淇河鲫(Qihe crucian carp, Carassius auratus)为天然三倍体鲫,主要分布于豫北淇河,因其肉质鲜美,营养价值高且全面,而备受人们喜爱。然而,近年来随着养殖规模的不断扩大,高密度集约化的养殖方式导致鱼类免疫力下降,病害频繁发生,给养殖户造成了严重损失。我国水产养殖病害防治目前仍以化学药物为主,不但会引起耐药性问题,也给生态安全和食品安全带来隐患。因此,应用免疫防治技术与方法,通过提高鱼类机体免疫力来达到有效预防疾病就显得格外重要。
在水产养殖中,使用单味中草药、方剂及其某种单一成分来预防疾病、改善免疫力已成为一种全球趋势[1-4]。研究表明,中草药可以改善鱼体肉质、促生长、改善肠道菌群[5-8]。但是由于中草药成分复杂,越来越多的研究转向于探究单一有效成分的作用。黄芪属补气类中药,具有“补气第一”之称,黄芪多糖(Astragalus polysaccharide, APS)是从黄芪根中提取的可溶性多糖,具有抗菌、抗病毒、抗氧化、增强免疫功能、提高生长性能等作用,因此被广泛地用于水产动物疾病防控研究[9-12]。目前已报道饲料中添加黄芪多糖能增强尼罗罗非鱼(Oreochromis niloticus)[13]、大黄鱼(Larimichthys crocea)[14]、乌鳢(Channa argus)[15]、黄颡鱼(Pelteobagrus fulvidraco)[16]、草鱼(Ctenopharyngodon idellus)[17]、厚唇鲃(Catla catla)[18]等多种鱼类的非特异性免疫功能,从而提高鱼体抗病力。
本研究将黄芪多糖按不同剂量(500 mg/kg、1000 mg/kg、1500 mg/kg)分别添加到饲料中喂养淇河鲫,探究其对淇河鲫生长性能、抗氧化功能及抗病力的影响,可为黄芪多糖在鱼类养殖生产中的应用提供理论参考。
1 材料与方法 1.1 实验材料实验用淇河鲫购自河南省淇县淇河鲫原种场。
黄芪多糖购自北京索莱宝科技有限公司,纯度≥98%。PBS配置成不同浓度的溶液均匀喷洒于膨化饲料表面并混匀,阴凉处晾干,4 ℃保存备用。
1.2 实验设计与饲养管理 1.2.1 实验设计选取规格一致的淇河鲫,初始体重为(14±3) g,体长(8±1) cm。随机分为4组,驯化7 d后开始实验,实验周期为42 d。选用“通威”牌鲫鱼配合饲料为基础日粮,基本组分见表1。实验组分别为普通饲料组(CT组)、500 mg/kg (每kg饲料喷洒黄芪多糖500 mg)黄芪多糖组(APS-1组)、1000 mg/kg黄芪多糖组(APS-2组)以及1500 mg/kg黄芪多糖组(APS-3组),每组30尾鱼。实验设3个平行。
1.2.2 饲养管理实验期间24 h不间断充氧,保证水中溶解氧含量为(6.0±0.2) mg/L,水温保持在(24±1) ℃。每天8:00、13:00和18:00定时定点投喂,投料量为鱼体重的1%,投料30 min后吸除残饵及桶底排泄物,每天换水一次。
![]() |
表1 基础饲料主要营养成分 Tab. 1 Nutrients composition of basal diet % |
含黄芪多糖的饲料投喂42 d后,逐一称量淇河鲫体重。每组随机取10尾鱼,100 mg/L间氨基苯甲酸乙酯甲磺酸盐(MS-222)麻醉后,分别取肝脏、脾脏和肾脏,在0.65%的生理盐水中洗去浮血,吸水纸吸去水分后称重。其中肝脏称重后用于测定抗氧化酶活性及丙二醛(MDA)含量。
1.3.2 抗氧化指标测定在预冷的0.65%生理盐水中洗去肝脏浮血,滤纸吸干后,称取适量组织,按质量∶体积=1∶9 (g/mL)的比例加入生理盐水进行组织匀浆。4 ℃, 12000 r/min离心15 min,吸取上清,–80 ℃保存备用。
超氧化物歧化酶(superoxide dismutase, SOD)活性、谷胱甘肽过氧化物酶(glutathione peroxidase, GPx)活性、过氧化氢酶(catalase, CAT)活性和丙二醛(malondialdehyde, MDA)含量均采用南京建成生物工程研究所试剂盒进行测定,操作步骤详见试剂盒说明书。SOD活性定义为:每毫升反应液中SOD抑制率达50%时所对应的酶量为1个SOD活性单位(U); GPx活性定义为:每0.1 mL反应液在37 ℃反应5 min,扣除非酶促反应作用,使反应体系中谷胱甘肽浓度降低1 μmol/L为1个活性单位;CAT活性定义为:每分钟每毫克蛋白降低0.01为1个酶活性单位。
1.3.3 生长性能及脏器指数测定按以下公式计算增重率(weight gain rate, WGR)、特定生长率(specific growth rate, SGR)、饲料系数(feed conversion ratio, FCR)及脏器指数(viscera somatic index, VSI):
增重率(%)=(终末体重–初始体重)/初始体重× 100
特定生长率(%)=(ln终末体重–ln初始体重)/天数×100
饲料系数=摄食量(g)/鱼体重增加量(g)
脏器指数(%)=器官重量/鱼体重×100
1.4 攻毒实验黄芪多糖投喂42 d后,经
存活率(%)=终末存活尾数/初始投放尾数×100
1.5 数据分析实验结果以平均值±标准差($\bar{x}\pm \text{SD}$)表示,用SPSS 20.0软件进行单因素方差分析,采用Duncan法比较数据间差异显著性,P<0.05为差异显著;用GraphPad Prism 5软件作图。
