中国水产科学  2022, Vol. 29 Issue (07): 1044-1051  DOI: 10.12264/JFSC2021-0421
0

引用本文 

刘荣欣, 周演根, 李哲坤, 黄铭, 高勤峰, 董双林. 两种规格大西洋鲑胃排空特征及其模型分析[J]. 中国水产科学, 2022, 29(7): 1044-1051. DOI: 10.12264/JFSC2021-0421.
LIU Rongxin, ZHOU Yangen, LI Zhekun, HUANG Ming, GAO Qinfeng, DONG Shuanglin. Models for evaluating the gastric evacuation in two sizes of Atlantic salmon (Salmo salar)[J]. Journal of Fishery Sciences of China, 2022, 29(7): 1044-1051. DOI: 10.12264/JFSC2021-0421.

基金项目

国家重点研发计划项目(2019YFD0901000);国家自然科学基金项目(31872575, U1906206);山东省重大农业应用技术创新项目(SD2019YY006).

作者简介

刘荣欣(1996–),男,硕士研究生,研究方向为水产养殖生态学. E-mail: liurongxin@stu.ouc.edu.cn

通信作者

通信作者:周演根,教授,研究方向为水产养殖生态学与养殖模式. E-mail: zhouyg@ouc.edu.cn

文章历史

收稿日期:2021-09-09
修改日期:2022-01-06
两种规格大西洋鲑胃排空特征及其模型分析
刘荣欣1,周演根1,李哲坤1,黄铭1,高勤峰1,2,董双林1,2,     
1. 中国海洋大学,海水养殖教育部重点实验室,山东 青岛 266003
2. 青岛海洋科学与技术国家实验室,海洋渔业科学与食物产出过程功能实验室,山东 青岛 266235
摘要:为探究大西洋鲑(Salmo salar)的胃排空特征及其模型,本研究采用胃含物分析法对两种规格[(176.15±27.52) g和(323.33±43.91) g]大西洋鲑进行胃排空实验。经暂养27 d适应后,两种规格大西洋鲑停食48 h,分别在饱食投喂后第0、3、6、9、12、18和24小时测定其胃含物湿重和干重,并用4种数学模型拟合;在筛选出其最佳胃排空模型后,计算最佳干重模型下80%干重胃排空时间作为其最适投喂频率。结果表明,与湿重模型相比,干重胃排空模型能更准确反映大西洋鲑胃排空时间的状况。小规格和大规格大西洋鲑的最佳干重胃排空模型分别为指数模型和平方根模型,其80%干重胃排空时间分别为12.23 h和18.06 h。小规格大西洋鲑胃排空比大规格更快,这可能是因为小规格大西洋鲑消化前期干燥饲料被水分软化的时间更短。本研究结果可为大西洋鲑智能投喂系统提供生物学参数,为实际生产中智能投喂策略提供理论参考。
关键词最适投喂频率    胃排空率模型    大西洋鲑    规格    
Models for evaluating the gastric evacuation in two sizes of Atlantic salmon (Salmo salar)
LIU Rongxin1,ZHOU Yangen,1,LI Zhekun1,HUANG Ming1,GAO Qinfeng1,2,DONG Shuanglin1,2    
1. Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao 266003, China
2. Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, China
Abstract:Water pollution in aquaculture occurs mainly due to fish feces and uneaten feed. Supplying excess food to fish does not accelerate their growth; instead, this excess can cause issues, such as reduced digestion efficiency and increased water pollution. Therefore, an appropriate feeding frequency must be selected to optimize fish growth and minimize negative impacts. Matching the feeding frequency with peak appetite may enhance growth, improve feed conversion efficiency, and minimize water pollution. The return of fish appetite is associated with the gastric evacuation rate. The gastric evacuation of fish is affected by several factors, including fish size. To date, only a few studies have been conducted on the effects of the size of the Atlantic salmon (Salmo salar), an ecologically and culturally important salmonid fish, on the gastric evacuation rates in this species. Therefore, we aimed to determine the gastric evacuation rates and associated mathematical models of Atlantic salmon of different sizes and provide theoretical information for the feeding frequency in the context of aquaculture practice. The gastric evacuation experiment using two sizes of Atlantic salmon (176.15±27.52 g and 323.33±43.91 g) was carried out by analyzing the gastric contents. After adapting to the experimental environment for 27 days and fasting for 48 h, the wet and dry masses of the stomach contents of Atlantic salmon were assessed at predetermined postprandial times (0, 3, 6, 9, 12, 18, and 24 h) via serial slaughtering. Thereafter, the relative wet and dry masses at different time points were fitted using four mathematical models (linear, exponential, square root, and logistic models). The gastric evacuation time for 80% dry mass was calculated as the optimal feeding frequency after selecting the optimal model for each size. The water content in Atlantic salmon increased significantly from 0 to 3 h after feeding and then tended to be stable. Due to the moisture in the stomach, gastric evacuation of the wet mass displayed a different trend from that of the dry mass in both sizes of salmon. The dry-mass fitting model could reflect the gastric evacuation more accurately than the wet-mass fitting model. The optimal dry mass gastric evacuation model of small- and large-size Atlantic salmon aligned with the exponential model (reflecting a trend of fast and then slow) and square root model (reflecting a trend of slow and then fast), respectively. The gastric evacuation times of 80% dry mass in small- and large-size Atlantic salmon were 12.23 and 18.06 h, respectively, which indicated that the small-size Atlantic salmon had faster gastric evacuation time than the large-size salmon. In this study, a "lag phase" was observed within 3 h postprandial. Further, the "lag phase" of the small-sized salmon was found to be shorter than that of the large-sized salmon, which caused differences between the gastric evacuation models for the two salmon sizes. The small-sized salmon may have a faster gastric evacuation rate as softening of the dry feed occurs faster with water during the early digestion of the small- sized Atlantic salmon. These results could provide biological parameters and theoretical references for an innovative feeding strategy applicable to the production of Atlantic salmon.
Key words Salmo salar     optimal feeding frequency    gastric evacuation rate model    size    

