2. 南方海洋科学与工程广东省实验室(广州),广东 广州 511458
3. 三沙市海洋保护区管理局,海南 三沙 573100
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
3. Sansha Marine Protected Area Administration, Sansha 573100, China
鹦嘴鱼科(Scaridae)隶属于鲈形目(Perciformes),隆头鱼亚目(Labroidei),目前已知有2亚科10属99种[1]。绝大部分鹦嘴鱼(parrotfish)会发生性逆转,从雌性转变为雄性,在早期一般为红褐色(雌),终期呈现蓝绿色(雄)较多。鹦嘴鱼是一类栖息于热带和亚热带珊瑚礁生态系统的鱼类,广泛分布于印度-太平洋水域,栖息水深一般不超过25 m[2]。鹦嘴鱼是珊瑚礁渔业中的重要目标物种,占珊瑚礁渔业比例高达20%以上[3-6],在西沙海域,笔者调查发现这一比例甚至高达40%。鹦嘴鱼具草食性特性,使其拥有下行控制珊瑚礁中藻类的能力,从而促进珊瑚的附着和生长[7-8]。同时鹦嘴鱼的存在极大促进了珊瑚礁在飓风、大规模白化等事件中的恢复能力[9]。灰鹦嘴鱼(Chlorurus sordidus)是珊瑚礁生态系统中丰度较高的珊瑚礁鱼类之一,丰度可达到每100 m2 4~18尾成鱼[10]。灰鹦嘴鱼是重要的渔业捕捞物种,广泛分布于印度太平洋海域[11],其性成熟早,1~2龄就可以性成熟,生长快,寿命短(一般8~9年),繁殖力高且繁殖时间长[12]。灰鹦嘴鱼存在产卵集聚的现象,从而容易被过度捕捞[13]。
过度捕捞导致鱼类群落的营养生态位下降,肉食性鱼类急剧减少,捕捞转向植食性和杂食性[6,14-15]。这一转变进一步增加了鹦嘴鱼在渔业中的重要性[16],同时人类对鹦嘴鱼的开发利用逐年增大,不可避免出现了如何保护和管理其资源的问题[17]。生活史特征参数是理解和预测鱼类种群动态的关键因子,这些信息是渔业管理的重要组成部分[18]。繁殖生物学是生活史参数的重要组成部分,是渔业补充量计算的主要和关键参数。
鹦嘴鱼属于典型的珊瑚礁鱼类,有关其研究,国外做了大量工作,甚至形成了相关专著[19]。然而国内对这一类群的研究较少[20-23]。我国南海的珊瑚礁生态系统出现了严重退化[24],灰鹦嘴鱼的基础生物学研究有利于对这一退化生态系统修复。本研究选取具有捕捞差异的区域研究灰鹦嘴鱼的繁殖生物学,一是对其基础生物学进行补充研究;二是探讨捕捞差异对其繁殖特征的可塑性影响。本研究结果旨在为其渔业资源的保护和管理提供基础数据,并为今后珊瑚礁生态系统保护和修复提供理论参考。
1 材料与方法 1.1 研究区域永乐环礁(16°25ʹN~16°36′N, 111°34′E~111°48′E)是永乐群岛的主体,位于中国西沙群岛西部岛群核心区,是典型的珊瑚环礁,也是西沙群岛面积最大的环礁。环礁东北—西南长24 km,南北宽17 km,水深40 m左右,潟湖面积187.22 km2,总面积274 km2(不含金银岛礁盘)。环礁由13个岛屿组成,其中晋卿岛、鸭公岛、甘泉岛、银屿等9个岛屿为有人岛礁,晋卿岛是永乐环礁的主岛,是永乐群岛的行政中心。美济礁(9°54′N、115°32′E)位于南沙群岛中东部海域,属于典型半封闭环礁,东西长约9 km,南北宽约6 km,瀉湖环礁内水深20~30 m,礁坪面积14.69 km2,潟湖面积30.62 km2,环礁总面积约56.6 km2。
1.2 调查方法与生物学测量灰鹦嘴鱼样本分别采集于西沙永乐环礁和南沙美济礁,西沙永乐环礁2020年7月份样品是直接购买渔民捕捞渔获(48尾), 2021年4月份样品是雇佣渔民水下无选择潜水捕捞获得(28尾),南沙美济礁样品是2020年7月雇佣渔民水下无选择潜水捕捞获得(44尾)。共采集120尾样本,其中永乐环礁76尾,美济礁44尾。采集到的样本马上速冻,2020年7月份样品是经科考船“南锋号”带回实验室,2021年4月份样品是租用琼万渔70169远洋渔船捕捞并带回实验室。样品在实验室进行生物学测量和解剖,体长精确到1 mm,体重和性腺重精确到0.01 g。性腺发育期采用Ⅰ~Ⅵ级性腺成熟度划分标准,规定性腺发育期达III期及以上个体为性成熟;摄食等级采用0~4级划分标准[25]。两性及区域体长分布是否存在差异采用Kolmogorov-Smirnov test (K-S test)来检验。体长和体重关系采用幂指数拟合,公式为:W=aLb,式中W表示为体重(g), L表示为体长(mm), a为生长的条件因子,b为幂指数。用协方差检验判定不同区域的体长和体重关系的差异性。以人口密度、距市场距离及大陆距离来定义不同岛礁的捕捞强度[26],根据地理位置,永乐环礁(300 km)距离海南岛的距离显著的小于美济礁(1128 km),因此永乐环礁的捕捞强度大于美济礁。
