2. 中国水产科学研究院黑龙江水产研究所,水产品质量安全风险评估实验室,黑龙江 哈尔滨 150070
3. 大连海洋大学食品科学与工程学院,辽宁 大连 116023
2. Heilongjiang River Fisheries Research Institute, Aquatic Product Quality and Safety Risk Assessment Laboratory, Chinese Academy of Fishery Sciences, Harbin 150070, China
3. School of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
环境温度的波动会对生物体细胞结构成分的性质和功能产生影响,如蛋白质的活性、脂质的结构以及细胞膜的流动性[1-3]。大多数鱼类的体温与环境温度息息相关,即使较小的温度波动也会对细胞内稳态产生不利影响并减弱其生理功能,因此水温被认为是影响鱼类生命活动主要的非生物因子[4]。现代工业的发展导致全球气温急剧上升,加之极端天气出现频繁,短期内全球气候变暖是不可逆的大趋势,这会对动物尤其是生活在温带和亚寒带大陆性气候的鱼类产生重大威胁[5]。温度的上升不但会导致鱼类食物链断裂,而且会诱发鱼体自身免疫和代谢的紊乱进而导致死亡。现有研究表明,大西洋鲑(Salmo salar)[6]、许氏平鲉(Sebastes schlegelii)[7]和大黄鱼(Larimichthy crocea)[8]等经济养殖鱼类均会受到高温胁迫带来的不利影响,给水产养殖产业造成了巨大的经济损失。
虹鳟(Oncorhynchus mykiss)作为我国重要的冷水性经济鱼类,高温环境会对其生长生存造成严重影响[9-10]。当温度超过20 ℃时虹鳟摄食量下降,生长性能减缓,一旦温度超过24 ℃,将会逐渐失去生命体征直至死亡[11-12]。因此,减少高温的负面影响对该物种的生长和生存具有重要意义。近年来,研究人员对虹鳟的高温胁迫响应机制开展了广泛研究。Li等[13]通过转录组学证实了热应激下虹鳟肝脏钙蛋白酶在内质网降解和凋亡上游基因调控中的关键作用;Ma等[14]用生物信息学方法对高温胁迫下虹鳟的Hsp70/110基因家族进行了功能鉴定和表征;夏斌鹏等[15]探究了不同高温下虹鳟血清中非特异性免疫指标的变化。然而,上述研究多集中于转录因子、激酶、信号通路以及生理生化指标变化,对高温胁迫下虹鳟在细胞层面上内源性代谢物变化特征的研究却鲜有报道。
代谢组学作为一种评估特定生理条件下小分子代谢物变化的有效工具,在探究鱼类对环境胁迫的响应机制方面获得了广泛应用[16]。Zou等[17]采用代谢组学手段探究了氯代醚酮对斑马鱼(Danio rerio)生殖功能的影响,发现类固醇的生成和氧化应激的变化在氯代醚酮引发的生殖毒性中起重要作用。Wen等[18]利用代谢组学对河鲀(Takifugu fasciatus)的耐冷机制进行了解析,结果表明河鲀通过增强不饱和脂肪酸的代谢、胆盐的转运和维生素的摄取来调节免疫、生长和抗氧化能力。Sun等[19]通过高通量非靶向代谢组学研究了大鳞鲃(Barbus capito)对盐碱暴露的反应,发现氨基酸代谢作为关键靶点,与大鳞鲃在盐碱环境下的内源性代谢产物和代谢途径有关。因此,代谢组学为明确鱼类在高温胁迫下的生理效应和应激机制提供了新的研究思路。
肝脏作为机体主要的代谢和产热场所,是高温胁迫的主要靶器官[20]。研究证实,高温可诱发鱼类肝损伤,并导致氧化还原稳态的紊乱[21-22]。本研究拟采用基于超高效液相色谱串联四极杆飞行时间质谱(ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, UPLC-QTOF-MS)技术的代谢组学方法,结合多变量统计分析,探究虹鳟在20 ℃、24 ℃高温胁迫下肝脏内源代谢物及代谢通路的变化,在细胞层面上从小分子代谢物角度解析高温胁迫对虹鳟正常生存造成的影响,阐明其在应激过程中的机体响应机制,为挖掘虹鳟耐高温性状及改良技术提供科学理论依据。
1 材料与方法 1.1 实验动物供试虹鳟由中国水产科学研究院黑龙江水产研究所渤海冷水性鱼试验站提供。实验前,随机选取遗传背景一致,健康状况良好的虹鳟120尾[体重(49.51±1.12) g,体长(15.14±0.93) cm],分别暂养于室内循环流水养殖槽(100 cm×85 cm×55 cm)中,每组30尾,设定温度为14 ℃,驯养两周。驯养期间,持续充氧,保证溶解氧含量≥7.5 mg/mL, pH值为6.8~7.3,氨氮含量(0.07±0.05) mg/mL,每天于8:30、17:30投喂两次,采样前1天停止喂食。
1.2 实验仪器与试剂间氨基苯甲酸乙酯甲磺酸盐(3-aminobenzoic acid ethyl ester methanesulfonate, MS-222,分析纯)、甲酸(质谱纯)、甲醇(质谱纯)、乙腈(质谱纯)均购于德国Merck公司;电子天平(XS205DY)购于瑞士Mettler Toledo公司;组织研磨仪(Scientz-48L)购于新芝生物科技股份有限公司;高速离心机(AllergraX-30R)购于美国Beckman公司;超纯水机(Milli-Q A10)、有机相滤膜(13mm, 0.22 μm)购于美国Millipore公司;超高效液相色谱仪(Acquity UPLC)、色谱柱(Acquity UPLC BEH C18)均购于美国Waters公司;质谱仪(Triple TOF 5600+,配备ESI离子源,Analyst 1.6 操作软件)购于美国SCIEX公司。
