2. 中国水产科学研究院淡水渔业研究中心农业农村部淡水渔业和种质资源利用重点实验室,江苏 无锡 214081
3. 盐城工学院海洋与生物工程学院,江苏 盐城 224051
2. Key Laboratory of Freshwater Fisheries and Germplasm Resources Untilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
3. School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
克氏原螯虾(Procambarus clarkii),又称淡水小龙虾,原产于美国及墨西哥,后经日本传入我国[1]。其营养丰富,深受消费者喜爱,是我国重要的淡水经济虾类[2]。目前在我国有20多个省份养殖克氏原螯虾,是第六大淡水养殖种类[3]。近年来,克氏原螯虾除了食品加工外,还可提取内源酶,甲壳素、虾青素等,这也进一步扩大了克氏原螯虾的需求[4]。但是随着养殖规模的扩大,疾病暴发也愈加频繁[5]。为了减少疾病带来的损失导致了抗生素耐药性,化学药物残留,以及对环境的污染[6-7]。因此,如何让克氏原螯虾产业绿色化健康化,寻找抗生素替代物的研究势在必行。
虾青素是一种酮式类胡萝卜素,具有强抗氧化、抗炎、抗肿瘤、神经保护、着色等生物学活性[8-9]。虾青素在虾蟹体内广泛存在,具有十分重要的作用,但是却不能自身合成,只能通过食物摄取。大量研究表明,饲料中添加虾青素对于甲壳动物具有改善色素沉着,繁殖能力,免疫力等积极作用[8, 10-12]。王军辉等[13]研究表明,饲料中添加400 mg/kg虾青素可以有效提升锦鲤(Cyprinus carpio)生长性能,着色效果以及抗氧化能力。Li等[14]认为在血鹦鹉(Amphilophus citrinellus×Cichlasoma synspilum)饲料中补充虾青素可以提高血鹦鹉鱼的生长性能及抗氧化能力。Cheng等[15]的研究表明饲料中添加400 mg/kg虾青素可以显著提高克氏原螯虾生长性能及非特异性免疫。目前虾青素主要通过雨生红球藻(Haematococcus pluvialis)等藻类提取或人工合成而来,但是价格昂贵,成本较高,限制其在水产养殖中的应用。目前,已经证实了植物源提取物对养殖动物具有促生长效果[16],那么为了降低饲料成本,能否在少量添加虾青素的前提下,通过添加植物源提取物来保证或提高克氏原螯虾生长性能呢?
茶树油,取自桃金娘科白千层属(Melaleueal)互叶白千层(Melaleuca ahemifolia)新鲜枝叶和根,也称互叶白千层油[17],是一种无色至浅黄色具有特殊香气且易挥发的油状液体 [18]。近年来茶树油因具有广谱抗菌活性,并且作为天然提取物,低毒环保无残留,而被视为抗生素替代物,受到人们的广泛关注[19-20]。研究表明茶树油不仅具有广谱抗菌活性,还具有抗氧化,抗肿瘤,抗炎防腐等功能,目前广泛应用于食品,医疗,口腔护理,日化等领域[21-22]。基于茶树油的多种优点,其在动物上的研究也在逐步开展。研究表明,不仅在蛋鸡[23]、仔猪[24]等动物上,茶树油有提高抗氧化能力,在水生动物如罗氏沼虾(Macrobrachium rosenbergii)[25],克林雷氏鲇(Rhamdia quelen)[16,26]上的研究也表明茶树油具有提高生长性能,保肝,抗氧化,提高免疫能力等积极作用。因此,茶树油可以作为水产动物饲料添加剂。
为了更好提高养殖动物生长性能,将多种饲料添加剂搭配使用或许比单一使用具有更好的效果。在蛋鸡[27]及仔猪[28]上的研究表明,将薄荷油与茶多酚配伍可以提高热应激能力。何旺泉等[29]的研究表明,饲料中添加精油与有机酸可以提高凡纳宾对虾(Litopenaeus vannamei)生长及免疫能力。但是饲料中添加茶树油与虾青素相关研究未见报道,其是否对克氏原螯虾有影响尚不清楚。鉴于此,本实验探索虾青素与茶树油的适宜添加量,探究其对克氏原螯虾生长性能,抗氧化能力以及相关基因表达是否具有改善效果,促进克氏原螯虾生长与免疫性能,为其在配合饲料中的使用提供参考依据。
1 材料与方法 1.1 实验动物实验用克氏原螯虾购自江苏省淡水研究所禄口基地,暂养1周后,选取规格相近,健康活跃,平均体重为(9.19±0.14) g的克氏原螯虾虾苗作实验虾。
1.2 实验饲料以进口鱼粉、菜粕、豆粕、虾粉等为蛋白源,豆油为脂肪源制作基础饲料,实验分基础饲料组(CT),基础饲料上添加不同剂量虾青素与茶树油,分别为50 mg/kg虾青素组(AS50)、50 mg/kg虾青素与50 mg/kg茶树油组(AS50+AST50), 50 mg/kg虾青素与100 mg/kg茶树油组(AS50+AST100), 50 mg/kg虾青素与200 mg/kg茶树油组(AS50+ AST200), 50 mg/kg虾青素与400 mg/kg茶树油组(AS50+AST400)等实验组。
实验用茶树油由南京上好科技有限公司提供,茶树油含量为10%;实验用虾青素由广州立达尔生物科技股份有限公司提供,虾青素含量为10%。
饲料基础配方及制作步骤参照史振鹏[30]并作一定修改,饲料配方与营养成分见表1。
1.3 实验设计与管理实验于江苏省淡水水产研究所禄口基地进行。将720尾克氏原螯虾幼虾,分为6个组,每组3个平行,每个平行40尾虾,随机投放于18个水泥池。每个水泥池长3 m,宽2 m,水深1 m,具有24 h增氧以及独立的进排水系统。每日分别于7:00、19:00投喂,投喂量为克氏原螯虾体重的3%~5%,早7点投喂3 h后进行吸污。实验期间平均水温在(24±5) ℃,每天记录投喂量,残饵料、死虾数目及重量,测量水温、检测水质。每日早晚将循环系统打开1 h,实验水体中溶氧> 6.0 mg/L, pH保持在7.8~8.0,氨氮<0.2 mg/L,亚硝酸盐<0.005 mg/L。
![]() |
表1 实验饲料配方及营养组成(风干基础) Tab. 1 Formulation and nutritional components of the experimental diet (air dry basis) |
养殖实验结束后,克氏原螯虾禁食24 h取样,以水泥池为单位称重、记数,计算生长指标;每组取9尾克氏原螯虾(每个水泥池3尾),用酒精消毒纱布擦干体表水分,围心腔采血,静置后在4 ℃、3000 r/min离心10 min,取上清液,–20 ℃保存待测;采血淋巴后,取肠道及肝胰腺。另取6尾全虾放入–20 ℃冰箱待测。
1.5 测定指标及计算公式 1.5.1 生长性能增重率(weight gain rate, WGR, %)=100×(Wt– W0)/W0
特定生长率(specific growth rate, SGR, %)= 100×(ln Wt–ln W0)/t
饵料系数(feed conversion ratio, FCR)=FI/(Wt– W0)
式中,W0为克氏原螯虾初始均重,Wt为克氏原螯虾末均重,t为养殖天数,FI表示每只克氏原螯虾平均摄食饲料总量。
1.5.2 抗氧化指标用冰生理盐水清洗肠道,滤纸吸干水分,然后称重,捣碎后移入匀浆器中冰水浴匀浆。用离心机在4 ℃、2500 r/min离心10 min,取上清液待测。选用南京建成试剂盒测定抗氧化指标,并按说明书进行测定。总抗氧化能力使用比色法(A015-1-2);抗超氧阴离子自由基能力使用比色法(A052-1-1);丙二醛含量使用TBA法(A003-1)。
