中国水产科学  2022, Vol. 29 Issue (07): 1064-1072  DOI: 10.12264/JFSC2021-0578
0

引用本文 

刘通, 梁旭方, 庄武元, 蔡文静, 张焱鹏. 翘嘴鳜pck1t1r1基因DNA甲基化在其转食人工饲料中的作用[J]. 中国水产科学, 2022, 29(7): 1064-1072. DOI: 10.12264/JFSC2021-0578.
LIU Tong, LIANG Xufang, ZHUANG Wuyuan, CAI Wenjing, ZHANG Yanpeng. Association of DNA methylation of pck1 and t1r1 with the food habits of Chinese perch, Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2022, 29(7): 1064-1072. DOI: 10.12264/JFSC2021-0578.

基金项目

国家重点研发计划资助蓝色粮仓项目(2018YFD0900400).

作者简介

刘通(1996‒),男,硕士研究生,研究方向为鱼类表观遗传学. Email: 778323043@qq.com

通信作者

通信作者:梁旭方,博士,教授,研究方向为鱼类营养与饲料. Email: xfliang@mail.hzau.edu.cn

文章历史

收稿日期:2021-12-12
修改日期:2022-01-03
翘嘴鳜pck1t1r1基因DNA甲基化在其转食人工饲料中的作用
刘通1,2,梁旭方1,2,庄武元1,2,蔡文静1,2,张焱鹏1,2,     
1. 华中农业大学水产学院,华中农业大学鳜鱼研究中心,湖北 武汉 430070
2. 长江经济带大宗水生生物产业绿色发展教育部工程研究中心,湖北 武汉 430070
摘要:为探究翘嘴鳜(Siniperca chuatsi)磷酸烯醇式丙酮酸羧基酶(phosphoenolpyruvate carboxykinase, PEPCK)及鲜味受体(taste receptor type 1 member 1, T1R1)基因DNA甲基化在其转食人工饲料中的作用,实验检测了易驯食(可转食人工饲料)及不易驯食翘嘴鳜(只接受活鱼)的脑、肝脏和尾鳍中pck1t1r1基因的表达及启动子区域CpG岛的DNA甲基化水平。结果显示,pck1基因主要在肝脏中表达(P<0.05),且组织表达水平与DNA甲基化水平密切相关但并不完全一致;在易驯食组肝脏中的pck1表达水平显著低于不易驯食组(P<0.05),且在–2169 nt位点的甲基化水平显著高于不易驯食组(P<0.05)。t1r1基因主要在脑中表达(P<0.05),而甲基化水平在不同组织间无显著性差异(P>0.05);在易驯食组脑t1r1表达量显著低于不易驯食组(P<0.05)且甲基化水平在两个组之间没有显著性差异(P>0.05)。研究表明,pck1基因启动子区域的DNA甲基化可能通过调控pck1基因的表达,促进翘嘴鳜转食人工饲料;而t1r1基因的甲基化可能不是调控其表达以促进翘嘴鳜转食的主要方式。
关键词翘嘴鳜    食性转变    DNA甲基化     pck1      t1r1     
Association of DNA methylation of pck1 and t1r1 with the food habits of Chinese perch, Siniperca chuatsi
LIU Tong1,2,LIANG Xufang,1,2,ZHUANG Wuyuan1,2,CAI Wenjing1,2,ZHANG Yanpeng1,2    
1. College of Fisheries, Huazhong Agricultural University; Chinese Perch Research Center of Huazhong Agricultural University, Wuhan 430070, China
2. Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
Abstract:One of the most economically-important fish cultivated in China, the Chinese perch (Siniperca chuatsi), refuses any dead prey fish or artificial diets as they begin to consume the feed. This special food habit markedly increases the production costs and reduces the economic benefits of Chinese perch aquaculture. However, some of these fish can be trained to change their inborn feeding habits to consuming artificial diets after food habit domestication. The roles of phosphoenolpyruvate carboxykinase-1 (pck1) and taste 1 receptor 1 (t1r1) and the possible regulatory mechanism mediated by DNA methylation in food habits transformation were explored. Two groups of mandarin fish were used in the study after domestication: Group W, which consumed live prey fish, and Group C, which consumed artificial diets. The expression levels and DNA methylation status in the upstream region of the transcriptional initiation site of pck1 and t1r1 were detected in the caudal fin, liver, and brain of the fishes from the two groups. The mRNA level of pck1 was significantly higher in the liver than that in the brain and caudal fin (P<0.05). Methylation of pck1 was generally less frequent in the liver compared with that in the brain and caudal fin; however, the expression levels of pck1 were not necessarily related to the DNA methylation extent in different tissues. For example, compared with caudal fin, the pck1 mRNA levels were relatively higher in the brain; however, some CpG sites were highly methylated. Compared with the caudal fin and liver, a higher expression level of t1r1 was found in the brain (P<0.05). However, no differences were found in the methylation levels at the CpG sites in these tissues (P>0.05). Compared with Group W, the expression levels of pck1 were significantly lower in the liver, aligning with a greater extent of methylation at –2169 nt in Group C (P<0.05). The transcription levels of t1r1 were lower in the brain of Group C (P<0.05), and the DNA methylation extent did not significantly differ between the two groups at any of the CpG sites in the brain (P>0.05). Herein, no evidence supported the hypothesis that the DNA methylation status of pck1 and t1r1 in the brain and liver (tissues that can be sampled repeatedly) could be deduced from that in the caudal fin (a tissue that cannot be sampled repeatedly) despite the strong correlations found between the absolute methylation levels in red blood cells (cells that can be sampled repeatedly) and those in the liver, kidney, and brain (tissues that cannot be sampled repeatedly) in previous studies using small songbird. These studies also revealed that the DNA methylation status in the blood cells is a potential biomarker for the DNA methylation status in other tissues. Nonetheless, our results indicate that pck1 and t1r1 might be responsible for the food habit transformation of Chinese perch from consuming live prey fish to artificial diets. Further, the DNA methylation levels in the CpG island of pck1 might be pivotal for fish as their food habits could be successfully transformed into consuming artificial diets via the regulation of pck1 expression. Of note, the DNA methylation of t1r1 may not be the major regulatory factor in food habit transformation. Collectively, our findings enable a better understanding of the role of pck1 and t1r1 in the food habit transformation of Chinese perch and serve as a reference for future research on the genetic regulatory mechanism of food habit transformation in Chinese perch, especially based on DNA methylation.
Key words Siniperca chuatsi     food habits domestication    DNA methylation     pck1      t1r1     