2 结果与分析 2.1 黄芪多糖对淇河鲫生长性能的影响淇河鲫经过42 d养殖实验后,黄芪多糖对各组鱼生长性能的影响见表2。结果显示,不同剂量的黄芪多糖均能显著提高淇河鲫的增重率(P< 0.05),且随黄芪多糖剂量的增加增重率逐渐增大,APS-3组淇河鲫增重率为128.2%,显著高于APS-1组(116.3%)和APS-2组(117.9%)(P<0.05)。黄芪多糖各投喂组淇河鲫特定生长率均高于对照组,且随着黄芪多糖剂量的增加有升高的趋势,但是各组之间无显著性差异。黄芪多糖添加后,饲料系数有下降的趋势,但是与普通饲料组相比差异并不显著。
2.2 黄芪多糖对淇河鲫免疫器官指数的影响黄芪多糖投喂后淇河鲫肝脏指数高于对照组,如表3所示,其中APS-2组最高且与对照组差异显著(P<0.05)。但肾脏指数和脾脏指数在黄芪多糖投喂组及对照组之间没有差异。
2.3 黄芪多糖对淇河鲫抗氧化指标的影响饲料中添加黄芪多糖后可显著提高淇河鲫肝脏抗氧化酶活性,随着黄芪多糖剂量的增加SOD和GPx活性均呈现出先上升后下降的趋势(表4)。APS-2组SOD和GPx活性最高,分别为46.6 U/mL和41.8 U/mL。与此相比,CAT活性变化趋势有所不同,APS-2组活性较低,为33.9 U/mL,但仍显著高于对照组(P<0.05)。此外,如表4所示,添加黄芪多糖后淇河鲫肝脏中丙二醛含量显著低于普通饲料组(P<0.05), APS-2组含量最低,为8.2 nmol/L。
2.4 黄芪多糖对淇河鲫抗病力的影响不同剂量黄芪多糖添加后均可提高淇河鲫在嗜水气单胞菌攻毒后的存活率(图1),最高的为APS-2组,48 h后存活率维持在75%,此时普通饲料组淇河鲫存活率仅为20%; APS-1组和APS-3组淇河鲫的存活率比较接近,72 h后均维持在50%。
![]() |
表2 不同剂量黄芪多糖对淇河鲫生长性能的影响 Tab. 2 Effects of different dose of APS on growth performance of Carassius auratusn=10; $\bar{x}\pm \text{SD}$ |
![]() |
表3 不同剂量黄芪多糖对淇河鲫脏器指数的影响 Tab. 3 Effects of different dose of APS on viscera somatic index of Carassius auratus %; n=10; $\bar{x}\pm \text{SD}$ |
![]() |
表4 不同剂量黄芪多糖对淇河鲫肝脏抗氧化指标的影响 Tab. 4 Effects of different dose of APS on antioxidant parameters in liver of Carassius auratusn=10; $\bar{x}\pm \text{SD}$ |
![]() |
图1 黄芪多糖对淇河鲫存活率的影响 Fig. 1 Effect of APS on survival rate of Carassius auratus |
增重率、特定生长率和饲料系数是评价动物对于饲料的利用效率及判断其生长性能高低的基础数据和重要指标。研究表明,黄芪多糖能提高动物的生长速率和营养物质利用率[19-21]。在齐口裂腹鱼(Schizothorax prenanti)基础饲料中分别添加0.02%、0.04%、0.06%、0.08%的黄芪多糖,养殖50 d后发现,黄芪多糖添加组齐口裂腹鱼的增重率、特定生长率、饲料蛋白效率均显著高于对照组,饲料系数则显著低于对照组[22]。乌鳢饲料中添加500~2000 mg/kg的黄芪多糖养殖56 d后,增重率和特定生长率显著增加,饲料系数降低[15]。本研究中,黄芪多糖添加组中淇河鲫的增重率和特定生长率均高于对照组,与上述结果一致,但饲料系数与对照组相比虽然有下降的趋势,但是差异并不显著,与尖吻鲈(Lates calcarifer)中的研究一致[21],可能是受养殖方式及实验周期影响所致。此外,有研究发现鲫鱼苗(体重为1.04 g±0.05 g)饲料中分别添加不同浓度的黄芪多糖,养殖60 d后,50 mg/kg和100 mg/kg添加组,除鲫的增重率和特定生长率之外,饲料系数也显著高于对照组,继续增加黄芪多糖剂量至150 mg/kg添加组,鲫的生长性能反而出现回落,与对照组无显著差异[23]。此结果与本研究有差异,黄芪多糖添加量也低于本研究所使用剂量,原因可能是不同生长阶段的鱼体对黄芪多糖的响应和利用有所不同,也可能与本研究黄芪多糖添加方式有关。本研究中,采用喷洒于饲料表面的方式添加黄芪多糖,可能会影响其有效添加剂量。然而,在实际生产中,养殖户经常采用此方式添加动保产品,因此本研究黄芪多糖的补充方式更接近于生产实践,对其在水产养殖中的应用更具参考价值。