1.5.3 基因表达克氏原螯虾Astacidin蛋白(astacidin)[31]、甲壳肽(crustin)[31]、热休克蛋白70(HSP70)[32],亲环素蛋白A (Cypa)[33]、细胞外铜锌超氧化物歧化酶(CuZnSOD)[34]、Toll样受体3(Toll3)[35],以及内参基因18S rRNA[36]由上海捷瑞公司合成,引物序列见表2。首先参照Song等[37]步骤,使用Trizol (RNAiso Plus, TaKaRa)法提取克氏原螯虾肠道RNA,用RNase-Free Dnase (TaKaRa)纯化以避免基因组DNA扩增,然后用NanoDrop2000测定总RNA浓度,并用Rnase free水调节浓度至500 ng/μL。根据说明书使用PrimeScriptTMRT试剂盒(TaKaRa)反转为cDNA。接着使用TaKaRa两步法试剂盒,仪器使用CFX96 Real-Time PCR Detection System, qRT-PCR体系为20 μL,荧光定量测定基因表达量。反应程序为95 ℃预变性60 s, 95 ℃ 15 s、56 ℃ 15 s、72 ℃ 4 s,共 40个循环。选用18S rRNA作为内参基因,使用2−ΔΔCT法测定Crustin、Astacidin、HSP70基因相对表达量。
![]() |
表2 克氏原螯虾免疫相关基因RT-PCR引物序列 Tab. 2 primer sequence of immune related genes in Procambarus clarkii used in the study |
用SPSS20.0软件进行数据分析,使用软件中单因素方差分析(one-way ANOVA)以及Duncan’s 多重比较进行差异性分析,P<0.05视为差异显著。所有数据以平均值±标准误($\bar{x}\pm \text{SE}$)表示。分析所得数据采用GraphPad 8.0.2绘图。
2 结果与分析 2.1 饲料中添加茶树油与虾青素对克氏原螯虾生长性能的影响饲料中不同茶树油与虾青素含量对克氏原螯虾生长性能的影响如表3所示。添加了茶树油与虾青伍后,AS50组与对照CT组相比,饵料系数显著降低(P<0.05),末均重、增重率、特定生长率虽有提高但差异不显著(P>0.05)。添加了茶树油后,末增重,增重率,特定生长率呈先升高后降低趋势,于AS50+AST100组达到最高值。与AS50组、对照CT组相比,AS50+AST100组末均重,增重率,特定生长率显著提高(P<0.05)。饵料系数呈升高趋势,AS50+AST50, AS50+AST100组饵料系数与AS50组差异不显著(P>0.05),但显著低于CT组(P<0.05)。饲料中不同茶树油含量对克氏原螯虾增重率及饵料系数的影响如图1 所示。图1a、图1b表明,在克氏原螯虾饲料中存在50 mg/kg 虾青素条件下,分别添加50 mg/kg茶树油组(AS50+ AST50), 100 mg/kg茶树油组(AS50+AST100), 200 mg/kg茶树油组(AS50+AST200), 400 mg/kg茶树油组(AS50+AST400)等实验组,以增重率为指标,通过折线模型获得茶树油适宜添加量为71.40 mg/kg,以饵料系数为指标,茶树油适宜添加量为71.25 mg/kg。
![]() |
表3 饲料中不同茶树油与虾青素含量对克氏原螯虾生长性能的影响 Tab. 3 Effect of dietary tea tree oil and astaxanthin on growth performance of Procambarus clarkian=3;$\bar{x}\pm \text{SE}$ |
![]() |
图1 饲料中不同茶树油含量对克氏原螯虾增重率(a)及饵料系数(b)的影响 Fig. 1 Effect of dietary tea tree oil on weight gain rate (a) and feed conversion ratio (b) in Procambarus clarkii |
饲料中不同茶树油与虾青素含量对克氏原螯虾抗氧化能力的影响如图2所示。添加虾青素后,与CT组相比,AS50组血淋巴及肠道中总抗氧化能力显著提高(P<0.05),肠道丙二醛含量显著降低(P<0.05),抗超氧阴离子自由基活力略有提高但无显著差异(P>0.05)。在虾青素AS50组基础上添加茶树油后,随着茶树油添加量的提高,血淋巴及肠道组织中总抗氧化能力及抗超氧阴离子自由基活力呈先升高后降低趋势,于AS50+ST100组达到最高,并与CT组、AS50组差异显著(P<0.05);血淋巴丙二醛含量呈升高趋势,肠道丙二醛含量呈先降低后升高趋势,其中与CT组、AS50组相比,AS50+AST50组、AS50+AST100组显著降低了血淋巴、肠道丙二醛含量(P<0.05)。
![]() |
图2 饲料中不同茶树油与虾青素含量对克氏原螯虾总抗氧化能力(血淋巴,a;肠道组织,d),抗超氧阴离子自由基活力(血淋巴,b;肠道组织,e),丙二醛含量(血淋巴,c;肠道组织,f)的影响柱形图上方不同字母表示差异显著(P<0.05). Fig. 2 Effect of dietary tea tree oil and astaxanthin on total antioxidant capacity (hemolymph, a; intestine, d), anti-superoxide anion ability (hemolymph, b; intestine, e), malondialdehyde (hemolymph, c; intestine, f) in Procambarus clarkiiDifferent letters with the column indicate significant differences (P<0.05). |
饲料中不同茶树油与虾青素含量对克氏原螯虾免疫相关基因表达的影响见图3。饲料中添加虾青素后,AS50组相比于对照CT组Crustin, Astacidin, CuZnSOD以及HSP70基因表达显著升高(P<0.05)。此AS50基础上添加了茶树油后,随着茶树油含量的提高,Crustin、Astacidin基因呈上升趋势,AS50+AST50最低,显著低于其余各组(P<0.05), AS50+AST200及AS50+AST400组与AS50组差异不显著(P>0.05),显著高于其余各组。CuZnSOD基因表达量随茶树油添加呈先升高后降低趋势,AS50+AST50及AS50+AST100组显著高于其余各组(P>0.05)。添加茶树油后,各茶树油添加组HSP70,基因表达量与AS50组无显著差异(P>0.05),与CT组差异显著(P<0.05)。此外,Cypa与Toll3基因表达量各组间无显著差异。
3 讨论 3.1 饲料中添加茶树油与虾青素对克氏原螯虾生长性能的影响研究表明,中草药和精油对动物生长具有促进作用,可以作为饲料添加剂[38]。在饲料中添加了虾青素后,相比于CT组,AS50组饵料系数显著降低,末均重、增重率、特定生长率略有提高。这与大鳞副泥鳅(Paramisgurnus dabryanu)[39],凡纳宾对虾[40]研究结果相同,饲料中添加虾青素可以提高养殖动物抗氧化能力,促进生长。但是虾青素影响不显著可能是因为添加量较低,克氏原螯虾饲料中虾青素适宜添加量为400 mg/kg,而本实验仅添加50 mg/kg虾青素[15]。研究表明类胡萝卜素通过促进中间代谢来加强养殖动物对营养素的利用率,进而提高生长性能[41-42]。乌鳢(Channa argus)上的研究也表明饲料中添加虾青素可以提高生长性能,抗氧化能力及免疫能力,并且作者认为虾青素可能是通过调节鱼类下丘脑–垂体–肾间轴(HPI),促进抑制生长激素和类胰岛素生长因子分泌及其受体表达,进而提高生长性能[43]。在AS50组基础上添加了茶树油后,AS50+AST100组显著提高虾的末增重,增重率,特定生长率,并降低了饵料系数。尼罗罗非鱼(Oreochromis niloticus)[44]上的研究表明添加茶树油改善了养殖动物的生长性能。王猛强等[45]的研究也表明了,在低鱼粉日粮组添加茶树油对凡纳宾对虾生长性能具有促进效果,并且对植物性蛋白原中抗营养因子带来的肠道损伤也具有一定的改善效果。这说明茶树油与虾青素作为克氏原螯虾饲料添加剂是可行的,而其对生长性能的改善作用可能是因为添加茶树油与虾青素可以缓解氧化损伤[46],改善养殖动物的肠道健康[24],促进了克氏原螯虾对饲料的利用率。也可能是因为茶树油中的松油烯-4-醇,γ-松油烯,α-松油烯等活性成分[47]。但是随着茶树油添加量的提高,克氏原螯虾生长性能呈先升高后降低趋势,AS50+AST200及AS50+ AST400组末增重,增重率,特定生长率与CT组差异不显著。这可能是高含量的茶树油导致的。Xu等[48]在罗非鱼饲料中添加大黄素的研究类似。在罗非鱼饲料中添加罗勒精油也有相似的结论,高浓度精油的添加降低了养殖动物的生长性能,并且作者认为高浓度的精油可能会带来肝脏氧化损伤[49]。此外还可能与高浓度精油的刺激性气味带来的采食量下降有关[50]。