鱼类食性是适应环境而形成的一种特性,受到包括内在的遗传和生理因素及外在的如食物组成等多种因素的影响[1]。磷酸烯醇式丙酮酸羧基酶(phosphoenolpyruvate carboxykinase, PEPCK)是鱼类糖异生途径的限速酶[2-3]。对虹鳟(Oncorhynchus mykiss)等肉食性鱼类的研究表明,包括PEPCK基因在内的糖异生关键基因高表达是它们不能有效适应高碳水化合物饲料的重要原因[4-6]。鲜味受体(taste receptor type 1 member 1, T1R1)与鱼类对鲜味化合物的敏感性有关。斑马鱼(Danio rerio) t1r1基因的敲除促进了其对浮萍等通常排斥的食物的接受[7]。团头鲂(Megalobrama amblycephala) t1r1基因的缺失促进了其适应植物食性[8]。草鱼(Ctenopharyngodon idella) t1r1基因的表达水平下调促进了其从肉食性转食草食[9]。由此可见,pck1t1r1基因与鱼类的摄食偏好及食性密切相关。

DNA甲基化是一种发生在基因组CpG二核苷酸位点上的修饰,该位点可聚集在基因的启动子区域形成CpG岛,通常与基因表达的抑制有关[10-11]。作为一种精确调节基因表达的方式,DNA甲基化与鱼类的生长发育[12-13]、繁殖[14-15]、环境适应[16]、食性转变[9,17]等紧密相关。另外,在大山雀(Parus major)等小型鸟类[18-19]及小鼠(Mus musculus)[20]中的研究表明,血液的DNA甲基化水平与肝脏、肾脏等组织的甲基水平密切相关。但在鱼类中,类似的将可重复取样组织的DNA甲基化水平作为靶组织的替代研究鲜有报道。而鱼类尾鳍作为一种可再生的组织,在斑马鱼中的研究表明,其在组织再生过程中,谱系特异性DNA甲基化可维持不变[21]