在水产养殖生产中,鱼类粪便和未食用饲料是水体污染的主要来源[1]。投喂频率过高非但不能加快鱼类生长,反而会导致鱼类饲料利用率下降、粪便和残饵增加,从而增加养殖成本并加剧水环境污染[2]。因此,养殖过程中需要选择适宜投喂频率以优化鱼类生长并减小负面影响。在鱼类食欲恢复时进行投喂,可提高鱼类饲料利用率并减少残饵[3],而鱼类食欲恢复情况与其胃排空情况密切相关[4]。因此,在实验室模拟估计鱼类胃排空率,可为实际生产中选择最适投喂频率提供理论参考[5]

鱼类胃排空率与温度、鱼体规格、饵料来源、饲料粒径和理化性质密切相关[6]。规格对鱼类胃排空率的影响未得到一致的结论[7]。Basimi等[8]发现欧洲鲽(Pleuronectes platessa L.)胃排空率与体重正相关,小规格欧洲鲽(37 g)胃排空率是大规格(188 g)的30%~60%。相反,Khan等[9]利用平方根拟合模型,发现体重为30~300 g褐鳟(Salmo trutta L.)胃排空率与体重呈负相关。然而,Persson[10]认为体重不是影响河鲈(Perca fluviatilis)胃排空的主要因素。因此,规格与鱼类胃排空率的关系会受到鱼类品种、食物来源及其养殖环境等综合影响。

大西洋鲑隶属于鲑形目(Salmoniformes),鲑科(Salmonidae),鲑属(Salmo),是具有高营养价值和经济价值的世界性冷水鱼养殖品种[11]。黄海冷水团鲑科鱼类养殖采用的是“山海接力”养殖模式,即淡水鲑鱼鱼苗长到150 g以上后,将被运到海水驯养系统进行驯化[12]。在前人大西洋鲑胃排空实验中,Sveier等[13]得出695 g大西洋鲑50%胃排空时间为12.87 h; Aas等[14]得出1131 g大西洋鲑完成100%胃排空时间为27.56 h。以上报道均是对单一且较大规格的大西洋鲑胃排空进行探究。然而,目前未见关于在入海窗口期[15]的不同规格鲑的胃排空率和胃排空模型的报道。因此,本研究采用胃含物分析法[2,16],对同批次苗种孵化的176.15 g和323.33 g降海大西洋鲑饱食投喂后各个时间点的胃含物重量进行函数拟合,得出其最佳胃排空模型及胃排空时间,为探讨黄海冷水团鲑科鱼类智能投喂策略提供理论依据。