1.3 繁殖性别鉴定,雌性个体较小,体色为红褐色,雄性个体较大,体色为蓝绿色(图1),同时解剖进一步确证并读取发育期。卡方检验用于检验雌雄性比是否偏离1∶1[27],显著性水平为0.05。
成熟系数(GSI)的计算公式为:GSI=(性腺重/净体重)×100,其中净体重为去内脏体重。
将鱼的体长划分为10 mm的区间来计算50% (L50)的性逆转体长,以Logistic方程拟合各体长区间雄性百分比,计算公式为:
P=100/{1+exp[−a×(L-L50)]}
式中,P代表雄性百分比(%), L50为50%性逆转体长,a为参数。
卵径测量:随机选取性腺发育期为IV期的一部分卵巢,放置于培养皿中打散铺匀,在解剖镜下采用Leica ICC50W & ICC50E拍照系统对其拍照,然后用FishBC 3.0软件对所拍照的卵母细胞进行卵径测量。
![]() |
图1 灰鹦嘴鱼的雌(上)、雄(下)照片展示 Fig. 1 Photo display of female (above) and male (below) grey parrotfish Chlorurus sordidus |
繁殖力的计算采用质量法,对准确称重后的性腺发育期为III和IV期的卵巢,随机称取0.5 g卵,并计数所有卵黄的卵母细胞,计算其繁殖力。相对繁殖力是指繁殖力与体长或者净体重的比值。
2 结果与分析 2.1 体长-体重分布特征永乐环礁和美济礁样本的平均体长和体重均表现为雄性显著大于雌性(P<0.05),而两地的雌性平均体长和体重及雄性的平均体长和体重均没有显著差异(P>0.05)(表1)。从体长分布来看,永乐环礁和美济礁雌雄体长分布均存在显著差异(P<0.05) (图2)。
2.2 体长-体重关系永乐环礁和美济礁样本的体长
![]() |
表1 灰鹦嘴鱼的体长和体重分布特征 Tab. 1 Distribution characteristics of body length and body weight of Chlorurus sordidus |
![]() |
图2 灰鹦嘴鱼的雌雄体长分布 Fig. 2 Male and female body length distribution of Chlorurus sordidus |
![]() |
图3 灰鹦嘴鱼的体长-体重关系 Fig. 3 Relationship between body length and body weight of Chlorurus sordidus |
2020年7月永乐环礁渔业捕捞的灰鹦嘴鱼雌、雄比为0.12∶1,不符合1∶1的理论性比(P<0.05),性比显著偏向大个体的雄性,这说明潜水渔业捕捞选择性较强,以捕捞大个体灰鹦嘴鱼为主;2021年4月永乐环礁灰鹦嘴鱼雌、雄比为1.33∶1,符合1∶1的理论性比(P>0.05),这一性比能够反映水体中的雌雄性比;2020年7月美济礁灰鹦嘴鱼样本的雌性比例显著高于永乐环礁,雌、雄比为6.33∶1,不符合1∶1的理论性比(P<0.05)。
2.4 性逆转体长永乐环礁和美济礁的50%的性逆转体长分别为151.60 mm和174.37 mm (图4),美济礁较永乐环礁性逆转体长要大,说明美济礁雌性个体要长到更大后才会性逆转。
![]() |
图4 灰鹦嘴鱼性逆转的逻辑斯蒂曲线 Fig. 4 Logistic curve of sexual change percentage of Chlorurus sordidus |
永乐环礁和美济礁的雌性III期和IV期的成熟系数均不存在显著差异(P>0.05),永乐环礁雌性III期个体共有9尾,成熟系数为0.24~2.88,均值为1.74±1.07;美济礁雌性III期个体共有14尾,成熟系数为0.40~3.40,均值为1.86±1.12;永乐环礁雌性IV期个体共有9尾,成熟系数为1.5~3.34,均值为2.87±0.56;美济礁雌性IV期个体共有22尾,成熟系数为1.00~5.05,均值为2.77±1.12。
2.6 卵径特征随机在永乐环礁和美济礁样本中各挑选1尾性腺发育期为IV期的个体进行性腺的卵径测量,其中永乐环礁灰鹦嘴鱼的卵径范围为0.129~ 0.621 mm (202 eggs),平均卵径大小为(0.388± 0.096) mm;美济礁灰鹦嘴鱼的卵径范围为0.178~0.617 mm (183 eggs),平均卵径大小为(0.377± 0.106) mm。卵径频率分布显示,永乐环礁和美济礁灰鹦嘴鱼的卵径频率分布均为连续分布型(图5),说明灰鹦嘴鱼为分批繁殖鱼类。