翘嘴鳜(Siniperca chuatsi)俗称桂花鱼,肉鲜味美,经济价值高,自开食起终生以活鱼虾为食[22]。但在经过驯化后,部分翘嘴鳜可转食人工饲料[23]。在翘嘴鳜中,You等[24]发现pck1基因与其对人工饲料的稳定摄食有关,Dou等[17]发现t1r1基因与其转食死饵有关,但关于它们在翘嘴鳜转食人工饲料中的作用及DNA甲基化发挥的作用,目前仍未得知。鉴于此,本研究探索了pck1t1r1基因在易驯、不易驯翘嘴鳜不同组织中的差异表达及DNA甲基化水平,以期能为进一步揭示翘嘴鳜转食人工饲料的分子机制提供参考,为完善翘嘴鳜人工饲料驯化技术提供理论依据。

1 材料与方法 1.1 实验用鱼及饲料制作

实验用翘嘴鳜[(144.07±11.30) g]来自于华中农业大学鳜研究中心(中国,武汉)。实验用鱼大小一致、体表无外伤、健康。在正式实验之前,全部暂养于华中农业大学水产学院鳜遗传育种创新基地的循环水系统的3个养殖缸中1周。水温保持在(24±1) ℃,溶解氧6.98~7.50 mg/L, pH为7.01~7.64。暂养期间每天17:30过量投喂体重4 g左右的活印度麦鲮(Cirrhinus mrigala)作为饵料鱼。人工饲料制作于华中农业大学水产学院(中国,武汉),按照You等[24]描述的方法制作,所有的饲料原料均购自高龙饲料公司(中国,武汉)。

1.2 翘嘴鳜食性驯化实验及取样

翘嘴鳜食性驯化严格按照Liang等[23]描述的方法进行。驯化结束后,将能够成功转食人工饲料的翘嘴鳜定义为易驯食组(Group C),将从驯化初期便拒食死饵的翘嘴鳜(一直以活饵为食)定义为不易驯食组(Group W)。将每组鱼分养于3个养殖缸中,饲养条件完全一致,每组鱼每天17:30饱食投喂活印度麦鲮2周以消除驯化期间食物组成不同对翘嘴鳜可能产生的影响。在每个组中随机选择3尾鱼进行基因表达及DNA甲基化水平分析。最后一次投喂4 h后,用MS-222 (Redmond, WA, USA)(200 mg/L)将实验鱼麻醉并取样,翘嘴鳜尾鳍(基于特定组织的甲基化状态可能与尾鳍的DNA甲基化状态密切相关这一假设)、脑(脑中t1r1基因的表达变化与翘嘴鳜转食死饵有关[17])及肝脏(肝脏在鱼类营养代谢中发挥核心作用[25-26])被取出,并立即冻在液氮中,随后储存在−80 ℃超低温冰箱中待用。

1.3 实验方法 1.3.1 总RNA提取及实时荧光定量PCR分析

总RNA的提取采用Trizol法(TaKaRa, Tokyo, Japan),利用NanoDrop 2000 (Thermo Scientific, USA)及Agilent 2100 Bioanalyzer (Agilent, USA)对总RNA的浓度与质量进行测定,并用2%的琼脂糖电泳检测RNA的完整性。采用Revert Aid™ Reverse Transcriptase (TaKaRa, Tokyo, Japan)进行总RNA的反转录反应。利用实时荧光定量PCR技术检测pck1t1r1基因在不同组织中的表达水平。实时荧光定量PCR在定量热循环仪(MyiQ™ 2 Two- Color Real-Time PCR Detection System, BIO-RAD, Hercules, CA, USA)上进行,方法参照Liang等[27]。利用Primer Premier 5.0软件来设计引物,根据AceQ qPCR SYBR Green Master Mix (Vazyme Biotech Co., Piscataway, NJ, USA)说明书的步骤测定引物的扩增效率,区间在98%~105%,引物信息如表1所示。翘嘴鳜rpl13a (60S ribosomal protein L13a)基因由于其在各个组织中表达稳定,因此被选作为内参基因[24]。基因表达水平利用2−ΔΔCt方法计算。

表1  实时荧光定量PCR引物信息 Tab. 1  Primer sequences for the quantitative real-time PCR
1.3.2 亚硫酸氢盐硫化PCR (bisulphite sequencing polymerase chain reaction, BSP)分析DNA的甲基化水平

