab. 4  Classification function coefficients of the populations of Coilia nasus

在95%置信区间(图6)中:BZ与NZ、NH、SS之间完全分离,BZ相对较为独立;NH与NZ、SS之间重叠较大,说明NH与NZ、SS的形态较为相似。

表5  刀鲚群体判别分析结果 Tab. 5  Results of discriminant function analysis of the populations of Coilia nasus
图6  刀鲚群体判别分析95%置信区间图 Fig. 6  95% confidence interval plot of discriminant function analysis for the populations of Coilia nasus

对刀鲚群体进行聚类,可将这4个刀鲚群体分为3个组(图7), I 组为NZ和NH, II组为SS, III组为BZ。聚类结果同样验证支持了判别分析的结果:NZ和NH间形态差异较小,而BZ的形态差异相对较大。

图7  刀鲚群体间的谱系图 Fig. 7  The pedigree chart among the populations of Coilia nasus
3 讨论 3.1 长江口不同刀鲚群体间的形态差异

在生物因素和非生物因素综合作用下,刀鲚群体在较大尺度生物地理范围内呈现出种群碎片化的特点[14],不同的群体在不同的环境下生长发育,很容易受到环境和选择压力的影响,出现环境诱导的形态变异[15]。反之,形态特征亦可以反映鱼类对环境的适应[8,23]

通过主成分分析主要显示了刀鲚群体间躯干横向、头长和尾长的差异。结合以上研究可知4个群体的躯干横向从大到小依次为:北支群体、嵊泗群体、南支群体、内河群体;头长从大到小依次为:内河群体、南支群体、嵊泗群体、北支群体。躯干横向的差异一方面与刀鲚的性腺发育程度有关,性腺发育程度越高,腹部越宽,越需要韧性的组织来支撑[20,24];另一方面可能与刀鲚的游泳能力有关。鱼类的游泳能力可用耐久游泳速度、持续游泳速度和爆发式游泳速度来描述[25]。爆发式游泳是鱼类进行的短时间的无氧运动,主要是通过鱼类的躯干和尾鳍来进行觅食、躲避敌害等生命活动[26-28],对刀鲚等洄游性鱼类来说是一种重要的游泳方式,并且发生在生命的每一个阶段中[29],而爆发性游泳最重要的形态特征之一就是较宽的躯干[15]

长江口作为刀鲚的索饵场主要为其提供昆虫幼虫、桡足类、鱼类、虾类等饵料生物[3],体长99~150 mm是刀鲚食性的过渡阶段,实现摄食由以浮游动物为主到以鱼虾为主的过渡[30]。参考此体长范围,本研究中内河群体为食性过渡群体,南支群体、嵊泗群体、北支群体主要以鱼虾为主,较宽的躯干可能是刀鲚主动捕食的结果。北支群体头长相对较小可能与所摄食物种的体型相对较小有关[31],也反映了群体经历的环境不同。由于摄食习性引起的头部差异出现在唐鱼(Tanichthys albonubes)[32]、高原裸裂尻鱼(Schizopygopsis stoliczkai Steindachner)[33]、小黄鱼(Larimichthys polyactis)[34]等物种中。

尾部的差异反映的是刀鲚对运动和可操纵性的适应[28]。强壮有力的尾部是刀鲚进行长距离生殖洄游非常重要的条件[35],较之湖鲚(C. nasus taihuensis),洄游型刀鲚尾部较长[36];不同水系(黄河水系、钱塘江水系、长江水系)刀鲚的形态差异,主成分分析的前两个成分并没有筛选出与尾部差异有关的形态变量,但是在多维尺度分析中,维度2则表现出较为显著的尾部差异[24]。在本研究中,主成分2和主成分3虽然筛选出相关性较大的尾部差异指标,但其在群体间并没有显著性差异,说明对于洄游型刀鲚群体而言,其在长江口区域时尾部并没有明显差异,可能是因为在长江口内迁移时出现了环境诱导的趋同分化[37]