1.3 实验设计及样品采集实验开始前,在养殖槽中随机取12尾作为对照组(CG)。再以1 ℃/d的速率持续升温至20 ℃(T20)、24 ℃ (T24),分别在达到温度24 h后采样。实验过程中,使用自动控温系统控制水温,误差为±0.5 ℃。采样时,使用MS-222对鱼进行麻醉。解剖取出肝脏,迅速置于液氮中保存。样品前处理前,采集到的肝脏组织需置于–80 ℃超低温冰箱中保存备用。
1.4 代谢组学分析 1.4.1 样品前处理将–80 ℃保存的肝脏样品(100 mg)于4 ℃下解冻,加入1 mL水和4 mL 4 ℃下冷藏24 h的预冷乙腈甲醇试剂(1 : 1, V/V),将其置于组织研磨机中研磨30 s,涡旋2 min后,采用冰水浴超声1 min,然后在4 ℃下静置10 min,最后样品在4 ℃下13000 r/min离心10 min。取600 μL的上清液用氮气吹干后,用200 μL 4 ℃下冷藏24 h的预冷甲醇水试剂(4 : 1, V/V)复溶,然后在4 ℃下 13000 r/min再离心10 min,取上清液过0.22 μm有机相滤膜后上机测定。
1.4.2 UPLC-QTOF-MS检测使用Waters Acquity UPLC色谱系统对样本进行检测。ESI+离子模式:流动相A为甲酸水(1 : 1000, V/V);流动相B为乙腈。ESI–离子模式:流动相A为水;流动相B为乙腈。洗脱梯度:0 min, 5% B; 0~5 min, 70% B; 5~10 min, 80% B; 10~12 min, 100% B; 12~13 min, 100% B; 13~13.2 min, 5% B; 13.2~ 15 min, 5% B。进样量10 μL,流速0.3 mL/min,柱温40 ℃,样品自动进样器温度4 ℃。
采用AB triple TOF 5600+高分辨飞行时间质谱系统的电喷雾离子源(ESI)对代谢物进行测定。离子源工作参数:正负离子源电压分别为5500 V/ –4500 V,离子源温度为550 ℃,去簇电压分别为80 V/–80 V,碰撞能量分别为35 eV/–35 eV,碰撞能量扩展分别为15 eV/–15 eV。雾化气体为氮气,辅助气1为55 psi,辅助气2为55 psi,气帘气为35 psi。一级质谱母离子扫描范围为100~1200 D, IDA设置为对响应值超过100 cps的8个最高峰进行二级质谱扫描,子离子扫描范围为50~1200 D,开启动态背景扣除(DBS)功能。
1.4.3 数据处理所获得的液相色谱–质谱原始数据由Progenesis QI进行峰提取、峰对齐、基线校正、代谢物识别等数据预处理后,使用人类代谢组数据库(human metabolome database, HMDB)对代谢物进行注释。通过SIMCA 14.1采用无监督模式识别方法主成分分析(principal component analysis, PCA)和有监督模式识别方法正交偏最小二乘判别分析(orthogonal partial least squares discriminant analysis, OPLS-DA)进一步分析,得到以变量权重重要性排序值(variable importance in projection, VIP)>1和P<0.05为标准的差异代谢产物(differential metabolites, DMs),并将其进一步导入MetaboAnalyst 5.0进行代谢通路富集分析,判断通路匹配程度。
2 结果与分析 2.1 PCA和OPLS-DA分析PCA得分图显示(图1),在正负离子扫描模式下,对照组与实验组之间显著分离。这表明高温对虹鳟肝脏产生了显著影响。使用OPLS-DA模型进一步区分各组之间的差异,并通过Q2 (cum)、和R2Y (cum)评估模型的拟合能力。正离子模式下,R2Y值在98.5%到99.8%之间,Q2值在86.4%到94.3%之间(图2A、3A);负离子模式下,R2Y值在99.1%到99.6%之间,Q2值在85%到95.4%之间(图2B、3B)。200次排序验证如图2的C、D和图3的C、D所示,左侧的Q2和R2均低于右侧原始值,且与y轴的截距小于零。上述数据表明,建立的模型具有良好的拟合性和可靠的预测性,可用于后续筛选差异代谢物的分析。
2.2 差异代谢物的鉴定在T20组中鉴定出了65个差异代谢物,包括29个代谢物上调和36个代谢物下调。在T24组中鉴定出了80个差异代谢物,其中39个上调,41个下调。T20组和T24组共同筛选出43个差异代谢物,T20组中单独筛选到的差异代谢物有22个,T24组中单独筛选到的差异代谢物有37个(图4)。对鉴定到的代谢物以VIP>1、P<0.05为标准进行筛选,并对筛选到的差异代谢物进行聚类分析(图5A, 6A)。
![]() |
图1 正负离子模式下PCA得分图A. 正离子模式;B. 负离子模式. Fig. 1 PCA score plots in positive and negative ion modesA. positive ion mode; B. negative ion mode. |
![]() |
图2 正负离子模式下T20组的OPLS-DA得分图和排序验证A. 正离子模式下OPLS-DA得分图;B. 负离子模式下OPLS-DA得分图; C. 正离子模式下排序验证图;D. 负离子模式下排序验证图. Fig. 2 OPLS-DA score plots and permutation tests of T20 group in positive and negative ion modeA. OPLS-DA score plots in positive ion mode; B. OPLS-DA score plots in negative ion mode; C. permutation test in positive ion mode; D. permutation test in negative ion mode. |