2.7 繁殖力研究共获取了43尾性腺发育期达到III期和IV期的灰鹦嘴鱼性腺,其中永乐环礁16尾,美济礁27尾,计算了所有个体的繁殖力。永乐环礁灰鹦嘴鱼繁殖力为9017~141513 eggs,平均为(53540± 45449) eggs;体长的相对繁殖力为54.65~725.71 eggs/mm,平均为(328.20±212.69) eggs/mm;体重的相对繁殖力为67.19~686.62 eggs/g,平均为(442.80±167.44) eggs/g。美济礁灰鹦嘴鱼繁殖力为32200~229908 eggs,平均为(82941±42544) eggs;体长的相对繁殖力为206.93~1431.74 eggs/mm,平均为(545.59±274.24) eggs/mm;体重的相对繁殖力为236.39~1596.81 eggs/g,平均为(693.52±332.85) eggs/g。美济礁的平均繁殖力、体长和体重的平均相对繁殖力均显著大于永乐环礁。
永乐环礁灰鹦嘴鱼的繁殖力(F)与体长(L)、体重(W)呈显著正相关关系(P<0.05),美济礁灰鹦嘴鱼的繁殖力与体长、体重均无相关性(P>0.05) (图6)。
![]() |
图5 灰鹦嘴鱼的卵径分布频率永乐环礁:体长为185 mm,体重为198.41 g;美济礁:体长为147 mm,体重为141.94 g. Fig. 5 Oocyte diameter-frequency distributions of Chlorurus sordidusYongle Atoll: body length is 185 mm, body weight is 198.41 g; Meiji Reef: body length is 147 mm, body weight is 141.94 g. |
![]() |
图6 灰鹦嘴鱼繁殖力(F)与体长(L)和体重(W)的相关性 Fig. 6 The relationships between body length(F), body weight(L) and fecundity(W) of Chlorurus sordidus |
灰鹦嘴鱼是一种性逆转的鱼类,先雌后雄,导致了其性比偏向于雌性[28]。这与传统性比为1∶1的理论值有明显差异,但是与本研究的结果完全一致。其他鹦嘴鱼类也显示雌性比例高于雄性的现象,如三棘鹦嘴鱼(Scarus trispinosus)的雌雄性比为8∶1[6],截尾鹦嘴鱼(S. rivulatus)的雌雄性比为2.49∶1[2],拟绿鹦嘴鱼(C. capistratoides)的雌雄性比为1.95∶1~2.26∶1[29]等。小个体鱼类一般比大个体鱼类的数量要多,灰鹦嘴鱼的雌性比雄性小,同时大个体雄性鱼类的自然死亡率和渔业死亡率均比小个体雌性大,因此性比偏向于雌性[29]。本研究发现捕捞压力高的永乐环礁雄性比例较捕捞压力低的美济礁明显高,这一结果与钝头鹦嘴鱼(S. rubroviolaceus)表现较为一致的规律,捕捞压力高的Oahu区域的雌雄性比为2.3∶1,显著小于捕捞压力低的区域的雌雄性比为4.5∶1[30]。渔业导致了大个体雄性的死亡率显著增加,而先雌后雄性逆转鱼类正常情况下,雄性个体的存在会抑制雌性个体向雄性个体的转变,雄性个体由于捕捞数量的下降,从而减弱了这一抑制作用,而促进了大量的雌性个体转化为雄性个体,增加了雄性个体的比例[30]。以上的研究表明雄性死亡率的增加会导致性逆转提前发生,从而影响性比组成。Gust[31]对灰鹦嘴鱼不同生境的研究证明了这一观点,外礁盘区(outer shelf)雌雄性比为1.48∶1,显著小于中礁盘区(mid-shelf)雌雄性比为4.75∶1,通过研究表明,外礁盘区的死亡率显著大于中礁盘区,而高的死亡率降低了性逆转个体大小,从而有更多的雌性转变为雄性。
以上研究也表明,渔业或者死亡率的增加会导致灰鹦嘴鱼的性逆转提前,性逆转个体变小。笔者的研究也证实了这一结论。Taylor[32]对一种鹦嘴鱼(Chlorurus spilurus)的研究表明,渔业压力大时,会导致其性比发生变化,性逆转个体会显著变小等可塑性现象。Barba[11]对网纹鹦嘴鱼(S. frenatus)和灰鹦嘴鱼的研究也支持这一观点,死亡率高的外礁盘比死亡率低的中礁盘性逆转个体体长要小。渔业影响了鹦嘴鱼的绝对丰度和种群结构,减小了其平均个体大小,从而导致了性逆转个体变小[33]。鱼类的繁殖投入与个体大小是成超比例的增加关系,即大个体对繁殖的贡献显著大于小个体[34]。渔业捕捞主要是对灰鹦嘴鱼雄性个体影响较大,雄性个体显著减小,繁殖投入也显著减少,为保障繁殖成功,一是性逆转个体变小,二是需要更多雄性个体才能维护繁殖的平衡。