利用TIANamp Genomic DNA Kit (Tiangen, Beijing)试剂盒提取基因组DNA。采用EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA)试剂盒根据说明书对基因组DNA进行亚硫酸氢盐修饰处理。从实验室翘嘴鳜全基因组中获取pck1t1r1基因的起始密码子(ATG)上游3500 bp的序列,提交至在线预测软件(网页版) Methprimer (http://www.urogene.org/cgi-bin/methprimer/ methprimer.cgi)以获得CpG岛(CGI)和候选CpG位点信息。搜索参数如下:CpG岛片段大小(Island size)>100 bp, GC碱基含量(GC Percent)>50.0%, CpG岛观察值/预测值(Observed/Expected, Obs/Exp)>0.6。BSP引物由在线预测软件MethPrimer推荐,采用Primer Premier 5.0软件检测是否合格,比较后采用特异性高的引物,扩增引物序列见表2。采用Taq plus DNA Polymerase (Vazyme Biotech, Nanjing, China)进行PCR反应。利用Gel Purification Kit (Sangon, Shanghai, China)试剂盒纯化PCR产物,然后克隆至载体pEASY-T1 (Transgen, Beijing, China)中。每个样品随机选取10个阳性克隆送至上海生工(ABI3730测序仪,Applied Biosystems)进行测序,每个组总共收集成功测序的30个阳性克隆,测序结果采用在线软件(网页版) QUMA (QUantification tool for Methylation Analysis) (http://quma.cdb.riken.jp/)进行分析,将测序序列与亚硫酸氢盐修饰前的序列进行比对分析,根据比对结果确定候选CpG位点是否发生甲基化以及甲基化水平。

表2  翘嘴鳜pck1t1r1基因亚硫酸氢盐测序分析引物信息 Tab. 2  Primers of pck1 and t1r1 used in bisulfite sequencing polymerase chain reaction
1.4 统计分析

采用软件SPSS 25 (IBM, Chicago, IL, USA)的Shapiro-Wilk法标准化数据。利用软件SPSS 25,通过独立样本T检验或单因素方差分析(one-way ANOVA)分析所有数据,数据表示为平均值±标准误(x¯±SE), P<0.05则判定存在显著性差异。

2 结果与分析 2.1 翘嘴鳜pck1和t1r1基因在不同组织中的表达及DNA甲基化水平

pck1基因在肝脏中的表达量显著高于脑和尾鳍(P<0.05),在脑中的表达水平高于尾鳍,但无显著性差异(P>0.05)(图1)。t1r1基因在脑中的表达量显著高于肝和尾鳍(P<0.05),在肝中的表达水平高于尾鳍,但无显著性差异(P>0.05)(由于pck1t1r1基因在易驯食组与不易驯食组中的组织表达趋势一致,因此图1图2展示了不易驯食组的结果)。

图1  不易驯食组尾鳍、肝脏及脑中pck1基因表达水平*表示在不同组织之间存在显著性差异(P<0.05). Fig. 1  Expression levels of pck1 in caudal fin, liver and brain of Chinese perch in Group W* means significant difference between different tissues (P<0.05).
图2  不易驯食组尾鳍、肝脏及脑中t1r1基因表达水平*表示在不同组织之间存在显著性差异(P<0.05). Fig. 2  Expression levels of t1r1 in caudal fin, liver and brain of Chinese perch in Group W* means significant difference between different tissues (P<0.05).

pck1基因在–2169 nt及–2077 nt位点,肝脏中的DNA甲基化水平显著低于脑和尾鳍(P<0.05),在–2160 nt位点肝脏中DNA甲基化水平显著低于脑(P<0.05) (图3)。另外,在–2199 nt、–2106 nt和–2086 nt位点,肝脏中DNA甲基化水平显著低于尾鳍(P<0.05),和脑相比没有显著性差异(P> 0.05)。t1r1基因所有位点的DNA甲基化水平在不同组织之间均无显著性差异(P>0.05) (图4)。

2.2 易驯、不易驯食组不同组织中pck1及t1r1基因的表达水平

与不易驯食组相比,pck1基因在易驯食组肝脏中的表达水平显著降低(P<0.05)(图5b),在脑和尾鳍中,pck1基因在两组之间的表达水平无显著性差异(P>0.05)(图5a, 5c)。与不易驯食组相比,t1r1基因在易驯食组的脑中表达水平显著降低 (P<0.05)(图6c),在肝脏和尾鳍中两个组之间无显著性差异(P>0.05)(图6a, 6b)。