长江上游径流所带来丰富的营养物质使得长江口的初级生产力高和浮游生物最丰富,是许多鱼类重要的觅食、繁衍和栖息场所,但是由于沙洲沙坝的存在,使得长江口成为一个多级分汊的三角洲河口,上游冲淡水在河道中的分流比、外海咸潮、潮汐和波浪、地形等因素的影响使得各个河道的盐度、悬沙、浮游生物和初级生产力的分布也不尽相同[3]。南支主要为淡水,可能是刀鲚上溯的主要洄游通道,但由于滩涂围垦和水利工程建设(青草沙水库、深水航道等)使得刀鲚等鱼类资源受人为影响相对北支较大;而北支则是半咸水河道且枯季盐度更高[3]。内河则是崇明岛上一条供灌溉的淡水河道,其西部通过闸口封闭,东部通过闸口定期开放,其内淡水主要为南支淡水资源。嵊泗位于长江的口外海滨、浙江舟山群岛,是长江径流入海与海水混合的冲淡水水域,属近海岛礁生态系统[3]。因此南支群体、北支群体、内河群体和嵊泗群体间形态差异可能是由于刀鲚对栖息地利用方式不同[37-38]

3.2 长江口不同刀鲚群体的群体组成特征

本研究中除嵊泗群体的眼后头长(HBE)、南支群体的鳃盖骨末端-胸鳍起点(11-12)外,其余所有的形态变量均显示长江口刀鲚群体之间变异很小(CV<25%)。北支群体有较宽的躯干和较短的头长;内河群体有较窄的躯干和较长的头长,南支群体和嵊泗群体形态在相应指标中同内河群体基本相似,只是南支群体和嵊泗群体的躯干更宽。尾长在长江口不同地理区域间无显著性差异。由此可知对于刀鲚群体而言,躯干宽度在长江口不同刀鲚群体中是主要的变异方向,头长是次要的变异方向[39]。理论上刀鲚性腺发育的程度决定上溯洄游的距离和产卵场分布的远近,本研究所采长江口的4个群体样本中,根据群体中性腺的发育程度可知,嵊泗群体和南支群体为产卵群体,且嵊泗群体的产卵场可能在长江口或杭州湾附近(调查中发现嵊泗群体雌性大部分性腺分期为Ⅳ期,而南支群体的则主要为Ⅱ期,部分为Ⅲ期);内河群体为未产卵群体;由于在所有群体中,北支群体躯干最宽,且其年龄>1冬龄[40],可知其为已产卵群体,或在长江口或入海越冬育肥。

根据聚类结果,南支群体与内河群体形态差异最小,之后与嵊泗群体聚为一大类,北支群体单独聚为一支,其形态与其他群体有明显不同。判别结果与聚类结果具有同质性,南支群体、内河群体、嵊泗群体之间相混合程度较高,北支群体的较低,其次北支群体的判别准确率最高(>85%)也证明北支群体的混合程度较低。推测嵊泗群体为长江口刀鲚在舟山群岛附近的补充群体[41],与南支群体和内河群体有相似的遗传起源,但又适应舟山的环境。

综上所述,本研究中长江口刀鲚群体间的差异主要体现为躯干横向和头长的差异,其中躯干横向在长江口不同刀鲚群体中是主要的变异方向,头长是次要的变异方向,主要与刀鲚栖息地利用和摄食等生态习性有关。北支群体虽然单独聚为一支,但根据鱼类形态间稳定的表型差异是鱼类分类管理的关键,故还需在长江口更大范围采样以进一步确定是否对北支刀鲚进行单独管理。其次从多角度(如耳石微化学、分子生物学等)综合探明长江口刀鲚群体的群体组成及其生活史差异非常有必要,可为长江口功能的发挥和刀鲚资源的保护提供理论基础。