这一结果也进一步支持了渔业捕捞会导致灰鹦嘴鱼的雄性比例较高的结论。灰鹦嘴鱼性逆转个体大小变化是一种典型的鱼类繁殖可塑性现象,引起可塑性变化的因素主要有两方面,一是自身的遗传,二是表观遗传[35]。环境是引起表观遗传变化的最主要因素[11],美济礁与永乐环礁两者的环境差异除了捕捞压力外,最大差异就是纬度差异,纬度往往与温度息息相关,即美济礁温度比永乐环礁高。高的温度(低纬度)会导致性逆转提前[35],经典的解释就是Bergmann’s法则和温度大小法则,这一法则认为高纬度低温会延迟性成熟,性成熟个体更大[36]。以上的论据表明,正常不受捕捞压力影响,永乐环礁灰鹦嘴鱼的性逆转体长更大,然而因为捕捞压力的影响,其性逆转个体反而更小。性逆转的时间和大小是渔业管理的重要参数[35],美济礁的性逆转体长与其他灰鹦嘴鱼的研究较为接近,大堡礁中礁盘区性逆转叉长是226.7 mm[11],西太平洋岛群密克罗尼西亚的性逆转叉长是207 mm[15],这些研究也进一步验证了本研究结果的可靠性。
本研究表明灰鹦嘴鱼为分批繁殖鱼类,与McIlwain等[37]在关岛的研究一致,其研究发现,性成熟灰鹦嘴鱼的卵巢切片中存在产后卵泡(POF),这一结果直接证实灰鹦嘴鱼是分批繁殖鱼类。本研究卵径频率分布为连续分布型,表明灰鹦嘴鱼在繁殖期是连续不断繁殖的分批产卵鱼类。
繁殖力是估测种群动态变动的基础,是阐明种群补充过程的最主要手段之一,环境通常是影响繁殖力的重要因子[38]。本研究发现灰鹦嘴鱼在美济礁的繁殖力显著大于捕捞压力大的永乐环礁,体长和体重的相对繁殖力也均大于永乐环礁。本研究与纤鹦嘴鱼(Leptoscarus vaigiensis)的研究结果非常吻合,保护区水域的纤鹦嘴鱼繁殖力显著大于非保护区[39]。在渔业捕捞压力小的环境中,灰鹦嘴鱼的摄食条件好,生长环境适宜,生长快,投入到繁殖的能量多,个体的繁殖力就高[40]。鱼类的繁殖力一般与个体大小成幂指数相关[34],而本研究的灰鹦嘴鱼在美济礁与个体大小不相关,在永乐环礁呈显著正相关,可能是由于环境的差异造成,同时不同鱼类繁殖力均有各自的特征,与自身的遗传也存在较大的相关性。
本研究证实了鱼类的繁殖受人类扰动影响而发生明显可塑性变化,本研究的结果可以为鱼类可塑性研究提供基础参考,同时也为灰鹦嘴鱼的保护和管理提供参考,为岛礁的生态修复提供基础数据支撑。
[1] |
Nelson J S, Grande T C, Wilson M V H. Fishes of the World (5th)[M]. America: John Wiley & Sons, 2016: 429-430..》Google Scholar
|
[2] |
Tuwo A, Tresnati J, Huda N, et al. Reproductive strategy of rivulated parrotfish Scarus rivulatus Valenciennes, 1840[J/]. IOP Conference Series: Earth and Environmental Science, 2021, 763(1): 012002..》Google Scholar
|
[3] |
Pratchett M S, Bay L K, Gehrke P C, et al. Contribution of climate change to degradation and loss of critical fish habitats in Australian marine and freshwater environments[J]. Marine and Freshwater Research, 2011, 62(9): 1062..》Google Scholar
|
[4] |
Houk P, Rhodes K, Cuetos-Bueno J, et al. Commercial coral-reef fisheries across Micronesia: A need for improving management[J]. Coral Reefs, 2012, 31(1): 13-26..》Google Scholar
|
[5] |
Taylor B M, Cruz E. Age-based and reproductive biology of the Pacific longnose parrotfish Hipposcarus longiceps from Guam[J]. PeerJ, 2017, 5: e4079..》Google Scholar
|
[6] |