![]() |
图3 正负离子模式下T24组的OPLS-DA得分图和排序验证A. 正离子模式下OPLS-DA得分图;B. 负离子模式下OPLS-DA得分图. C. 正离子模式下排序验证图;D. 负离子模式下排序验证图; Fig. 3 OPLS-DA score plots and permutation tests of T24 group in positive and negative ion modeA. OPLS-DA score plots in positive ion mode; B. OPLS-DA score plots in negative ion mode; C. permutation test in positive ion mode; D. permutation test in negative ion mode. |
![]() |
图4 差异代谢物韦恩图 Fig. 4 Venn diagram of differentially metabolites |
为了进一步确定受到高温胁迫干扰的代谢途径,使用MetaboAnalyst 5.0对差异代谢物进行代谢通路富集分析。T20共富集到亚油酸代谢、甘油磷脂代谢、α-亚麻酸代谢、半乳糖代谢、鞘脂代谢、谷胱甘肽代谢和嘌呤代谢等17条代谢通路(图5B), T24共富集到亚油酸代谢、甘油磷脂代谢、α-亚麻酸代谢、鞘脂代谢、视黄醇代谢、谷胱甘肽代谢和甘油酯代谢等15条代谢通路(图6B)。气泡大小与每个路径的影响值成正比,气泡颜色表示显著性程度,颜色越鲜艳表明此代谢通路与高温胁迫越相关。结合图5B和图6B,可以发现20 ℃和24 ℃均影响了亚油酸代谢、甘油磷脂代谢、α-亚麻酸代谢、鞘脂代谢和谷胱甘肽代谢等5条代谢途径。
3 讨论全球变暖导致的温度升高对水生生物的生长生存造成严重威胁,因此,了解水生生物响应高温生存环境的生理机制对水产养殖的可持续发展具有至关重要的意义。本研究对高温胁迫下的虹鳟肝脏进行了代谢组学解析,发现20 ℃和24 ℃的高温暴露会对虹鳟肝脏中包括甘油磷脂代谢、鞘脂代谢、亚油酸代谢、α-亚麻酸代谢在内的脂质代谢和以谷胱甘肽代谢为代表的氨基酸代谢等一系列代谢通路造成严重干扰。
包括磷脂酰胆碱(phosphatidylcholine, PC)和磷脂酰乙醇胺(phosphatidylethanolamine, PE)在内的甘油磷脂是生物膜的主要脂质成分,在保证膜结合蛋白、离子通道和受体的正常运作过程中发挥重要作用[23]。PC是脂蛋白的基本元素,其分子由不同长度和饱和度的脂肪酸组合而成,在维持膜结构和细胞信号传导过程中扮演关键角色[24]。PE是肝脏等组织器官中磷脂库的主要成分,也是甘油磷酸胆碱的重要前体[25]。本研究发现高温胁迫会导致虹鳟肝脏中含多个双键结构的PC和PE显著下调,造成磷脂的不饱和度降低,进而引发甘油磷脂代谢通路紊乱。Kostetsky等[26]的研究表明随着温度的升高,鱼类磷脂中饱和脂肪酸的含量增加,也会造成不饱和度降低。这种状况在Xie等[27]的研究中也得到了证实,其研究结果表明黑鲈血浆中磷脂不饱和度的改变会间接调控与受体相关的膜结合蛋白的活性。因此,高温胁迫下虹鳟肝脏磷脂不饱和度的降低,会影响细胞膜中受体的正常运作,进而损害细胞的正常功能。
鞘脂是一类含有鞘氨醇骨架的两性脂类,通过与其它脂质分子的聚集,形成调节分子跨膜运输或介导信号传递的脂筏,在调节细胞的生长、增殖、迁移、衰老和凋亡过程中扮演重要角色[28]。其从头合成通常开始于棕榈酸酯和丝氨酸缩合反应,产生3-脱氢二氢鞘氨醇(3-dehydrosphinganine, KDHS),随即被NADPH依赖性的还原酶还原产生鞘氨醇(sphingosine, Sph),最后形成鞘脂代谢网络的中心枢纽——神经酰胺[29]。Sph是细胞增殖的负调节剂,其作用是抑制细胞生长并促进细胞凋亡[30]。相关研究证实在环境暴露下以Sph为代表的鞘脂代谢紊乱可以诱发鲫(Carassius auratus)[31]、鲤(Cyprinus carpio)[32]和大西洋鳕(Gadus morhua)[33]等鱼类细胞凋亡的发生。在本研究中,鞘脂代谢的产物Sph和KDHS在高温胁迫下发生显著变化,这表明在高温胁迫下虹鳟肝脏内鞘脂合成途径受阻,进而在细胞水平上对机体造成损害。
多不饱和脂肪酸(polyunsaturated fatty acids, PUFA)作为必需脂肪酸参与机体的各项生理活动:一方面,它可以参与脂肪代谢,通过氧化分解为乙酰辅酶A,参与三羧酸循环提供能量;另一方面,由于含有多个还原性双键,PUFA同时具有抗氧化作用。ω-3多不饱和脂肪酸是PUFA的重要组成部分,其主要包括α-亚麻酸、二十碳五烯酸(eicosapentaenoic acid, EPA)以及二十二碳六烯酸(docosahexaenoic acid, DHA)等长链不饱和脂肪酸。研究表明平衡的DHA/EPA对水生动物减少活性氧(reactive oxygen species, ROS)累积和抑制全身炎症方面具有重要作用[34]。在本研究中,我们发现在高温胁迫下,虹鳟肝脏亚油酸代谢和α-亚麻酸代谢发生严重紊乱,其中α-亚麻酸和DHA减少,而亚油酸和EPA增加,这直接导致DHA/EPA比率失衡,对虹鳟肝脏的抗氧化系统以及免疫防御系统造成严重危害。这与温度胁迫下铁饼鱼鳃组织[35]的代谢组学研究结果一致。
![]() |
图5 T20差异代谢物聚类分析和相关代谢通路A. 差异代谢物富集热图;B. 代谢通路气泡图. Fig. 5 The hierarchical clustering analysis and metabolic pathway of DMs of T20 groupA. heatmap of DMs; B. bubble diagram of metabolic pathways. |