参考文献
[1]
Yuan C M, Qin A L. Ecological habits and distribution of Coilia nasus along the Chinese coast and its changes of output[J]. Marine Sciences, 1984, (5): 35-37. [袁传宓,秦安舲. 我国近海鲚鱼生态习性及产量变动状况[J]. 海洋科学,1984, (5): 35-37.].》Google Scholar
[2]
Yuan C M. Changes and its causes in resources and population composition of Coilia nasus in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Zoology, 1988, (3): 12-15. [袁传宓. 长江中下游刀鲚资源和种群组成变动状况及其原因[J]. 动物学杂志,1988, (3): 12-15.].》Google Scholar
[3]
Zhuang P, Zhang T, Li S F, et al. Fishes of the Yangtze Estuary ()[M]. 2nd ed. Beijing: China Agriculture Press, 2018, 3-131. [庄平,张涛,李圣法,等. 长江口鱼类[M]. 第2版. 北京:中国农业出版社,2018, 3-131.].》Google Scholar
[4]
Yuan C M. Reproductive migration of Coilia nasus[J]. Bulletin of Biology, 1987, (12): 1-3. [袁传宓. 刀鲚的生殖洄游[J]. 生物学通报,1987, (12): 1-3.].》Google Scholar
[5]
Rao Y Y, Zhong J S, Liu H, et al. Annual variation of the resources of Coilia nasus larvae and juveniles in the southern branch of the Yangtze River Estuary[J]. Journal of Shanghai Ocean University, 2021, 30(5): 828-836. [饶元英,钟俊生,刘欢,等. 长江口南支水域刀鲚仔稚鱼资源量的年度变化[J]. 上海海洋大学学报,2021, 30(5): 828-836.].》Google Scholar
[6]
Tang W Q, Guo H Y, Liu D, et al. Study on genetic diversity and resource ecology of Coilia nasus in the Yangtze River[M]. Beijing: Science Press, 2016, 271-274. [唐文乔,郭弘艺,刘东,等. 刀鲚的遗传多样性与资源生态研究[M]. 北京:科学出版社,2016, 271-274.].》Google Scholar
[7]
Yakubu A, Okunsebor S A. Morphometric differentiation of two Nigerian fish species (Oreochromis niloticus and Lates niloticus) using principal components and discriminant analysis[J]. International Journal of Morphology, 2011, 29(4): 1429-1434..》Google Scholar
[8]
Hanif M A, Chaklader M R, Siddik M A B, et al. Phenotypic variation of gizzard shad, Anodontostoma chacunda (Hamilton, 1822) based on truss network model[J]. Regional Studies in Marine Science, 2019, 25: 100442..》Google Scholar
[9]
Turan C, Oral M, Öztürk B, et al. Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas[J]. Fisheries Research, 2006, 79(1-2): 139-147..》Google Scholar
[10]
Yang L P, Hu J Y, Qin C B, et al. Genetic structure analysis of Pseudorasbora parva in the four major river systems in Yunnan based on mitochondrial Cyt b[J]. Journal of Fisheries of China, 2020, 44(3): 339-350. [杨丽萍,胡俊仪,秦超彬,等. 基于线粒体Cyt b分析入侵云南四大水系的麦穗鱼群体遗传结构[J]. 水产学报,2020, 44(3): 339-350.].》Google Scholar
[11]
Cheng F Y, Wang Q, Delser P M, et al. Multiple freshwater invasions of the tapertail anchovy (Clupeiformes: Engraulidae) of the Yangtze River[J]. Ecology and Evolution, 2019, 9(21): 12202-12215..》Google Scholar
[12]
Alotaibi A M, Ahmad Z, Farooq M, et al. Phylogenetic analysis of three endogenous species of fish from Saudi Arabia verified that Cyprinion acinaes hijazi is a sub-species of Cyprinion acinaces acinases[J]. Journal of King Saud University - Science, 2020, 32(7): 3014-3017..》Google Scholar
[13]
Wang J L, Chen Q H, Lu W Z, et al. Morphological differences among five species in rhodeinae in Huaihe River Basin in Henan Province[J]. Acta Hydrobiologica Sinica, 2019, 43(1): 123-132. [王景龙,陈启豪,陆文泽,等. 河南省淮河流域鳑鲏亚科5种鱼形态差异分析[J]. 水生生物学报,2019, 43(1): 123-132.].》Google Scholar