3.2 黄芪多糖对淇河鲫免疫器官指数的影响免疫器官指数是指动物免疫器官重量与体重的比值,同时也是判断机体发育功能和健康状况的重要指标之一,免疫器官的重量和发育直接影响机体的免疫力。小鼠连续灌胃黄芪多糖14 d后,其脾脏和胸腺指数均明显升高[24]。饲料中添加黄芪多糖亦可明显增加罗非鱼免疫器官(胸腺、头肾和脾脏)重量[25]。由此可知,黄芪多糖可增加动物的免疫器官指数,促进免疫器官的发育和成熟,进而增强机体免疫力。然而,本研究中黄芪多糖添加组淇河鲫的脾脏指数和肾脏指数与对照组相比并没有变化,具体原因还需进一步研究。肝脏是营养物质重要的代谢与贮存器官,也是重要的解毒中心,同时还在免疫应答中发挥重要作用,因此该器官的发育程度同样可影响机体免疫力。本实验结果表明,1000 mg/kg黄芪多糖能显著增加肝脏重量,促进肝脏发育。吉富罗非鱼(Oreochromis niloticus)饲料中添加烟酸同样可显著提高鱼体的肝脏指数[26]。但是,肝脏指数的增加也可能是由于肝脏肿大、脂肪沉积过多所引起,因此,在饲料中添加黄芪多糖除了增强鱼体免疫力之外,同时也应注意是否存在造成肝脏损伤的风险。
3.3 黄芪多糖对淇河鲫抗氧化指标的影响在生物进化过程中,机体由于新陈代谢和其他生命活动产生活性氧自由基(reactive oxygen species, ROS),但过量的ROS会对机体造成损伤。为了清除体内过量的ROS,生物体在长期的进化过程中形成了一套完善的抗氧化体系,主要包括酶类抗氧化体系和非酶类抗氧化体系。酶类抗氧化体系主要包括SOD、CAT以及GPx,可清除胞内过量的ROS,保护细胞免受氧化损伤[27]。MDA是细胞膜脂质过氧化的产物,其含量可反映膜脂质过氧化的程度,是膜系统受伤害的重要指标之一[27]。
研究表明,黄芪多糖可不同程度地增强机体抗氧化酶活性。乌鳢饲料中添加不同剂量黄芪多糖后,血清SOD、CAT和GPx活性均有不同程度的升高,MDA含量有所下降[15]。草鱼饲料中添加1000 mg/kg的黄芪多糖喂养8周后,肠道和肝脏CAT活性均明显升高,但SOD活性没有明显变化[16]。黄芪多糖可增强大菱鲆(Scophthalmus maximus)肝脏总抗氧化能力和GPx活性,但对SOD和CAT活性无明显影响[28]。投喂不同剂量黄芪多糖后,鲫鱼苗血清中SOD、CAT和GPx活性均显著高于对照组[23]。为进一步探究黄芪多糖对鲫的不同生长阶段、不同组织器官中抗氧化能力的影响,本研究以淇河鲫幼鱼为实验对象,投喂黄芪多糖后,取肝脏(作为机体重要代谢器官和代谢酶活性调节中心)用于测定抗氧化指标的变化,结果表明SOD、CAT和GPx活性与对照组相比均明显升高,MDA含量下降,与前人研究结果一致。综上所述,尽管黄芪多糖对不同鱼类抗氧化酶活性影响有所不同,但总体上仍可增强鱼体抗氧化能力,从而清除体内过量的ROS,减少氧化损伤,降低机体MDA含量,并且对不同生长阶段鲫血清和肝脏中抗氧化能力的影响相同。
3.4 黄芪多糖对攻毒后淇河鲫存活率的影响嗜水气单胞菌为革兰氏阴性细菌,可引起许多淡水鱼类细菌性出血病,其传播速度快、发病范围广,是淡水鱼类暴发性传染病最主要的病原菌之一[29]。研究表明,黄芪多糖可改善因嗜水气单胞菌感染导致的草鱼肝脏的病理变化,并且可显著降低肝脏中细菌载量[16]。嗜水气单胞菌感染后,黄芪多糖投喂组大口黑鲈(Micropterus salmoides) 14 d的累积死亡率显著低于普通饲料组[30]。王煜恒等[31]的研究也发现黄芪多糖可降低杂交醴经嗜水气单胞菌攻毒后的累积死亡率。本研究结果表明,不同剂量黄芪多糖添加后均能提高嗜水气单胞菌攻毒后淇河鲫的存活率,与前人研究结果一致。由此可见,黄芪多糖可提高鱼体对嗜水气单胞菌的抵御能力,提高攻毒后鱼体的存活率。
4 结论饲料中添加不同剂量的黄芪多糖能不同程度地促进淇河鲫生长,增强其抗氧化能力以及抗病力。基于本研究的结果,综合分析和评估,淇河鲫饲料配制中推荐黄芪多糖的适宜添加量为1000 mg/kg,可用于水产养殖中防控嗜水气单胞菌感染所致鱼类疾病的发生。
[1] |
Reverter M, Bontemps N, Lecchini D, et al. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives[J]. Aquaculture, 2014, 433: 50-61..》Google Scholar
|
[2] |
Harikrishnan R, Balasundaram C, Heo M S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish[J]. Aquaculture, 2011, 317(1-4): 1-15..》Google Scholar
|
[3] |
Huang Z F, Lu J, Ye Y L, et al. Effects of dietary Chinese herbal medicines mixture on growth performance, digestive enzyme activity and serum biochemical parameters of European eel, Anguilla anguilla[J]. Aquaculture Reports, 2020, 18: 100510..》Google Scholar
|
[4] |
Awad E, Awaad A. Role of medicinal plants on growth performance and immune status in fish[J]. Fish & Shellfish Immunology, 2017, 67: 40-54..》Google Scholar
|
[5] |