![]() |
图6 T24差异代谢物聚类分析和相关代谢通路A. 差异代谢物富集热图;B. 代谢通路气泡图. Fig. 6 The hierarchical clustering analysis and metabolic pathway of DMs of T24 groupA. heatmap of DMs; B. bubble diagram of metabolic pathways. |
谷胱甘肽(GSH)是谷胱甘肽代谢和半胱氨酸、蛋氨酸代谢的代谢产物之一,其主要以还原形式存在于细胞中。作为抗氧化防御机制中一种重要的动态调控物质,GSH在维持细胞氧化还原状态方面发挥着关键作用[36]。当生物体面临环境胁迫时,GSH在谷胱甘肽过氧化物酶催化下转变成氧化型谷胱甘肽(GSSG)以清除体内过量积累的ROS[37]。因此,GSH/GSSG的动态平衡对机体的保护和正常生理状态的维持具有重要的生理学意义[38]。Wang等[39]在开展梭鲈(Sander lucioperca)耐受高温胁迫下的应激反应时发现,其肝脏内GSH含量显著降低。在本研究中,GSH在T20组和T24组中均显著下调,而GSSG都显著上调。这说明在面对高温胁迫时,虹鳟通过谷胱甘肽代谢途径加速GSH向GSSG的转化,以此作为适应性反应来清除ROS,以保护细胞免受氧化应激的损伤。所以,GSH向GSSG的转化通路可能是虹鳟耐受高温胁迫的关键因素之一,也为进一步调控该通路使其增加温度耐受性提供了研究基础。
4 结论本实验采用UPLC-QTOF-MS技术对20 ℃、24 ℃高温胁迫下虹鳟肝脏进行代谢组学分析。结果表明,在不同程度高温胁迫下,虹鳟肝脏中包括甘油磷脂代谢、鞘脂代谢、亚油酸代谢、α-亚麻酸代谢和谷胱甘肽代谢在内的代谢通路受到影响。其中,脂质代谢受到的影响最为显著,其次为氨基酸代谢。在面对高温胁迫时,虹鳟通过谷胱甘肽代谢途径加速GSH向GSSG的转化,以此作为适应性反应清除活性氧。与此同时,持续的高温暴露引起脂质代谢紊乱,甘油磷脂代谢通路的改变对虹鳟肝脏细胞膜中的受体功能造成显著影响,鞘脂代谢中鞘脂合成途径受阻,亚油酸代谢和α-亚麻酸代谢通路中DHA/EPA比率失衡诱导炎症反应的发生以及氧化应激的系统性变化。本文在细胞层面上为理解虹鳟在高温胁迫下的调控机制提供了新的见解,为后续针对特定代谢通路的耐高温靶向调控研究提供了方向,同时为深入探究虹鳟耐高温性状的发掘和改良提供了理论依据。
[1] |
Xu Q Y, Huang J F. Effect of environmental temperature and protein level on growth and metabolism of fish[J]. Journal of Northeast Agricultural University, 2011, 42(12): 1-8. [徐奇友,黄金凤. 环境温度和蛋白质水平对鱼类生长和代谢的影响[J]. 东北农业大学学报,2011, 42(12): 1-8.].》Google Scholar
|
[2] |
Nuez-Ortín W G, Carter C G, Nichols P D, et al. Liver proteome response of pre-harvest Atlantic salmon following exposure to elevated temperature[J]. BMC Genomics, 2018, 19(1): 133..》Google Scholar
|
[3] |
Shi K P, Li J T, Lv J J, et al. Full-length transcriptome sequences of ridgetail white prawn Exopalaemon carinicauda provide insight into gene expression dynamics during thermal stress[J]. Science of the Total Environment, 2020, 747: 141238..》Google Scholar
|
[4] |
Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming[J]. Journal of Fish Biology, 2021, 98(6): 1496-1508..》Google Scholar
|
[5] |
Lu J, Shi Y Y, Wang S H, et al. NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses[J]. Science of the Total Environment, 2016, 545-546: 280-288..》Google Scholar
|
[6] |
Beemelmanns A, Zanuzzo F S, Xue X, et al. The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia[J]. BMC Genomics, 2021, 22(1): 261..》Google Scholar
|
[7] |
Song M, Zhao J, Wen H S, et al. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii)[J]. PLoS One, 2019, 14(5): e0217133..》Google Scholar
|
[8] |