1 材料与方法 1.1 实验材料和暂养

本实验所用两种规格大西洋鲑属同一批次苗种孵化,均购自国信东方循环水养殖科技有限公司(山东烟台),并在该公司进行暂养和胃排空实验。

暂养前,先将大西洋鲑从该公司商品鱼养殖车间转移至循环水养殖实验车间,并按规格分别在6个圆柱体水槽(415 L;高0.75 m;直径0.84 m)进行暂养。暂养期间,使用循环水养殖系统保证实验海水水质良好,使用液氧24 h充氧,保证其溶氧充足。每日用YSI专业水质检测仪(Yellow Spring, Ohio, USA)监测水质并记录水温、盐度、溶解氧。暂养期间,每日09:00和18:00饱食投喂沉性商品饲料(丹麦爱乐,粒径4.5 mm,能量22.3 kJ/g,蛋白质43%,脂肪22%,灰分7%)。实验期间水温为(13.56±0.17) ℃,溶解氧(10.57±1.24) mg/L,氨氮小于0.1 mg/L。

1.2 胃排空实验设计

暂养27 d后,开始胃排空实验。每个规格设3个平行,每个平行放养27尾鱼。胃排空实验期间水质条件同暂养期间保持一致。实验开始前48 h对大西洋鲑进行停食以保证其消化道彻底排空。每个规格随机选取3尾鱼进行解剖,并确认其消化道内无饲料残余,用上述商品饲料对各水槽大西洋鲑依次进行1次饱食投喂。每个水槽间隔15 min投喂以保证各水槽大西洋鲑各取样点胃排空时间一致,且在饱食投喂后10 min内清除残饵。根据前期预实验结果,大西洋鲑摄食后0、3、6、9、12、18和24 h,依次从6个水槽各取3尾鱼进行解剖取样(即每个规格的每个时间点取9尾鱼)。使用MS-222 (博美生物科技有限公司,合肥)对鱼进行麻醉后,称量其体长、体重,并将其胃含物取出后称其重量(湿重)。随后将胃含物置于20 mL离心管中60 ℃烘干至恒重并记录重量(干重)。

1.3 数据分析及模型拟合

胃含物水分含量=(胃含物湿重–胃含物干重)/胃含物湿重

胃含物相对重量=任一取样时间点胃含物重量/实验鱼饱食状态下的总摄食量(即饱食投喂后0 h记录的胃含物重量)

胃含物水分含量和相对重量均以平均值±标准差表示。

将各组实验鱼在不同时间点的胃含物相对重量的均值用线性、指数、平方根和逻辑斯蒂模型分别进行拟合。各模型表达式为,

线性模型:Y=A+B×t

指数模型:Y=A×eB×t

平方根模型:Y0.5=A+B×t

逻辑斯谛模型:Y=A+(CA)/[1+(t/D)E]

式中,Y为胃含物相对重量(g); ABCDE为常数;t为摄食后时间(h)。

各模型对应50%、80%、99%胃排空时间计算如下:令Y分别为0.5, 0.2和0.01,求对应t值。

本实验原始数据使用Microsoft Excel 2019进行存储和常规运算。使用Origin 2018 (OriginLab Corp., Northampton, Massachusetts, USA)软件,基于Levernberg-Marquardt算法(LMA)的非线性最小二乘法进行拟合。通过比较各模型的相关系数(R2)、残差平方和(RSS)、P-value,并结合赤池信息准则(Akaike Information Criterion, AIC)和贝叶斯信息准则(Bayesian Information Criterion, BIC)来筛选其最佳拟合模型。

本实验使用SAS 9.4 (SAS Institute Inc., Cary, North Carolina, USA)进行单因素方差分析(One- Way ANOVA),其组间差异采用SNK (Student- Newman-Keuls)(方差齐性)和Tamhane’s T2 (方差不齐)检验,以P<0.05为显著差异水平。使用Origin 2018作图。

2 结果与分析 2.1 两种规格大西洋鲑的胃含物水分含量变化

两种规格大西洋鲑胃含物水分含量变化见图1表1。两种规格大西洋鲑胃含物水分含量在摄食后0~24 h内,均呈现近似“增高-稳定-增高”的趋势。两种规格大西洋鲑胃含物水分含量均在摄食后0~3 h显著上升(P<0.05),在3~18 h各时间点无显著差异,在18~24 h小规格组显著上升(P< 0.05),而大规格组无显著差异。