Zhu F. A review on the application of herbal medicines in the disease control of aquatic animals[J]. Aquaculture, 2020, 526: 735422..》Google Scholar
|
[6] |
Pu H Y, Li X Y, Du Q B, et al. Research progress in the application of Chinese herbal medicines in aquaculture: A review[J]. Engineering, 2017, 3(5): 731-737..》Google Scholar
|
[7] |
Liu Y, Tong B B, Wang S X, et al. A mini review of Yu-Ping-Feng polysaccharides: Their biological activities and potential applications in aquaculture[J]. Aquaculture Reports, 2021, 20: 100697..》Google Scholar
|
[8] |
He Q, Jia R, Cao L P, et al. Effect of Ginkgo, Ginkgo biloba, leaf extracts on growth performance, antioxidant function, and immune-related gene expressions of common carp, Cyprinus carpio[J]. Journal of Fishery Sciences of China, 2021, 28(3): 326-336. [何勤,贾睿,曹丽萍,等. 银杏叶提取物对鲤生长性能、抗氧化功能和免疫相关基因表达的影响[J]. 中国水产科学,2021, 28(3): 326-336.].》Google Scholar
|
[9] |
Li C J, Zhang J, Zhu Y C, et al. Application of Astragalus polysaccharide in aquatic animal disease control[J]. Fisheries Science, 2019, 38(6): 881-886. [李春静,张杰,祝雅晨,等. 黄芪多糖在水产动物疾病防控中的应用[J]. 水产科学,2019, 38(6): 881-886.].》Google Scholar
|
[10] |
Du Y, Wan H T, Huang P, et al. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics[J]. Biomedicine & Pharmacotherapy, 2022, 147: 112654..》Google Scholar
|
[11] |
Pu Y F, Wu S J. The growth performance, body composition and nonspecific immunity of white shrimps (Litopenaeus vannamei) affected by dietary Astragalus membranaceus polysaccharide[J]. International Journal of Biological Macromolecules, 2022, 209: 162-165..》Google Scholar
|
[12] |
Liu J, Zhang P J, Wang B, et al. Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 253: 109249..》Google Scholar
|
[13] |
Zahran E, Risha E, AbdelHamid F, et al. Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus)[J]. Fish & Shellfish Immunology, 2014, 38(1): 149-157..》Google Scholar
|
[14] |
Zhang W N, Zhang M X, Cheng A Y, et al. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology, 2020, 100: 126-136..》Google Scholar
|
[15] |
Zhu X M, Liu X Y, Xia C G, et al. Effects of dietary Astragalus propinquus Schischkin polysaccharides on growth performance, immunological parameters, antioxidants responses and inflammation-related gene expression in Channa argus[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 249: 109121..》Google Scholar