2.3 易驯、不易驯食组不同组织中pck1及t1r1基因DNA甲基化水平

与不易驯食组相比,易驯食组肝脏中pck1基因在–2169 nt位点的DNA甲基化水平显著升高(P<0.05),而在脑及尾鳍中pck1基因的所有CpG位点的DNA甲基化水平在两组之间均无显著性差异(P>0.05)(图7)。在脑、肝脏和尾鳍中,t1r1基因的所有CpG位点的DNA甲基化水平在易驯、不易驯食组之间均无显著性差异(P>0.05) (图8)。

3 讨论 3.1 翘嘴鳜pck1及t1r1基因组织表达及DNA甲基化水平分析

pck1基因主要在翘嘴鳜的肝脏中表达,这与在其他鱼类上的研究结果基本一致[28-31]。并且,pck1基因的所有CpG位点在肝脏中的甲基化水平均低于脑和尾鳍,尽管在有的位点上没有显著性差异。这表明pck1基因在翘嘴鳜肝脏中较高的表达水平可能与其较低的甲基化水平有关。但其组织表达水平与DNA甲基化水平并不完全一致,例如pck1基因在脑中的表达水平高于尾鳍,但在–2169nt及–2160nt位点的DNA甲基化水平也高于尾鳍。这种基因在不同组织中的表达与甲基化水平并不完全一致的结果在过去对鲤(Cyprinus carpio)[32]及乌鸡(Gallus domesticlus brisson)[33]的研究中也有报道。t1r1基因在翘嘴鳜脑中表达量最高,但其所有CpG位点的甲基化水平在3个组织之间均无显著性差异。这表明翘嘴鳜t1r1基因的组织表达与DNA甲基化水平不具有相关性。另外,在小型鸟类及小鼠中的研究发现,红细胞(可重复取样组织)的绝对甲基化水平与其肝脏、肾脏(不可重复取样组织)等组织的绝对甲基化水平之间密切相关,可以将血液的DNA甲基化水平作为特定组织甲基化水平的指示物[18-20]。然而,在本研究中,未发现翘嘴鳜的脑、肝脏组织中的pck1t1r1基因DNA甲基化水平与尾鳍的DNA甲基化水平之间的关联。因此,在翘嘴鳜中,通过研究尾鳍等可重复取样组织的甲基化水平以了解肝脏、脑等特定组织的甲基化水平,尚且需要更进一步的研究。

图3  翘嘴鳜pck1基因CpG岛分布、CpG位点信息及不易驯食组脑、肝脏及尾鳍中pck1基因CpG岛的DNA甲基化水平每组CpG位点的3个柱子上不同字母表示差异显著(P<0.05). Fig. 3  The distribution and locations of CpG islands of pck1 gene in Chinese perch and the DNA methylation statue of pck1 gene CpG islands in the brain, liver and caudal fin of Chinese perch in Group WDifferent letters on the bar at the same CpG site indicate significant differences (P<0.05).
图4  翘嘴鳜t1r1基因CpG岛分布、CpG位点信息及不易驯食组脑、肝脏及尾鳍中t1r1基因CpG岛的DNA甲基化水平 Fig. 4  The distribution and locations of CpG islands of t1r1 gene in Chinese perch and the DNA methylation statue of t1r1 gene CpG islands in the brain, liver and caudal fin of Chinese perch in Group W
图5  翘嘴鳜易驯、不易驯食组pck1基因在尾鳍、肝脏和脑中表达水平易驯食组的基因表达量被归为1. *表示在两组之间存在显著性差异(P<0.05). Fig. 5  The pck1 relative expression levels in the caudal fin, liver and brain of Chinese perch in Group W and CThe expression levels of Group C are set to 1. * means significant difference between two groups (P<0.05).
图6  翘嘴鳜易驯、不易驯食组t1r1基因在尾鳍、肝脏和脑中表达水平易驯食组的基因表达量被归为1. *表示在两组之间存在显著性差异(P<0.05). Fig. 6  The t1r1 relative expression levels in the caudal fin, liver and brain of Chinese perch in Group W and CThe expression levels of Group C are set to 1. * means significant difference between two groups (P<0.05).
图7  翘嘴鳜易驯、不易驯食组肝脏中pck1基因在不同CpG位点上的甲基化水平*表示在同一个位点上两组之间存在显著性差异(P<0.05). Fig. 7  DNA methylation patterns of pck1 CpG sites in the liver of Chinese perch in Group W and Group C* means significant difference at the CpG site between Group W and Group C (P<0.05).
图8  翘嘴鳜易驯、不易驯食组脑中t1r1基因在不同CpG位点上的甲基化水平 Fig. 8  DNA methylation patterns of t1r1 CpG sites in the brain of Chinese perch in Group W and Group C
3.2 翘嘴鳜pck1基因DNA甲基化在其食性转变中的作用