![]() |
图3 饲料不同茶树油与虾青素含量对克氏原螯虾免疫相关基因的影响柱形图上方不同字母表示差异显著(P<0.05). Fig. 3 Effect of dietary tea tree oil and astaxanthin on immune-related gene in Procambarus clarkiaDifferent letters with the column indicate significant differences (P<0.05). |
如图1所示,以茶树油添加量为自变量,增重率及饵料系数为指标,进行回归折线模型分析表,结果显示,饲料中50 mg/kg 虾青素存在条件下,茶树油适宜添加量分别为71.40 mg/kg及71.25 mg/kg。这与Liu等[25]的结果类似,在罗氏沼虾饲料中添加100 mg/kg 茶树油,间隔两周投喂可以显著调高养殖动物的生长性能及非特异性免疫能力。
3.2 饲料中添加茶树油与虾青素对克氏原螯虾抗氧化能力的影响氧化应激是生物体内氧自由基产生速度超过清除速度,是生物体抗氧化系统不平衡的产生一种生理状态[29]。氧自由基的积累往往会导致脂质过氧化,核酸氧化,甚至死亡[51]。研究表明具有抗氧化作用的植物精油作为饲料添加剂具有广阔前景[52]。血液中MDA, T-AOC,抗超氧阴离子自由基能力是反应机体抗氧化能力的重要指标[53]。本实验中添加了虾青素后,AS50组相比于CT组,总抗氧化能力及抗超氧阴离子自由基能力显著提高。Cheng等[15]发现在克氏原螯虾饲料中添加400 mg/kg虾青素,可以显著降低肝脏MDA含量,提高SOD酶活力(P<0.05)。在卵形鲳鲹(Trachinotus ovatus)上也表明虾青素可以提高其抗氧化能力[54]。在AS50组添加了茶树油后,茶树油添加组克氏原螯虾抗氧化能力随着茶树油含量的提高呈先升高后降低趋势。AS50+AST100显著高于AS50组(P<0.05),这表明饲料中添加茶树油与虾青素可能对克氏原螯虾抗氧化能力具有促进作用。Lee等[22]的研究表明茶树油具有激活Nrf2- ARE通路,而此通路是一种重要的抗氧化信号通路。Souza[55]等的研究也表明了添加茶树油可改善克林雷氏鲶抗氧化状态。但是随着茶树油添加量的提高,T-AOC,抗超氧阴离子自由基能力呈降低趋势,MDA含量呈升高趋势,这表明高剂量茶树油的添加反而降低了其抗氧化能力。这与Liu等[25]在罗氏沼虾上的研究类似,作者推测可能是高剂量的茶树油导致了抗氧化抑制,进而导致抗氧化能力降低。张逸等[56]在仔猪上的研究也表明中低浓度的茶树油对T-AOC, MDA具有积极效果,高浓度则会产生抑制。
3.3 饲料中添加茶树油与虾青素对克氏原螯虾免疫相关基因表达的影响与其他甲壳动物一样,克氏原螯虾缺乏获得性免疫仅依靠先天免疫来抵御疾病[57]。当病原微生物突破克氏原螯虾物理屏障时,则会激活免疫应答,分泌抗菌肽[58]。Astacidin与Crustin都是抗菌肽的一种,具有抗菌活性[59]。本实验中,添加了虾青素后,Astacidin和Crustin基因均显著高于CT组(P<0.05)。Dong等[31]认为Astacidin与Crustin基因均参与克氏原螯虾基础防御,抵抗细菌感染。Cheng等[15]也认为虾青素作为免疫增强剂是极为有效的。但是在此基础上添加了茶树油后,随着茶树油添加量的提高,Astacidin及Crustin基因表达呈升高趋势,AS50+AST50组基因表达显著低于AS50组(P<0.05), AS50+AST200及AS50+ AST400组与AS50组差异不显著(P>0.05)。这表明低剂量茶树油降低了Astacidin及Crustin基因表达,可能是因为低剂量茶树油仅具有抑菌效果,降低了外界病原菌的入侵,从而使得抗菌肽Astacidin以及Crustin基因的表达量下调。Nogueira等[60]的研究也表明了茶树油尤其是松油烯-4-醇,可以有效调节先天免疫反应。当添加高剂量茶树油时,其自身可能也可以激活动物机体免疫能力。在肉鸡[61]、仔猪[24]、罗氏沼虾[25]的研究上均表明添加适宜含量的茶树油对养殖动物的免疫作用有积极效果。但是Zoral等[62]认为超过20 mL/100 g迷迭香提取物对普通鲤(Cyprinus carpio)有肝脏及肾脏毒性。
HSP70是一组高度保守序列,对机体具有保护效果[63]。本实验中,添加虾青素后,AS50组HSP70表达量显著高于CT组(P<0.05),这与谢家俊[54]在卵形鲳鲹上的研究类似。但是添加了茶树油后,各茶树油添加组HSP70表达量与AS50组无显著差异(P>0.05),这可能表明添加茶树油与虾青素对HSP70表达量无显著影响。但是李鹏等[64]的研究表明,饲料中添加复合植物精油可降低脂多糖刺激后仔猪的HSP70基因表达量,这可能与物种不同有关,也可能是仔猪上的研究是氧化应激后带来的HSP70表达量过高而导致了结果不同。在十足目甲壳动物中仅CuZnSOD可以表达,从而激活抗氧化能力,提高免疫能力[34]。本研究中,添加了虾青素后,CuZnSOD基因表达量显著提高(P<0.05),而添加茶树油后,随着茶树油含量的提高,其表达量呈先升高后降低趋势,AS50+ AST50及AS50+AST100组显著高于AS50组(P<0.05)。这与Liu等[65]的研究结果类似,添加了100 mg/kg及以上橙皮苷抗氧化能力显著低于75 mg/kg橙皮苷添加量。Cypa基因是一种有效的免疫抑制药物,与其他细胞生长分化有关[34,66]。在甲壳动物中,Toll3基因受细菌或白斑综合征病毒(WSSV)调控[36]。本实验中,各组Cypa与Toll3基因表达量无显著差异(P>0.05),这可能是实验条件下克氏原螯虾并未受到严重细菌感染,也可能是添加茶树油与虾青素对其表达量无显著影响。Qiu等[67]认为Cypa基因与斑节对虾(Penaeus monodon)应对细菌感染的防御反应有关。Wang等[68]的研究也表明Toll3基因在克氏原螯虾受细菌感染情况下上调。相关研究还待进一步证实。
4 结论本实验结果表明,饲料中添加50 mg/kg虾青素可以提高克氏原螯虾生长性能,抗氧化能力及非特异性免疫力。添加了50 mg/kg虾青素与100 mg/kg茶树油后,显著提高了克氏原螯虾增重率,特定生长率,总抗氧化能力,抗超氧阴离子自由基能力以及CuZnSOD基因表达,显著降低了饵料系数及丙二醛含量。综上所述,饲料中50 mg/kg虾青素存在条件下,添加100 mg/kg茶树油可以提高克氏原螯虾抗氧化能力与免疫能力,促进生长。
[1] |
Huner J V. Procambarus in North America and elsewhere [M]. London: Croom Helm Ltd., 1988: 239-261..》Google Scholar