图1  两种规格大西洋鲑胃含物水分含量变化 Fig. 1  The dynamic change of gastric moisture content in Salmo salar with two sizes
表1  两种规格大西洋鲑胃含物相对重量和水分含量变化 Tab. 1  Relative weight of gastric contents and water proportion in Salmo salar with two sizes $\bar{x}\pm \text{SD}$
2.2 两种规格大西洋鲑胃排空特征

在摄食后0~24 h,大西洋鲑胃含物相对湿重和相对干重变化情况见表1图2。两种规格大西洋鲑胃含物相对湿重均在0~3 h显著上升(P< 0.05),在3~24 h持续下降,且下降趋势均为先快(3~12 h)后慢(12~24 h)(图2a, 图2c)。其中,小规格大西洋鲑胃含物相对湿重在第12小时低于50%,在第24小时低于10%;大规格大西洋鲑胃含物相对湿重在第12小时高于60%,在第24小时高于10%。

两种规格大西洋鲑胃含物相对干重在摄食后持续下降。其中,小规格下降趋势为先快(0~6 h)后慢(6~24 h),在摄食后6 h其胃含物相对干重低于50% (表1, 图2b);大规格下降趋势为先慢(0~ 3 h)后快(3~9 h)再减慢(9~24 h),在摄食后6 h其胃含物相对干重仍高于60% (表1, 图2d)。两种规格大西洋鲑相对干重均在摄食后第24小时趋近于0。

图2  两种规格大西洋鲑摄食后胃排空情况a, b, c, d分别表示小规格湿重、小规格干重、大规格湿重和大规格干重胃排空情况. Fig. 2  Gastric evacuation of two sizes of Salmo salar after feedinga, b, c and d represent the gastric evacuation condition of the wet mass in small size, dry mass in small size, wet mass in large size and dry mass in large size, respectively.
2.3 两种规格大西洋鲑最佳胃排空模型和胃排空时间

4种数学模型对两种规格大西洋鲑胃排空拟合参数比较见表2,大西洋鲑最佳胃排空模型和胃排空时间见表3。通过比较各模型拟合的相关系数(R2),发现4种模型对大规格组胃含物相对湿重的拟合效果较差,R2均小于0.8。4种模型对各规格组大西洋鲑相对干重的拟合效果较好。

通过R2并结合AIC和BIC分析结果,本研究选择平方根模型和指数模型分别作为小规格大西洋鲑湿重和干重胃排空最佳拟合模型(R2分别为0.850和0.993)。大规格组中,线性模型对其湿重胃排空拟合R2最大,SD最小,拟合效果最佳;平方根模型对其干重胃排空拟合R2最大,SD和RSS最小,拟合效果最佳。

两种规格大西洋鲑50%和80%湿重胃排空时间均长于干重胃排空时间,且50%湿重胃排空时间是干重胃排空时间的2倍左右。不论湿重拟合还是干重拟合,小规格组50%和80%胃排空时间均短于大规格组,99%胃排空时间均长于大规格组。

3 讨论

鱼类胃含物水分来自饵料本身、消化液分泌和鱼的吞饮等[7,17]。本实验中,两种规格大西洋鲑胃含物水分含量均在摄食后0~3 h显著上升,并在随后保持稳定。类似地,硬头鳟(Oncorhynchus mykiss)胃含物水分含量呈现摄食后0~6 h显著上升,6~48 h保持稳定的趋势(Liu等,未发表资料)。因此,鲑科鱼类摄食后前期,水分会随着消化开始而进入胃部使其含量增加,之后胃内进出水分保持相对平衡。本实验中,在摄食后0~3 h,两种规格大西洋鲑胃含物相对干重下降,而其相对湿重显著上升,这说明大西洋鲑胃含物所纳入的水分会补偿排空饵料质量的减少。随着大西洋鲑消化时间推移,两种规格的胃含物湿重开始下降但时间有所不同(小规格为3 h,大规格为6 h),这表明水分对大规格的胃含物湿重的“补偿作用”强于小规格的。

表2  两种规格大西洋鲑胃排空拟合参数比较 Tab. 2  Comparation of fitting degree parameters of gastric evacuation of Salmo salar with two sizes
表3  两种规格大西洋鲑最佳胃排空模型和胃排空时间 Tab. 3  The best fitting model and predicted gastric evacuation time of Salmo salar with two sizes