翘嘴鳜在经过驯化后,部分可转食人工饲料(易驯食组),部分则只接受活鱼(不易驯食组)。You等[24]研究发现,与厌食人工饲料的翘嘴鳜相比,稳定摄食人工饲料的鱼肝脏中糖异生关键基因pck1的表达水平更低,血糖水平更低,食欲更高,而这些因素是其能够对人工饲料保持稳定摄食的重要生理基础。本研究中,也发现易驯食组pck1基因在肝脏中表达水平显著低于不易驯食组。综上可知,pck1基因表达水平更低的翘嘴鳜更容易转食人工饲料,或许与其血糖及食欲水平有关。本研究比较了2组翘嘴鳜pck1基因的DNA甲基化水平,结果发现,pck1基因在易驯食组肝脏中的–2169 nt位点甲基化水平显著高于不易驯食组。过去的研究也表明,作为一种稳定的表观遗传标记,启动子区域的DNA甲基化可以通过干扰转录因子与启动子识别位置的结合或影响染色质结构等多种方式抑制基因的转录表达[10-11]。由此可知,pck1基因的DNA甲基化水平与翘嘴鳜转食人工饲料密切相关,并且其影响驯食的机制可能是通过调控pck1基因的表达来实现。

3.3 翘嘴鳜t1r1基因DNA甲基化在其食性转变中的作用

在哺乳动物中,味觉受体基因不仅仅在味蕾细胞中表达,也在其他组织譬如脑中表达[34-35]。来自食物中的谷氨酸等氨基酸通过与鲜味受体T1R1结合,不仅可以激活该受体产生鲜味,同时还可调节自发放电的速率从而起到神经递质的作用[35-36]。然后大脑可以通过味觉受体和下游信号分子在外周发挥作用,进而实现大脑中枢对稳态的调节[37]。因此大脑t1r1表达水平的改变可能与食物中化学成份的变化有关,也就意味着它可能促进动物适应新的饮食习惯。本研究发现,t1r1基因在易驯食组脑中的表达量显著低于不易驯食组,Dou等[17]的研究指出,与经历一次驯化的翘嘴鳜相比,二次驯化(更易摄食死饵)的鱼t1r1基因表达水平也显著降低。动物通常会被鲜味或者甜味吸引,这表明该食物含有较高的能量,因此鲜味或者甜味可以通过食物奖赏机制影响摄食行为[38]。这意味着,对鲜味物质感受能力的降低可能导致翘嘴鳜食物奖励系统部分功能的缺陷,该缺陷可能对食物奖励调控的摄食行为产生深远的影响,如更好地摄食死饵或人工饲料等其通常拒食的食物。然而在鱼类中关于味觉信息如何传递到中枢并影响动物摄食行为的机制仍存在许多困惑,需要更多的研究。另外,DNA甲基化水平检测发现,t1r1基因在所有CpG位点中的甲基化水平在两组间均无显著性差异,这意味DNA甲基化可能不是调控t1r1基因表达的主要方式。

4 总结

本研究分析了pck1t1r1基因在易驯、不易驯食翘嘴鳜不同组织中的表达及甲基化水平,初步表明了pck1t1r1基因与翘嘴鳜转食人工饲料密切相关,并发现pck1基因的DNA甲基化可能在此过程中发挥了重要的作用。另外发现,pck1基因的组织表达水平与其DNA甲基化水平密切相关但并不完全一致,t1r1基因则无明显相关性。本研究结果有助于进一步了解翘嘴鳜转食人工饲料的分子机制,为完善翘嘴鳜人工饲料驯化技术提供理论依据。