Freitas M O, Previero M, Leite J R, et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840[J]. PeerJ, 2019, 7: e7459..》Google Scholar
|
[7] |
Mumby P J, Harborne A R, Williams J, et al. Trophic cascade facilitates coral recruitment in a marine reserve[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(20): 8362-8367..》Google Scholar
|
[8] |
Ledlie M H, Graham N A J, Bythell J C, et al. Phase shifts and the role of herbivory in the resilience of coral reefs[J]. Coral Reefs, 2007, 26(3): 641-653..》Google Scholar
|
[9] |
Mumby P J, Hastings A. The impact of ecosystem connectivity on coral reef resilience[J]. Journal of Applied Ecology, 2007, 45(3): 854-862..》Google Scholar
|
[10] |
Gust N, Choat J H, McCormick M I. Spatial variability in reef fish distribution, abundance, size and biomass: A multi-scale analysis[J]. Marine Ecology Progress Series, 2001, 214: 237-251..》Google Scholar
|
[11] |
Barba J. Demography of parrotfish: age, size and reproductive variables[D]. Queensland: James Cook University, 2010..》Google Scholar
|
[12] |
Gust N, Choat J, Ackerman J. Demographic plasticity in tropical reef fishes[J]. Marine Biology, 2002, 140(5): 1039-1051..》Google Scholar
|
[13] |
Muñoz R C, Zgliczynski B J, Teer B Z, et al. Spawning aggregation behavior and reproductive ecology of the giant bumphead parrotfish, Bolbometopon muricatum, in a remote marine reserve[J]. PeerJ, 2014, 2: e681..》Google Scholar
|
[14] |
Bellwood D R, Hughes T P, Folke C, et al. Confronting the coral reef crisis[J]. Nature, 2004, 429(6994): 827-833..》Google Scholar
|
[15] |
Taylor B M, Houk P, Russ G R, et al. Life histories predict vulnerability to overexploitation in parrotfishes[J]. Coral Reefs, 2014, 33(4): 869-878..》Google Scholar
|
[16] |
Taylor B M, Trip E D L, Howard Choat J. Dynamic demography: investigations of life-history variation in the parrotfishes[M]//Hoey A S, Bonaldo R M. Biology of Parrotfishes. Boca Raton: CRC Press, 2018: 69-98..》Google Scholar
|
[17] |