|
[16] |
Shi F, Lu Z J, Yang M X, et al. Astragalus polysaccharides mediate the immune response and intestinal microbiota in grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2021, 534: 736205..》Google Scholar
|
[17] |
Bai D Q, Wu X, Guo Y J, et al. Effect of Astragalus polysaccharides on antioxidant and nonspecific immune indices of yellow catfish (Pelteobagrus fulvidraco) over long-term feeding[J]. Chinese Journal of Animal Nutrition, 2011, 23(9): 1622-1630. [白东清,吴旋,郭永军,等. 长期投喂黄芪多糖对黄颡鱼抗氧化及非特异性免疫指标的影响[J]. 动物营养学报,2011, 23(9): 1622-1630.].》Google Scholar
|
[18] |
Harikrishnan R, Devi G, Doan H V, et al. Changes in immune genes expression, immune response, digestive enzymes- antioxidant status, and growth of catla (Catla catla) fed with Astragalus polysaccharides against edwardsiellosis disease[J]. Fish & Shellfish Immunology, 2022, 121: 418-436..》Google Scholar
|
[19] |
Peng T, Hu T J, Lin Y, et al. Effects of Astragalus polysaccharide lipisome on growth performance of tilapia (Oreochromis niloticus)[J]. Southwest China Journal of Agricultural Sciences, 2012, 25(6): 2368-2371. [彭婷,胡庭俊,林勇,等. 黄芪多糖脂质体对吉富罗非鱼生长性能的影响[J]. 西南农业学报,2012, 25(6): 2368-2371.].》Google Scholar
|
[20] |
Huang Z F. Influences of three kinds of polysaccharides on growth and lipid metabolism of spotted sea bass Lateolabrax maculatus[D]. Xiamen: Jimei University, 2021. 17-33. [黄张帆. 三种多糖对花鲈生长及脂代谢的影响[D]. 厦门:集美大学,2021. 17-33.].》Google Scholar
|
[21] |
Yu W, Yang Y K, Zhou Q C, et al. Effects of dietary Astragalus polysaccharides on growth, health and resistance to Vibrio harveyi of Lates calcarifer[J]. International Journal of Biological Macromolecules, 2022, 207: 850-858..》Google Scholar
|
[22] |
Xiang X, Chen J, Zhou X H, et al. Effect of Astragalus polysaccharides on growth, body composition and immune index in Schizothorax prenanti[J]. Acta Hydrobiologica Sinica, 2011, 35(2): 291-299. [向枭,陈建,周兴华,等. 黄芪多糖对齐口裂腹鱼生长、体组成和免疫指标的影响[J]. 水生生物学报,2011, 35(2): 291-299.].》Google Scholar
|
[23] |
Wu S J. Dietary Astragalus membranaceus polysaccharide ameliorates the growth performance and innate immunity of juvenile crucian carp (Carassius auratus)[J]. International Journal of Biological Macromolecules, 2020, 149: 877-881..》Google Scholar