Qian B Y, Xue L Y. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress[J]. Marine Genomics, 2016, 25: 95-102..》Google Scholar
|
[9] |
Wang F, Li C G, Ma Y W, et al. Effects of Chinese herbal compound on growth performance and non-specific immunity in rainbow trout (Oncorhynchus mykiss)[J]. Chinese Journal of Fisheries, 2021, 34(2): 8-14. [王凡,李聪歌,马雅雯,等. 复方中草药对虹鳟生长和非特异性免疫功能的影响[J]. 水产学杂志,2021, 34(2): 8-14.].》Google Scholar
|
[10] |
Feng Q Y, Xian T, Wang D, et al. Effects of Chinese herb medicines on biochemical indices and hormone level of rainbow trout Oncorhynchus mykiss exposed to heat stress[J]. Chinese Journal of Fisheries, 2019, 32(2): 6-13. [冯淇元,线婷,王荻,等. 中草药添加剂对热应激虹鳟部分生化指标及激素水平的影响[J]. 水产学杂志,2019, 32(2): 6-13.].》Google Scholar
|
[11] |
Jiang X Y, Dong S L, Zhou Y G, et al. An effective method of prompting juvenile rainbow trout (Oncorhynchus mykiss) to cope with heat stress[J]. Journal of Ocean University of China, 2020, 19(1): 216-224..》Google Scholar
|
[12] |
Kang Y J, Liu Z, Shi H N, et al. Label-free quantification of protein expression in the rainbow trout (Oncorhynchus mykiss) in response to short-term exposure to heat stress[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 30: 158-168..》Google Scholar
|
[13] |
Li Y J, Huang J Q, Liu Z, et al. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss)[J]. Gene, 2017, 619: 1-9..》Google Scholar
|
[14] |
Ma F, Luo L T. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress[J]. PeerJ, 2020, 8: e10022..》Google Scholar
|
[15] |
Xia B P, Liu Z, Zhou Y J, et al. Effects of chronic heat stress on part of serum non-specific immunity parameters in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Agricultural Biotechnology, 2017, 25(7): 1078-1085. [夏斌鹏,刘哲,周彦静,等. 慢性热应激对虹鳟部分血清非特异性免疫指标的影响[J]. 农业生物技术学报,2017, 25(7): 1078-1085.].》Google Scholar
|
[16] |
Low C F, Rozaini M Z H, Musa N, et al. Current knowledge of metabolomic approach in infectious fish disease studies[J]. Journal of Fish Diseases, 2017, 40(10): 1267-1277..》Google Scholar
|
[17] |
Zou T, Liang Y Q, Liao X L, et al. Metabolomics reveals the reproductive abnormality in female zebrafish exposed to environmentally relevant levels of climbazole[J]. Environmental Pollution, 2021, 275: 116665..》Google Scholar
|
[18] |
Wen X, Hu Y D, Zhang X Y, et al. Integrated application of multi-omics provides insights into cold stress responses in pufferfish Takifugu fasciatus[J]. BMC Genomics, 2019, 20(1): 563..》Google Scholar
|
[19] |