参考文献
[1]
Liu H, Li S, Bai J. Research advances in gene regulation and genetic improvement of fish feeding[J]. Agricultural Science & Technology, 2015, 16(10): 2277..》Google Scholar
[2]
Polakof S, Panserat S, Soengas J L, et al. Glucose metabolism in fish: A review[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182(8): 1015-1045..》Google Scholar
[3]
Li R X, Liu H Y, Li S Y, et al. Nutritional regulation of gene expression and enzyme activity of phosphoenolpyruvate carboxykinase in the hepatic gluconeogenesis pathway in golden pompano (Trachinotus ovatus)[J]. Aquaculture Research, 2019, 50(2): 634-643..》Google Scholar
[4]
Marandel L, Seiliez I, Véron V, et al. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): A gene duplication trail[J]. Physiological Genomics, 2015, 47(7): 253-263..》Google Scholar
[5]
Li S L, Li Z Q, Zhang J C, et al. The impacts of dietary carbohydrate levels on growth performance, feed utilization, glycogen accumulation and hepatic glucose metabolism in hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)[J]. Aquaculture, 2019, 512: 734351..》Google Scholar
[6]
Zhou P P, Wang M Q, Xie F J, et al. Effects of dietary carbohydrate to lipid ratios on growth performance, digestive enzyme and hepatic carbohydrate metabolic enzyme activities of large yellow croaker (Larimichthys crocea)[J]. Aquaculture, 2016, 452: 45-51..》Google Scholar
[7]
Cai W J, Li J, Li L, et al. Knockout of t1r1 gene in zebrafish (Danio rerio) by CRISPR/Cas9 reveals its roles in regulating feeding behavior[J]. Aquaculture, 2021, 545: 737189..》Google Scholar
[8]
Liu H. Based on the genomics of Megalobrama amblycephala reveals the adaption to herbivorous diet[D]. Wuhan: Huazhong Agricultural University, 2016. [刘寒. 基于基因组学的团头鲂植食性机制研究[D]. 武汉:华中农业大学,2016. ].》Google Scholar
[9]
Cai W J, He S, Liang X F, et al. DNA methylation of T1R1 gene in the vegetarian adaptation of grass carp Ctenopharyngodon idella[J]. Scientific Reports, 2018, 8: 6934..》Google Scholar
[10]
Jones P A. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]. Nature Reviews Genetics, 2012, 13(7): 484-492..》Google Scholar
[11]
Schübeler D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534): 321-326..》Google Scholar
[12]
Hou Z X, Fuiman L A. Nutritional programming in fishes: insights from mammalian studies[J]. Reviews in Fish Biology and Fisheries, 2020, 30(1): 67-92..》Google Scholar
[13]
Burgerhout E, Mommens M, Johnsen H, et al. Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar)[J]. PLoS ONE, 2017, 12(6): e0179918..》Google Scholar
[14]
Shao C W, Li Q Y, Chen S L, et al. Epigenetic modification and inheritance in sexual reversal of fish[J]. Genome Research, 2014, 24(4): 604-615..》Google Scholar
[15]
Venney C J, Johansson M L, Heath D D. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon[J]. Molecular Ecology, 2016, 25(18): 4521-4533..》Google Scholar
[16]
Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish[J]. Epigenetics & Chromatin, 2017, 10(1): 46..》Google Scholar
[17]
Dou Y Q, He S, Liang X F, et al. Memory function in feeding habit transformation of mandarin fish (Siniperca chuatsi)[J]. International Journal of Molecular Sciences, 2018, 19(4): 1254..》Google Scholar
[18]
Derks M F L, Schachtschneider K M, Madsen O, et al. Gene and transposable element methylation in great tit (Parus major) brain and blood[J]. BMC Genomics, 2016, 17: 332..》Google Scholar
[19]
Lindner M, Verhagen I, Viitaniemi H M, et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons[J]. BMC Genomics, 2021, 22(1): 36..》Google Scholar
[20]
McKay J A, Xie L, Harris S, et al. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice[J]. Molecular Nutrition & Food Research, 2011, 55(7): 1026-1035..》Google Scholar