[14]
Cronin-Fine L, Stockwell J D, Whitener Z T, et al. Application of morphometric analysis to identify alewife stock structure in the gulf of Maine[J]. Marine and Coastal Fisheries, 2013, 5(1): 11-20..》Google Scholar
[15]
Swain D P, Foote C J. Stocks and chameleons: The use of phenotypic variation in stock identification[J]. Fisheries Research, 1999, 43(1-3): 113-128..》Google Scholar
[16]
Cadrin S X. Advances in morphometric identification of fishery stocks[J]. Reviews in Fish Biology and Fisheries, 2000, 10(1): 91-112..》Google Scholar
[17]
Buj I, Podnar M, Mrakovčić M, et al. Morphological and genetic diversity of Sabanejewia balcanica in Croatia[J]. Folia Zoologica, 2008, 57(1-2): 100-110..》Google Scholar
[18]
Tzeng T D. Morphological variation between populations of spotted mackerel (Scomber australasicus) off Taiwan[J]. Fisheries Research, 2004, 68(1-3): 45-55..》Google Scholar
[19]
Torres G A R, González S P, Peña E S. Anatomical, histological and ultrastructural description of the gills and liver of the tilapia (Oreochromis niloticus)[J]. International Journal of Morphology, 2010, 28(3): 703-712..》Google Scholar
[20]
Yang Q, Zhao F, Song C, et al. Analysis of morphological variations among four different geographic populations of Coilia mystus in the Yangtze River Estuary and its adjacent waters[J]. Marine Fisheries, 2019, 41(3): 294-303. [杨琴,赵峰,宋超,等. 长江口及邻近海域凤鲚4个不同地理群体的形态差异[J]. 海洋渔业,2019, 41(3): 294-303.].》Google Scholar
[21]
Strauss R E, Bookstein F L. The truss: Body form reconstructions in morphometrics[J]. Systematic Biology, 1982, 31(2): 113-135..》Google Scholar
[22]
Elliott N G, Haskard K, Koslow J A. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia[J]. Journal of Fish Biology, 1995, 46(2): 202-220..》Google Scholar
[23]
Sen S, Jahageerdar S, Jaiswar A K, et al. Stock structure analysis of Decapterus russelli (Ruppell, 1830) from east and west coast of India using truss network analysis[J]. Fisheries Research, 2011, 112(1-2): 38-43..》Google Scholar
[24]
Wang D T, Yang J, Jiang T, et al. A comparative study of the morphology of different geographical populations of Coilia nasus[J]. Journal of Fisheries of China, 2012, 36(1): 78-90. [王丹婷,杨健,姜涛,等. 不同水域刀鲚形态的分析比较[J]. 水产学报,2012, 36(1): 78-90.].》Google Scholar
[25]
Beamish F W H. Swimming Capacity. Fish Physiology[M]. New York: Academic Press, 1978: 101-187..》Google Scholar
[26]
Blaxter J H S. Swimming speeds of fish. FAO Fish[R]. Bergen: FAO Conference on fish behaviour in relation to fishing techniques and tactics, 1967..》Google Scholar
[27]
Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic cod[J]. The Journal of Experimental Biology, 2000, 203(Pt 2): 347-357..》Google Scholar
[28]
Webb P W. Body form, locomotion and foraging in aquatic vertebrates[J]. Integrative and Comparative Biology, 2015, 24(1): 107-120..》Google Scholar
[29]
Hinch S, Standen E M, Healey M C. et al. Swimming patterns and behaviour of upriver-migrating adult pink (Oncorhynchus gorbuscha) and sockeye (O. nerka) salmon as assessed by EMG telemetry in the Fraser River, British Columbia, Canada[J]. Hydrobiologia, 2002, 483: 147–160..》Google Scholar