胃含物水分会显著影响大西洋鲑胃排空模型的建立。由表3可知,同一规格大西洋鲑最佳干重与湿重胃排空模型均不同。通过比较各模型对湿重和干重胃排空拟合的R2,发现大西洋鲑胃含物干重的拟合效果优于湿重,这表明干重拟合模型更能准确反映大西洋鲑胃排空的实际情况。Pääkkönen等[18]报道胃含物水分会直接影响胃排空模型的构建,从而降低湿重拟合效果。类似地,Hopkins等[19]报道通过黑色和黄色石斑鱼胃含物湿重估算其胃排空,会因高估其胃内实际食物的重量而降低其准确性。因此,本实验采用干重拟合结果来分析两种规格大西洋鲑胃排空情况。

线性模型、指数模型和平方根模型分别代表鱼类摄食后胃含物趋近匀速、先快后慢和由慢到快再减慢的下降趋势[2]。本实验中两种规格大西洋鲑最佳干重胃排空模型基本符合实际胃排空过程的干重下降趋势:小规格为“先快后慢”趋势的指数模型且消化初期胃排空速率较高;大规格组为“先慢后快再减慢”趋势的平方根模型且消化初期胃排空速率低于小规格。类似地,黄铭等[20]报道在16 ℃下32.94 g虹鳟(O. mykiss)(小规格)的最佳干重胃排空模型为指数模型,105.15 g虹鳟(大规格)最佳干重胃排空模型为平方根模型。此外,通过比较本实验两种规格大西洋鲑摄食后3 h和6 h的胃含物相对重量,可发现小规格的“滞后期”[21] (即胃内饲料软化成小颗粒进行消化吸收的过程)短于大规格的,这可能是造成两种规格最佳干重胃排空模型不同的原因之一。

两种规格大西洋鲑消化初期“滞后期”的不同也会影响其胃排空时间。根据最佳干重胃排空模型,小规格大西洋鲑50%和80%胃排空时间分别为5.22 h和12.23 h,而大规格分别为9.63 h和18.06 h。这表明相同温度和相同饲料水平下,小规格大西洋鲑胃排空比大规格快。将两种规格大西洋鲑投喂后0 h、3 h、6 h和12 h胃含物相对干重进行相减,其差值分别为0、0.233、0.216和0.190 (后三个差值相近),这说明两种规格大西洋鲑胃排空程度的差距是在摄食后0~3 h产生的。Aas等[14]报道摄食后0~2 h,投喂被浸泡饲料的大西洋鲑胃排空程度显著高于投喂干燥饲料的大西洋鲑,此后两组胃排空率无显著差异,与本研究结论相符。因此,本研究认为鱼类消化前期干燥饲料被水分软化的过程,即“滞后期”长短是决定鱼类胃排空时间的重要因素。本实验小规格大西洋鲑“滞后期”短于大规格组的可能原因:(1) 小规格鱼类单位体重代谢率高[22]且消化速率更快[23-24]; (2) 大规格鱼类胃部贮存了更多饲料,延长了饲料经过消化时间和水将其软化时间[25]; (3) 鱼类胃中颗粒的迅速崩解和胃膨胀可能引起减慢胃排空的负反馈机制[26]。总之,对于相同粒径的饲料,大规格大西洋鲑可能由于饲料摄取更多或消化前期颗粒崩解更快而引起“滞后期”延长,从而导致胃排空率降低。

已有研究表明,鱼类胃排空超过80%时食欲基本恢复[4,27],此时鱼类饵料利用率较高[3,28]。因此,本实验计算出的80%干重胃排空时间,可作为大西洋鲑实际生产中投喂间隔的理论参考。据此,建议实际生产中约180 g和320 g大西洋鲑降海鲑投喂间隔分别为12 h和18 h。此外,因“滞后期”长短会影响大西洋鲑胃排空时间,在实际生产中条件允许情况下,可对干燥商品饲料可进行润湿处理后再投喂,以缩短食欲恢复时间,从而增加其摄食量。

值得注意的是,基于本实验的最佳胃排空模型,小规格大西洋鲑99%胃排空时间长于大规格的,这不能说明小规格在消化后期胃排空速率比大规格更慢。这可能是模型选择的原因,因为指数模型和平方根模型在Y趋近于0时会呈现下降缓慢的特点,从而造成结果偏差。因此,除了本研究所用4种数学模型外,需建立更优的数学模型拟合鱼类胃排空,从而得出更准确的胃排空时间,其建模方法有待进一步研究。