|
[2] |
Yan M Y, Wang H, Huang X L, et al. Effects of different commercial feed on the growth, intestinal structure and digestive capacity of juvenile red swamp crayfish Procambarus clarkia[J]. Journal of Sichuan Agricultural University, 2021, 39(4): 433-439. [晏明瑶,王浩,黄小丽,等. 不同饲料对克氏原螯虾幼虾生长、肠道结构和消化能力的影响[J]. 四川农业大学学报,2021, 39(4): 433-439.].》Google Scholar
|
[3] |
Fishery Administration of Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Centre, China Society of Fisheries. China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2020. [农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会. 中国渔业统计年鉴[M]. 北京:中国农业出版社,2020.].》Google Scholar
|
[4] |
Quan Q G, Zhang Z W, Chen M, et al. Research progress on comprehensive utilization of crayfish[J]. Food Research and Development, 2019, 40(3): 213-219. [全沁果,张泽伟,陈铭,等. 小龙虾的综合利用研究进展[J]. 食品研究与开发,2019, 40(3): 213-219.].》Google Scholar
|
[5] |
Tian L L. Effects of vitamin C in feed on growth and high pH stress resistance of Procambarus clarkia[D]. Yangzhou: Yangzhou University, 2021. [田立立. 饲料中添加维生素C对克氏原螯虾生长和高pH胁迫的影响[D]. 扬州:扬州大学,2021. ].》Google Scholar
|
[6] |
Gonzalez Ronquillo M, Angeles Hernandez J C. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods[J]. Food Control, 2017, 72: 255-267..》Google Scholar
|
[7] |
Zortéa T, Segat J C, Maccari A P, et al. Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia candida in tropical soils[J]. Chemosphere, 2017, 173: 460-465..》Google Scholar
|
[8] |
Cui G T. Stress response of Chinese mitten crab (Eriocheir sinensis) to pH and ammonia and alleviative effect on it of dietary phospholipid and astaxanthin[D]. Suzhou: Soochow University, 2020. [崔广同. 中华绒螯蟹(Eriocheir sinensis)对pH和氨的应激反应及日粮磷脂和虾青素对其缓解作用[D]. 苏州:苏州大学,2020. ].》Google Scholar
|
[9] |
Cao W J, Li H W, He T P, et al. Biological effects of astaxanthin and their advanced research[J]. International Medicine and Health Guidance News, 2018, 24(9): 1324- 1328. [曹文军,李华文,何太平,等. 虾青素生物学作用及其研究进展[J]. 国际医药卫生导报,2018, 24(9): 1324- 1328.].》Google Scholar
|
[10] |
Niu J, Wen H, Li C H, et al. Comparison effect of dietary astaxanthin and β-carotene in the presence and absence of cholesterol supplementation on growth performance, antioxidant capacity and gene expression of Penaeus monodon under normoxia and hypoxia condition[J]. Aquaculture, 2014, 422-423: 8-17..》Google Scholar
|
[11] |
Petit H, Nègre-Sadargues G, Castillo R, et al. The effects of dietary astaxanthin on growth and moulting cycle of postlarval stages of the prawn, Penaeus japonicus (Crustacea, Decapoda)[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1997, 117(4): 539-544..》Google Scholar
|
[12] |
Lim K C, Yusoff F M, Shariff M, et al. Astaxanthin as feed supplement in aquatic animals[J]. Reviews in Aquaculture, 2018, 10(3): 738-773..》Google Scholar
|
[13] |
Wang J H, Xiong J L, Zhang D Y, et al. Effects of astaxanthin supplementation on growth, body color, antioxidant capability and immunity of kio carp (Cyprinus carpio L.)[J]. Chinese Journal of Animal Nutrition, 2019, 31(9): 4144- 4151. [王军辉,熊建利,张东洋,等. 饲料中添加虾青素对锦鲤生长、体色、抗氧化能力和免疫力的影响[J]. 动物营养学报,2019, 31(9): 4144-4151.].》Google Scholar
|
[14] |
Li F, Huang S Y, Lu X X, et al. Effects of dietary supplementation with algal astaxanthin on growth, pigmentation, and antioxidant capacity of the blood parrot (Cichlasoma citrinellum×Cichlasoma synspilum)[J]. Journal of Oceanology and Limnology, 2018, 36(5): 1851-1859..》Google Scholar