[21]
Lee H J, Hou Y R, Chen Y J, et al. Regenerating zebrafish fin epigenome is characterized by stable lineage-specific DNA methylation and dynamic chromatin accessibility[J]. Genome Biology, 2020, 21(1): 52..》Google Scholar
[22]
Liang X F, Kiu J K, Huang B Y. The role of sense organs in the feeding behaviour of Chinese perch[J]. Journal of Fish Biology, 1998, 52(5): 1058-1067..》Google Scholar
[23]
Liang X F, Oku H, Ogata H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding[J]. Aquaculture Research, 2001, 32: 76-82..》Google Scholar
[24]
You J J, Ren P, He S, et al. Histone methylation of H3K4 involved in the anorexia of carnivorous mandarin fish (Siniperca chuatsi) after feeding on a carbohydrate-rich diet[J]. Frontiers in Endocrinology, 2020, 11: 323..》Google Scholar
[25]
Polakof S, Panserat S, Soengas J L, et al. Glucose metabolism in fish: A review[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182(8): 1015-1045..》Google Scholar
[26]
Luo Y P, Xie X J. Progress of carbohydrate utilization in fish[J]. Journal of Fishery Sciences of China, 2010, 17(2): 381-390. [罗毅平,谢小军. 鱼类利用碳水化合物的研究进展[J]. 中国水产科学,2010, 17(2): 381-390.].》Google Scholar
[27]
Liang H, He S, Liang X F, et al. Feeding habit transition induced by social learning through CaMKII signaling in Chinese perch (Siniperca chuatsi)[J]. Aquaculture, 2021, 533: 736211..》Google Scholar
[28]
Li R X, Liu H Y, Li S Y, et al. Nutritional regulation of gene expression and enzyme activity of phosphoenolpyruvate carboxykinase in the hepatic gluconeogenesis pathway in golden pompano (Trachinotus ovatus)[J]. Aquaculture Research, 2019, 50(2): 634-643..》Google Scholar
[29]
Kamalam B S, Medale F, Panserat S. Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies[J]. Aquaculture, 2017, 467: 3-27..》Google Scholar
[30]
Ge X P, Yu J H, Wu T T. Molecular cloning and character analysis of cDNA of phosphoenolpyruvate carboxykinase (PEPCK) in Erythroculter ilishaeformis[J]. Journal of Fishery Sciences of China, 2006, 13(3): 389-396. [戈贤平,俞菊华,吴婷婷. 翘嘴红鲌PEPCK基因的克隆和序列分析[J]. 中国水产科学,2006, 13(3): 389-396.].》Google Scholar
[31]
Marandel L, Kostyniuk D J, Best C, et al. Pck-ing up steam: Widening the salmonid gluconeogenic gene duplication trail[J]. Gene, 2019, 698: 129-140..》Google Scholar
[32]
Hayashi K, Funaba M, Murakami M. Tissue-dependent DNA methylation of carp uncoupling protein 1 promoter[J]. Physiological Genomics, 2019, 51(12): 623-629..》Google Scholar
[33]
Lim W J, Kim K H, Kim J Y, et al. Identification of DNA-methylated CpG Islands associated with gene silencing in the adult body tissues of the ogye chicken using RNA-seq and reduced representation bisulfite sequencing[J]. Frontiers in Genetics, 2019, 10: 346..》Google Scholar
[34]
Ren X Y, Zhou L G, Terwilliger R, et al. Sweet taste signaling functions as a hypothalamic glucose sensor[J]. Frontiers in Integrative Neuroscience, 2009, 3: 12..》Google Scholar
[35]
Niki M, Takai S, Kusuhara Y, et al. Responses to apical and basolateral application of glutamate in mouse fungiform taste cells with action potentials[J]. Cellular and Molecular Neurobiology, 2011, 31(7): 1033-1040..》Google Scholar
[36]
Mallick H N. Understanding safety of glutamate in food and brain[J]. Indian Journal of Physiology and Pharmacology, 2007, 51(3): 216-234..》Google Scholar
[37]
Ren X Y, Zhou L G, Terwilliger R, et al. Sweet taste signaling functions as a hypothalamic glucose sensor[J]. Frontiers in Integrative Neuroscience, 2009, 3: 12..》Google Scholar
[38]
Fulton S. Appetite and reward[J]. Frontiers in Neuroendocrinology, 2010, 31(1): 85-103..》Google Scholar