[30]
Li L, Du R, Liu Q G, et al. The ontogenetic dietary shift of Japanese grenadier anchovy (Coilia nasus) in the Qingcaosha Reservoir near the Yangtze River Estuary[J]. Journal of Fishery Sciences of China, 2019, 26(4): 765-773. [李丽,杜蓉,刘其根,等. 长江口青草沙水库刀鲚食性转变[J]. 中国水产科学,2019, 26(4): 765-773.].》Google Scholar
[31]
Gatz J. Ecological morphology of freshwater stream fishes[J]. Tulane Studies in Zoology and Botany, 1979, 21: 91-124..》Google Scholar
[32]
Zhang X X, Zhu Q Y, Zhao J. Geometric morphometric analysis of body-form variability in populations of Tanichthys albonubes[J]. Journal of Fisheries of China, 2017, 41(9): 1365-1373. [张秀霞,朱巧莹,赵俊. 利用几何形态测量学方法分析唐鱼群体的形态变异[J]. 水产学报,2017, 41(9): 1365-1373.].》Google Scholar
[33]
Wang H, Tang Y T, Li G G, et al. Geometric morphometrics of the cephalic contour and its morphological variations among Schizopygopsis stoliczkai (Teleostei: Cyprinidae)[J]. Acta Hydrobiologica Sinica, 2017, 41(1): 182-193. [王贺崐元,汤永涛,李国刚,等. 高原裸裂尻鱼头部轮廓形状及其变异的几何形态测量分析[J]. 水生生物学报,2017, 41(1): 182-193.].》Google Scholar
[34]
Xue Y H, Liu Z L, Li S F, et al. Morphological differentiation of small yellow croaker populations in the south Yellow Sea and the south-central East China Sea[J]. Journal of Fishery Sciences of China, 2021, 28(9): 1162-1174. [薛艳会,刘尊雷,李圣法,等. 南黄海和东海中南部小黄鱼种群形态分化[J]. 中国水产科学,2021, 28(9): 1162-1174.].》Google Scholar
[35]
Wu L H, Tang W Q, Zhang Y. Research on the differences of anadromous migratory distance between Coilia mystus and Coilia nasus based on the transfer process of body lipid[J]. Journal of Fisheries of China, 2017, 41(2): 212-220. [吴利红,唐文乔,张亚. 从体内脂肪的转移过程探讨凤鲚和刀鲚溯河产卵洄游距离的差异性[J]. 水产学报,2017, 41(2): 212-220.].》Google Scholar
[36]
Zhang S S, Luo J, Chen B J, et al. A study on morphological differences of Coilia nasus from different populations[J]. Freshwater Fisheries, 2020, 50(3): 26-33. [张赛赛,罗珺,陈博锦,等. 不同群体刀鲚形态差异研究[J]. 淡水渔业,2020, 50(3): 26-33.].》Google Scholar
[37]
Langerhans R B, DeWitt T J. Shared and unique features of evolutionary diversification[J]. The American Naturalist, 2004, 164(3): 335-349..》Google Scholar
[38]
Turan C. Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) using morphometric and meristic characters[J]. ICES Journal of Marine Science, 2004, 61(5): 774-781..》Google Scholar
[39]
Price S A, Friedman S T, Corn K A, et al. Building a body shape morphospace of teleostean fishes[J]. Integrative and Comparative Biology, 2019, 59(3): 716-730..》Google Scholar
[40]
Yuan C M, Lin J B, Liu R H, et al. On the age and growth of the Chinese anchovy, Coilia ectenes, from the Yangtze River[J]. Acta Hydrobiologica Sinica, 1979, (3): 285-298. [袁传宓,林金榜,刘仁华,等. 刀鲚的年龄和生长[J]. 水生生物学集刊,1978, (3): 285-298.].》Google Scholar
[41]
Jiang T, Liu H B, Shen X Q, et al. Life history variations among different populations of Coilia nasus along the Chinese coast inferred from otolith microchemistry[J]. Journal of the Faculty of Agriculture, Kyushu University, 2014, 59(2): 383-389..》Google Scholar