|
[15] |
Cheng Y X, Wu S J. Effect of dietary astaxanthin on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkii[J]. Aquaculture, 2019, 512: 734341..》Google Scholar
|
[16] |
dos Reis T R, Baldissera M D, Souza C F, et al. Addition of tea tree oil (Melaleuca alternifolia) in diet minimize biochemical disturbances in silver catfish Rhamdia quelen exposed to the antiparasitic amitraz[J]. Aquaculture, 2021, 543: 736954..》Google Scholar
|
[17] |
Hammer K A, Carson C F, Riley T V, et al. A review of the toxicity of Melaleuca alternifolia (tea tree) oil[J]. Food and Chemical Toxicology, 2006, 44(5): 616-625..》Google Scholar
|
[18] |
Qin W W. Study on antibacterial activity and safety of tea tree oil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. [秦文文. 茶树精油抗菌活性及其安全性研究[D]. 北京:中国农业科学院,2018. ].》Google Scholar
|
[19] |
Zeng Z K, Zhang S, Wang H L, et al. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 7..》Google Scholar
|
[20] |
Qu H M, Cheng Y F, Chen Y P, et al. Dietary tea tree (Melaleuca alternifolia) oil supplementation improves growth performance, cecal microflora, immunity, and antioxidant capacity of partridge shank chickens[J]. The Journal of Poultry Science, 2019, 56(3): 212-219..》Google Scholar
|
[21] |
Niu B, Liu Y, Liang J P. Research progress on pharmacological action and application of tea tree oil[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(3): 790-797. [牛彪,刘宇,梁剑平. 茶树油药理作用及其相关应用的研究进展[J]. 中国畜牧兽医,2018, 45(3): 790-797.].》Google Scholar
|
[22] |
Lee S Y, Chen P Y, Lin J C, et al. Melaleuca alternifolia induces heme oxygenase-1 expression in murine RAW264.7 cells through activation of the Nrf2-ARE pathway[J]. The American Journal of Chinese Medicine, 2017, 45(8): 1631- 1648..》Google Scholar
|
[23] |
Puvača N, Horvatek D, Popović S, et al. Influence of tea tree (Melaleuca alternifolia) essential oil as feed supplement on production traits, blood oxidative status and treatment of coccidiosis in laying hens[J]. Veterinary Archives, 2020, 90(4): 331-340..》Google Scholar
|
[24] |
Dong L, Liu J, Zhong Z X, et al. Dietary tea tree oil supplementation improves the intestinal mucosal immunity of weanling piglets[J]. Animal Feed Science and Technology, 2019, 255: 114209..》Google Scholar
|
[25] |
Liu M Y, Sun C X, Xu P, et al. Effects of dietary tea tree (Melaleuca alternifolia) oil and feeding patterns on the zootechnical performance and nonspecific immune response of the giant freshwater prawn (Macrobrachium rosenbergii) [J]. Journal of the World Aquaculture Society, 2022, 53(2): 542-557..》Google Scholar
|
[26] |
de Freitas Souza C, Baldissera M D, Descovi S, et al. Melaleuca alternifolia essential oil abrogates hepatic oxidative damage in silver catfish (Rhamdia quelen) fed with an aflatoxin-contaminated diet[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019, 221: 10-20..》Google Scholar
|
[27] |
Fan C C, Peng B Y. Effects of dietary peppermint essential oil and tea polyphenols on resistance to heat stress in laying hens[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015, 1: 99-100. [范超超,彭本英. 薄荷精油与茶多酚配伍对蛋鸡抗热应激的影响[J]. 黑龙江畜牧兽医,2015, 1: 99-100.].》Google Scholar
|
[28] |