4 结论

胃排空实验结果表明,两种规格大西洋鲑干重胃排空模型更能准确反映其胃排空情况。小规格(176.15 g)和大规格(323.33 g)大西洋鲑最佳干重胃排空模型分别为指数模型和平方根模型,最适投喂间隔分别为12.23 h和18.06 h。本实验中,小规格大西洋鲑胃排空较大规格更快,这可能是由于小规格的消化前期干燥饲料被水分软化的过程更短。

参考文献
[1]
Ballester-Moltó M, Sanchez-Jerez P, Cerezo-Valverde J, et al. Particulate waste outflow from fish-farming cages. How much is uneaten feed? [J]. Marine Pollution Bulletin, 2017, 119(1): 23-30..》Google Scholar
[2]
Wang W, Zhang K Q, Wen H S, et al. Effects of feeding frequency on gastric evacuation, growth performance and body composition of juvenile Lateolabrax maculatus[J]. Periodical of Ocean University of China, 2018, 48(6): 55-62. [王伟,张凯强,温海深,等. 投喂频率对花鲈幼鱼胃排空、生长性能和体组分的影响[J]. 中国海洋大学学报(自然科学版), 2018, 48(6): 55-62.].》Google Scholar
[3]
Booth M A, Tucker B J, Allan G L, et al. Effect of feeding regime and fish size on weight gain, feed intake and gastric evacuation in juvenile Australian snapper Pagrus auratus[J]. Aquaculture, 2008, 282(1-4): 104-110..》Google Scholar
[4]
Riche M, Haley D I, Oetker M, et al. Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L.)[J]. Aquaculture, 2004, 234(1-4): 657-673..》Google Scholar
[5]
Mychek-Londer J G, Bunnell D B. Gastric evacuation rate, index of fullness, and daily ration of Lake Michigan slimy (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii)[J]. Journal of Great Lakes Research, 2013, 39(2): 327-335..》Google Scholar
[6]
Khan U, Seyhan K, Başçinar N, et al. Satiation meal and the effects of meal and body sizes on gastric evacuation rate in brook trout Salvelinus fontinalis fed commercial pellets[J]. Journal of Fish Biology, 2016, 89(2): 1227-1238..》Google Scholar
[7]
Zhang B, Sun Y, Tang Q S. Gastric evacuation rate of fish and its influence factors[J]. Acta Ecologica Sinica, 2001, 21(4): 665-670. [张波,孙耀,唐启升. 鱼类的胃排空率及其影响因素[J]. 生态学报,2001, 21(4): 665-670.].》Google Scholar
[8]
Basimi R A, Grove D J. Gastric emptying rate in Pleuronectes platessa L.[J]. Journal of Fish Biology, 1985, 26(5): 545-552..》Google Scholar
[9]
Khan U, Seyhan K. Parameterizing an expanded square root model to account for the effects of temperature, meal size, and body size on gastric evacuation rate in farmed brown trout[J]. Aquaculture Research, 2021, 52(10): 4849-4857..》Google Scholar
[10]
Persson L. The effects of temperature and meal size on the rate of gastric evacuation in perch (Perca fluviatilis) fed on fish larvae[J]. Freshwater Biology, 1981, 11(2): 131-138..》Google Scholar
[11]
Minich J J, Poore G D, Jantawongsri K, et al. Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: Impacts of the built environment on fish mucosal microbiota[J]. Applied and Environmental Microbiology, 2020, 86(12): e00411-e00420..》Google Scholar
[12]
Dong S L. Researching progresses and prospects in large Salmonidae farming in cold water mass of Yellow Sea[J]. Periodical of Ocean University of China, 2019, 49(3): 1-6. [董双林. 黄海冷水团大型鲑科鱼类养殖研究进展与展望[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 1-6.].》Google Scholar
[13]
Sveier H, Wathne E, Lied E. Growth, feed and nutrient utilisation and gastrointestinal evacuation time in Atlantic salmon (Salmo salar L.): The effect of dietary fish meal particle size and protein concentration[J]. Aquaculture, 1999, 180(3-4): 265-282..》Google Scholar
[14]
Aas T S, Sixten H J, Hillestad M, et al. Measurement of gastrointestinal passage rate in Atlantic salmon (Salmo salar) fed dry or soaked feed[J]. Aquaculture Reports, 2017, 8: 49-57..》Google Scholar