Sun Y C, Han S C, Yao M Z, et al. High-throughput metabolomics method based on liquid chromatography-mass spectrometry: Insights into the underlying mechanisms of salinity- alkalinity exposure-induced metabolites changes in Barbus capito[J]. Journal of Separation Science, 2021, 44(2): 497-512..》Google Scholar
|
[20] |
Bechmann L P, Hannivoort R A, Gerken G, et al. The interaction of hepatic lipid and glucose metabolism in liver diseases[J]. Journal of Hepatology, 2012, 56(4): 952-964..》Google Scholar
|
[21] |
Zhou Y J, Liu Z, Xia B P, et al. Effect of continuing heat stress on the liver tissue morphology of rainbow trout (Oncorhynchus mykiss)[J]. Journal of Gansu Agricultural University, 2017, 52(6): 1-5. [周彦静,刘哲,夏斌鹏,等. 持续热应激对虹鳟肝脏组织形态结构的影响[J]. 甘肃农业大学学报,2017, 52(6): 1-5.].》Google Scholar
|
[22] |
Cui Y T, Liu B, Xie J, et al. The effect of hyperthermia on cell viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus)[J]. Journal of Thermal Biology, 2013, 38(6): 355-361..》Google Scholar
|
[23] |
Fokina N N, Ruokolainen T R, Bakhmet I N, et al. Role of lipids in adaptation of mussels Mytilus edulis L. of the White Sea to rapid changes in temperature[J]. Doklady Biochemistry and Biophysics, 2014, 457: 155-157..》Google Scholar
|
[24] |
Kertys M, Grendar M, Kosutova P, et al. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in Guinea pig model of allergic asthma[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2020, 1866(1): 165572..》Google Scholar
|
[25] |
Wang F, Liu F, Chen W G. Effects of yam (Dioscorea oppositifolia L.) on growth performance, serum biochemical level and liver metabonomics of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture Reports, 2020, 18: 100481..》Google Scholar
|
[26] |
Kostetsky E Y, Velansky P V, Sanina N M. Phase transitions of phospholipids as a criterion for assessing the capacity for thermal adaptation in fish[J]. Russian Journal of Marine Biology, 2013, 39(3): 214-222..》Google Scholar
|
[27] |
Xie S W, Yin P, Tian L X, et al. Lipid metabolism and plasma metabolomics of juvenile largemouth bass Micropterus salmoides were affected by dietary oxidized fish oil[J]. Aquaculture, 2020, 522: 735158..》Google Scholar
|
[28] |
Zhang Y, Li Y, Liang X, et al. Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus[J]. PLoS One, 2017, 12(2): e0172386..》Google Scholar
|
[29] |
Canals D, Clarke C J. Compartmentalization of sphingolipid metabolism: Implications for signaling and therapy[J]. Pharmacology & Therapeutics, 2022, 232: 108005..》Google Scholar