|
[24] |
Zhang R Q, Chen Z L, Luo Q H. Enhancing effect of Astragalus polysaccharide on the immune function in cytoxan- induced immunosuppressed mice[J]. Acta Laboratorium Animalis Scientia Sinica, 2015, 23(4): 389-394. [张芮琪,陈正礼,罗启慧. 黄芪多糖干预环磷酰胺所致免疫抑制小鼠的免疫功能[J]. 中国实验动物学报,2015, 23(4): 389-394.].》Google Scholar
|
[25] |
Lin X, Zhang W N, Wang S K, et al. Influence of Astragalus polysaccharides on leukocyte phagocytosis activity and immune organs indexes of tilapia[J]. Fujian Journal of Agricultural Sciences, 2012, 27(1): 27-31. [林旋,张伟妮,王寿昆,等. 黄芪多糖饲料添加剂对罗非鱼白细胞吞噬能力和免疫器官指数的影响[J]. 福建农业学报,2012, 27(1): 27-31.].》Google Scholar
|
[26] |
Huang F, Wen H, Wu F, et al. The dietary niacin requirement of large GIFT tilapia[J]. Journal of South China Agricultural University, 2013, 34(2): 235-240. [黄凤,文华,吴凡,等. 吉富罗非鱼成鱼对烟酸的需要量[J]. 华南农业大学学报,2013, 34(2): 235-240.].》Google Scholar
|
[27] |
Zhao Y J, Di G L, Kong X H, et al. Effect on antioxidant defense in hepatopancreas of Carassius auratus after poly I: C injection under hypoxia[J]. Journal of Fisheries of China, 2016, 40(12): 1830-1841. [赵燕静,狄桂兰,孔祥会,等. 低氧环境下poly I: C刺激对淇河鲫肝胰脏抗氧化防护的影响[J]. 水产学报,2016, 40(12): 1830-1841.].》Google Scholar
|
[28] |
Sun Y K, Wang X, Zhou H H, et al. Dietary Astragalus polysaccharides ameliorates the growth performance, antioxidant capacity and immune responses in turbot (Scophthalmus maximus L.)[J]. Fish & Shellfish Immunology, 2020, 99: 603-608..》Google Scholar
|
[29] |
Lü A J, Hu X C, Wang Y, et al. Skin immune response in the zebrafish, Danio rerio (Hamilton), to Aeromonas hydrophila infection: A transcriptional profiling approach[J]. Journal of Fish Diseases, 2015, 38(2): 137-150..》Google Scholar
|
[30] |
Lin S M, Jiang Y, Chen Y J, et al. Effects of Astragalus polysaccharides (APS) and chitooligosaccharides (COS) on growth, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides[J]. Fish & Shellfish Immunology, 2017, 70: 40-47..》Google Scholar
|
[31] |
Wang Y H, Xu X Z, Wang H C, et al. Effects of Astragalus polysaccharide on growth performance, immunity, antioxidant capability and disease resistance of hybrid snakehead[J]. Chinese Journal of Animal Nutrition, 2018, 30(4): 1447- 1456. [王煜恒,徐孝宙,王会聪,等. 黄芪多糖对杂交鳢生长性能、免疫能力、抗氧化能力和抗病力的影响[J]. 动物营养学报,2018, 30(4): 1447-1456.].》Google Scholar
|