[15]
Zhou Y G, Yang J W, Xiong Y H, et al. Researching progresses in smolt osmophysiology and their sea entry time windows[J]. Periodical of Ocean University of China, 2019, 49(3): 18-27. [周演根,杨静雯,熊莹槐,等. 降海鲑渗透生理及入海窗口期的研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 18-27.].》Google Scholar
[16]
Guo H Y, Zhang X M, Zhang Z H, et al. Study on feeding habits of Sebastes schlegelii larvae and gastric evacuation rate of juvenile[J]. Journal of Fisheries of China, 2017, 41(2): 285-296. [郭浩宇,张秀梅,张宗航,等. 许氏平鲉仔、稚鱼的摄食特性及幼鱼胃排空率[J]. 水产学报,2017, 41(2): 285-296.].》Google Scholar
[17]
Kristiansen H R, Rankin J C. Discrimination between endogenous and exogenous water sources in juvenile rainbow trout fed extruded dry feed[J]. Aquatic Living Resources, 2001, 14(6): 359-366..》Google Scholar
[18]
Pääkkönen J P J, Marjomaki T J. Gastric evacuation rate of burbot fed single-fish meals at different temperatures[J]. Journal of Fish Biology, 1997, 50(3): 555-563..》Google Scholar
[19]
Hopkins T E, Larson R J. Gastric evacuation of three food types in the black and yellow rockfish Sebastes chrysomelas (Jordan and Gilbert)[J]. Journal of Fish Biology, 1990, 36(5): 673-681..》Google Scholar
[20]
Huang M, Zhou Y G, Chen X W J, et al. Studies on gastric evacuation rate and feeding frequency of rainbow trout (Oncorhynchus mykiss) in two sizes[J]. Periodical of Ocean University of China, 2020, 50(12): 33-39. [黄铭,周演根,陈薛伟杰,等. 两种规格虹鳟胃排空模型和投喂频率的研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(12): 33-39.].》Google Scholar
[21]
Jia Y D, Gao Y H, Jing Q Q, et al. Gastric evacuation and changes in postprandial blood biochemistry, digestive enzymes, and appetite-related genes in juvenile hybrid grouper (Epinephelus moara ♀ × E. lanceolatus ♂)[J]. Aquaculture, 2021, 530: 735721..》Google Scholar
[22]
Rezende E L, Bozinovic F. Thermal performance across levels of biological organization[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2019, 374(1778): 20180549..》Google Scholar
[23]
Mu X D, Wang P X, Hu Y C, et al. Morphological structure and growth characteristics of juvenile Asian arowana (Scleropages formosus)[J]. Journal of Fisheries of China, 2010, 34(9): 1379-1386. [牟希东,王培欣,胡隐昌,等. 亚洲龙鱼形态结构及幼鱼生长特性[J]. 水产学报,2010, 34(9): 1379-1386.].》Google Scholar
[24]
Yang Y, Li E C, Jiang X Q, et al. The standard metabolism of juvenile darkbarbel catfish, Pelteobagrus vachelli[J]. Fisheries Science, 2011, 30(4): 192-196. [杨莹,李二超,姜雪芹,等. 瓦氏黄颡鱼幼鱼标准代谢的初步研究[J]. 水产科学,2011, 30(4): 192-196.].》Google Scholar
[25]
Mills E L, Ready R C, Jahncke M, et al. A gastric evacuation model for young yellow perch, Perca flavescens[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1984, 41(3): 513-518..》Google Scholar
[26]
Anderson C D. A review of causal factors and control measures for bloat in farmed salmonids with a suggested mechanism for the development of the condition[J]. Journal of Fish Diseases, 2006, 29(8): 445-453..》Google Scholar
[27]
Grove D J, Loizides L G, Nott J. Satiation amount, frequency of feeding and gastric emptying rate in Salmo gairdneri[J]. Journal of Fish Biology, 1978, 12(5): 507-516..》Google Scholar
[28]
Rojas-Tirado P, Pedersen P B, Vadstein O, et al. Changes in microbial water quality in RAS following altered feed loading[J]. Aquacultural Engineering, 2018, 81: 80-88..》Google Scholar