|
[30] |
Schlarmann P, Ikeda A, Funato K. Membrane contact sites in yeast: Control hubs of sphingolipid homeostasis[J]. Membranes, 2021, 11(12): 971..》Google Scholar
|
[31] |
Liu Y J, Yao M Z, Li S W, et al. Integrated application of multi-omics approach and biochemical assays provides insights into physiological responses to saline-alkaline stress in the gills of crucian carp (Carassius auratus)[J]. Science of the Total Environment, 2022, 822: 153622..》Google Scholar
|
[32] |
Li Q Q, Xiang Q Q, Lian L H, et al. Metabolic profiling of nanosilver toxicity in the gills of common carp[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112548..》Google Scholar
|
[33] |
Khan E A, Zhang X K, Hanna E M, et al. Quantitative transcriptomics, and lipidomics in evaluating ovarian developmental effects in Atlantic cod (Gadus morhua) caged at a capped marine waste disposal site[J]. Environmental Research, 2020, 189: 109906..》Google Scholar
|
[34] |
Zhang M, Chen C Y, You C H, et al. Effects of different dietary ratios of docosahexaenoic to eicosapentaenoic acid (DHA/EPA) on the growth, non-specific immune indices, tissue fatty acid compositions and expression of genes related to LC-PUFA biosynthesis in juvenile golden pompano Trachinotus ovatus[J]. Aquaculture, 2019, 505: 488-495..》Google Scholar
|
[35] |
Wen B, Jin S R, Chen Z Z, et al. Physiological responses to cold stress in the gills of Discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics[J]. Science of the Total Environment, 2018, 640-641: 1372-1381..》Google Scholar
|
[36] |
Cen Y J, Zou X P, Zheng S C. miR-305-3p and miR-71-5p involve in Spodoptera litura responding to phytochemical by regulating glutathione metabolism pathway[J]. Journal of Environmental Entomology, 2019, 41(1): 33-41. [岑永杰,邹晓鹏,郑思春. miR-305-3p和miR-71-5p通过调控谷胱甘肽代谢途径参与斜纹夜蛾应对植物次生物质[J]. 环境昆虫学报,2019, 41(1): 33-41.].》Google Scholar
|
[37] |
Peña-Llopis S, Ferrando M D, Peña J B. Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine[J]. Aquatic Toxicology, 2003, 65(4): 337-360..》Google Scholar
|
[38] |
Lin Y, Miao L H, Pan W J, et al. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis[J]. Fish & Shellfish Immunology, 2018, 76: 126-132..》Google Scholar
|
[39] |
Wang Y F, Li C J, Pan C L, et al. Alterations to transcriptomic profile, histopathology, and oxidative stress in liver of pikeperch (Sander lucioperca) under heat stress[J]. Fish & Shellfish Immunology, 2019, 95: 659-669..》Google Scholar
|