Jiang S L, Zhao H M. Effects of peppermint essential oil and tea polyphenols on intestinal protease in piglets[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015, 3: 104-105. [蒋思龙,赵红梅. 薄荷精油与茶多酚配伍对仔猪肠道蛋白酶的影响[J]. 黑龙江畜牧兽医,2015, 3: 104-105.].》Google Scholar
|
[29] |
He W Q. Effects of avi plus?, a blend of organic acids organic acids and essential oils, on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei)[D]. Xiamen: Jimei University, 2018. [何旺泉. 饲料中添加精油与有机酸混合物对凡纳滨对虾生长和免疫的影响[D]. 厦门:集美大学,2018. ].》Google Scholar
|
[30] |
Shi Z P. Study on the apparent digestibility of major protein sources and optimum requirement of protein to lipid ratio for Procambarus clarkii[D]. Changsha: Hunan Agricultural University, 2019. [史振鹏. 克氏原螯虾对主要蛋白源表观消化率及适宜蛋脂比需求研究[D]. 长沙:湖南农业大学,2019. ].》Google Scholar
|
[31] |
Dong C H, Bai S H, Du L Q. Temperature regulates circadian rhythms of immune responses in red swamp crayfish Procambarus clarkii[J]. Fish & Shellfish Immunology, 2015, 45(2): 641-647..》Google Scholar
|
[32] |
Sun Y, Zhang L, Li M C, et al. Cloning and expression analysis of an inducible heat shock protein 70 gene from red swamp crayfish, Prccambarus clarkii[J]. Acta Hydrobiologica Sinica, 2009, 33(4): 627-635. [孙勇,章力,李慕婵,等. 克氏原螯虾一种诱导型HSP70基因克隆及分析[J]. 水生生物学报,2009, 33(4): 627-635.].》Google Scholar
|
[33] |
Zhu J J, Lin F, Li F, et al. Molecular identification and expression analysis of a novel cyclophilin a gene in the red swamp crayfish, Procambarus clarkii[J]. Fish & Shellfish Immunology, 2018, 72: 383-388..》Google Scholar
|
[34] |
Meng Q G, Chen J, Xu C C, et al. The characterization, expression and activity analysis of superoxide dismutases (SODs) from Procambarus clarkii[J]. Aquaculture, 2013, 406-407: 131-140..》Google Scholar
|
[35] |
Lan J F, Wei S, Wang Y Q, et al. PcToll3 was involved in anti-Vibrio response by regulating the expression of antimicrobial peptides in red swamp crayfish, Procambarus clarkii[J]. Fish & Shellfish Immunology, 2016, 57: 17-24..》Google Scholar
|
[36] |
Dai L S, Sun Y, Sun Y X, et al. Characterization and function of a cathepsin B in red crayfish (Procambarus clarkii) following lipopolysaccharide challenge[J]. Fish & Shellfish Immunology, 2016, 56: 162-168..》Google Scholar
|
[37] |
Song C Y, Liu B, Xu P, et al. Oxidized fish oil injury stress in Megalobrama amblycephala: Evaluated by growth, intestinal physiology, and transcriptome-based PI3K-Akt/ NF-κB/TCR inflammatory signaling[J]. Fish & Shellfish Immunology, 2018, 81: 446-455..》Google Scholar
|
[38] |
Windisch W, Schedle K, Plitzner C, et al. Use of phytogenic products as feed additives for swine and poultry[J]. Journal of Animal Science, 2008, 86(suppl_14): E140-E148..》Google Scholar
|
[39] |
Yao J M. Effects of astaxanthin on the growth, body color and antioxidant function of juvenile Paramisgurnus dabryanus[D]. Changchun: Jilin Agricultural University, 2019. [姚金明. 虾青素对大鳞副泥鳅生长、体色及抗氧化功能的影响[D]. 长春:吉林农业大学,2019. ].》Google Scholar
|
[40] |
Pei S R. The effect and mechanism of dietary supplementation of astaxanthin to white shrimp, Litopenaeus vannamei [D]. Baoding: Hebei University, 2009. [裴素蕊. 饲料中添加虾青素对凡纳滨对虾的影响及作用机理[D]. 保定:河北大学,2009. ].》Google Scholar
|
[41] |
Segner H, Arend P, von Poeppinghausen K, et al. The effect of feeding astaxanthin to Oreochromis niloticus and Colisa labiosa on the histology of the liver[J]. Aquaculture, 1989, 79(1-4): 381-390..》Google Scholar
|
[42] |
Amar E C, Kiron V, Satoh S, et al. Influence of various dietary synthetic carotenoids on bio-defence mechanisms in rainbow trout, Oncorhynchus mykiss (Walbaum)[J]. Aquaculture Research, 2001, 32: 162-173..》Google Scholar
|
[43] |
Li M X, Liu X L, Xu S F, et al. Effects of astaxanthin on growth, antioxidation and immune function of C. argus[J]. Feed Industry, 2021, 42(16): 51-57. [李美鑫,刘曦澜,许世峰,等. 虾青素对乌鳢生长、抗氧化和免疫功能的影响[J]. 饲料工业,2021, 42(16): 51-57.].》Google Scholar
|
[44] |
Ding Z K, Gao W, Xu Y Q, et al. Effects of tea tree Oil on growth Performance and organ index of tilapia (Oreochromis niloticus)[J]. Beijing Agriculture, 2015, 11: 122-123. [丁兆坤,高巍,许友卿,等. 茶树油对罗非鱼生长性能、脏器指数的影响[J]. 北京农业,2015, 11: 122-123.].》Google Scholar
|
[45] |
Wang M Q, Huang X L, Jin M, et al. Improvement effect of dietary plant essential oil on growth performance and intestinal health of Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition, 2015, 27(4): 1163-1171. [王猛强,黄晓玲,金敏,等. 饲料中添加植物精油对凡纳滨对虾生长性能及肠道健康的改善作用[J]. 动物营养学报,2015, 27(4): 1163-1171.].》Google Scholar
|
[46] |
Baldissera M D, Souza C F, Júnior Jr, et al. Melaleuca alternifolia essential oil enhances the non-specific immune system and prevents oxidative damage in Rhamdia quelen experimentally infected by Aeromonas hydrophila: Effects on cholinergic and purinergic systems in liver tissue[J]. Fish & Shellfish Immunology, 2017, 61: 1-8..》Google Scholar
|
[47] |
Kim H J, Chen F, Wu C Q, et al. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components[J]. Journal of Agricultural and Food Chemistry, 2004, 52(10): 2849-2854..》Google Scholar
|
[48] |
Xu W N, Chen D H, Chen Q Q, et al. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes[J]. Fish & Shellfish Immunology, 2017, 68: 458-465..》Google Scholar
|
[49] |
de Souza E M, de Souza R C, Melo J F B, et al. Evaluation of the effects of Ocimum basilicum essential oil in Nile tilapia diet: Growth, biochemical, intestinal enzymes, haematology, lysozyme and antimicrobial challenges[J]. Aquaculture, 2019, 504: 7-12..》Google Scholar
|
[50] |
Ebrahimi E, Haghjou M, Nematollahi A, et al. Effects of rosemary essential oil on growth performance and hematological parameters of young great sturgeon (Huso huso)[J]. Aquaculture, 2020, 521: 734909..》Google Scholar
|
[51] |
del Pino J, Moyano-Cires P V, Anadon M J, et al. Molecular mechanisms of amitraz mammalian toxicity: A comprehensive review of existing data[J]. Chemical Research in Toxicology, 2015, 28(6): 1073-1094..》Google Scholar
|
[52] |
Abdel-Latif H M R, Abdel-Tawwab M, Khafaga A F, et al. Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection[J]. Fish & Shellfish Immunology, 2020, 104: 1-7..》Google Scholar
|
[53] |
Hu S C, Lu K L, Song K, et al. Effects of fishmeal replacement by compound protein (CM2) on growth, apparent digestibility and antioxidant of Litopenaeus vannamei[J]. Journal of Jimei University (Natural Science), 2017, 22(5): 10-17. [胡水城,鲁康乐,宋凯,等. 复合蛋白CM2替代鱼粉对凡纳滨对虾生长、表观消化率和抗氧化能力的影响[J]. 集美大学学报(自然科学版), 2017, 22(5): 10-17.].》Google Scholar
|
[54] |
Xie J J. Effects of astaxanthin on growth performances, pigmentation, hepatic antioxidative activity, anti-inflammation and gut microbiota of juvenile golden pompano, Trachinotus ovatus[D]. Shanghai: Shanghai Ocean University, 2017. [谢家俊. 虾青素对卵形鲳鲹幼鱼生长、体色、抗氧化、抗炎能力及肠道菌群的影响[D]. 上海:上海海洋大学,2017. ].》Google Scholar
|
[55] |
Souza C F, Baldissera M D, de L Silva L, et al. Is monoterpene terpinen-4-ol the compound responsible for the anesthetic and antioxidant activity of Melaleuca alternifolia essential oil (tea tree oil) in silver catfish?[J]. Aquaculture, 2018, 486: 217-223..》Google Scholar
|
[56] |
Zhang Y, Mao J Z, Peng Z, et al. Effects of tea tree oil supplementation on the development and antioxidant properties of the pancrea in weanling piglets[J]. Journal of Domestic Animal Ecology, 2018, 39(9): 39-42. [张逸,毛俊舟,彭众,等. 茶树油对断奶仔猪胰腺发育及抗氧化功能的影响[J]. 家畜生态学报,2018, 39(9): 39-42.].》Google Scholar
|
[57] |
Liu X D, He X, An Z H, et al. Citrobacter freundii infection in red swamp crayfish (Procambarus clarkii) and host immune-related gene expression profiles[J]. Aquaculture, 2020, 515: 734499..》Google Scholar
|
[58] |
Nyholm S V, Graf J. Knowing your friends: Invertebrate innate immunity fosters beneficial bacterial symbioses[J]. Nature Reviews Microbiology, 2012, 10(12): 815-827..》Google Scholar
|
[59] |
Wang X F. Investigation into the expression and antimicrobial mechanisms of crustins fromscylla paramamosain[D]. Xiamen: Jimei University, 2019. [王晓飞. 拟穴青蟹抗菌肽Crustin的表达特性及其抗菌机制的研究[D]. 厦门:集美大学,2019. ].》Google Scholar
|
[60] |
Nogueira M N M, Aquino S G, Rossa Junior C, et al. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages[J]. Inflammation Research, 2014, 63(9): 769- 778..》Google Scholar
|
[61] |
Zhu M Q. Effects of Melaleuca alternifolia oil on the immune function of broilers[D]. Guangzhou: South China Agricultural University, 2017. [朱敏翘. 互叶白千层油对肉鸡免疫功能的影响[D]. 广州:华南农业大学,2017.].》Google Scholar
|
[62] |
Zoral M A, Ishikawa Y, Ohshima T, et al. Toxicological effects and pharmacokinetics of rosemary (Rosmarinus officinalis) extract in common carp (Cyprinus carpio)[J]. Aquaculture, 2018, 495: 955-960..》Google Scholar
|
[63] |
Kagawa N, Mugiya Y. Brain HSP70 mRNA expression is linked with plasma cortisol levels in goldfish (Carassius auratus) exposed to a potential predator[J]. Zoological Science, 2002, 19(7): 735-740..》Google Scholar
|
[64] |
Li P, Wang Z X, Wu M J, et al. The protective effect of essential oil compound on lipopolysaccharide stimulating the liver of piglets[J]. Chinese Journal of Animal Science, 2018, 54(3): 87-91. [李鹏,汪中兴,吴梦郡,等. 复合植物精油对脂多糖刺激仔猪肝脏的保护作用[J]. 中国畜牧杂志,2018, 54(3): 87-91.].》Google Scholar
|
[65] |
Liu F, Qu Y K, Geng C, et al. Effects of hesperidin on the growth performance, antioxidant capacity, immune responses and disease resistance of red swamp crayfish (Procambarus clarkii)[J]. Fish & Shellfish Immunology, 2020, 99: 154-166..》Google Scholar
|
[66] |
Nahreini P, Hovland A R, Kumar B, et al. Effects of altered cyclophilin A expression on growth and differentiation of human and mouse neuronal cells[J]. Cellular and Molecular Neurobiology, 2001, 21(1): 65-79..》Google Scholar
|
[67] |
Qiu L H, Jiang S G, Huang J H, et al. Molecular cloning and mRNA expression of cyclophilin A gene in black tiger shrimp (Penaeus monodon)[J]. Fish & Shellfish Immunology, 2009, 26(1): 115-121..》Google Scholar
|
[68] |
Wang Z, Chen Y H, Dai Y J, et al. A novel vertebrates Toll-like receptor counterpart regulating the anti-microbial peptides expression in the freshwater crayfish, Procambarus clarkii[J]. Fish & Shellfish Immunology, 2015, 43(1): 219-229..》Google Scholar
|