Jackson J B C, Donovan M K, Cramer K L, et al. Status and trends of Caribbean coral reefs[J]. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland, 2014: 1970-2012..》Google Scholar
|
[18] |
Thorson J T, Cope J M, Patrick W S. Assessing the quality of life history information in publicly available databases[J]. Ecological Applications, 2014, 24(1): 217-226..》Google Scholar
|
[19] |
Hoey A S, Bonaldo R M. Biology of parrotfishes[M]. Boca Raton: CRC Press, 2018: 1-420..》Google Scholar
|
[20] |
He H B, Yang J L, Chen Y P, et al. Molecular taxonomic relationship of Scarus in China based on COⅠ gene[J]. Journal of Zhongkai University of Agriculture and Engineering, 2021, 34(4): 21-29. [何浩斌,杨杰銮,陈玉佩,等. 基于COⅠ基因我国鹦嘴鱼属鱼类分子系统分类关系[J]. 仲恺农业工程学院学报,2021, 34(4): 21-29. ].》Google Scholar
|
[21] |
Quan Q M, Wang T, Liu Y, et al. The community structure of parrotfish in typical Islands and reefs of the South China Sea[J]. Chinese Journal of Ecology, 2021, 40(7): 2133-2145. [全秋梅,王腾,刘永,等. 南海典型岛礁的鹦嘴鱼群落结构组成[J]. 生态学杂志,2021, 40(7): 2133-2145. ].》Google Scholar
|
[22] |
Wang Z M, Kong X Y, Huang L M. Taxonomic revision of parrotfishes (Perciformes: Scaridae) in China Seas[J]. Journal of Tropical Oceanography, 2013, 32(3): 22-32. [王忠明,孔晓瑜,黄良民. 中国鹦嘴鱼科(Scaridae)鱼类的分类整理[J]. 热带海洋学报,2013, 32(3): 22-32. ].》Google Scholar
|
[23] |
Huang G X, Zhou Z G, He S X, et al. Studies on the intestinal enzyme-producing microflora in typical marine finfish Scarus ovifrons Temminck et Schlegel, 1846 at sublayer of the South China Sea[J]. Journal of Agricultural Science and Technology, 2007, 9(5): 95-100. [黄光祥,周志刚,何夙旭,等. 南海底层鱼突额鹦嘴鱼Scarus ovifrons Temminck et Schlegel, 1846肠道产酶微生物研究[J]. 中国农业科技导报,2007, 9(5): 95-100. ].》Google Scholar
|
[24] |
Qin Z J, Yu K F, Wang Y H. Review on ecological restoration theories and practices of coral reefs[J]. Tropical Geography, 2016, 36(1): 80-86. [覃祯俊,余克服,王英辉. 珊瑚礁生态修复的理论与实践[J]. 热带地理,2016, 36(1): 80-86. ].》Google Scholar
|
[25] |
Fei H N, Zhang S Q. Aquatic resources science[M]. Beijing: China Science and Technology Press, 1990. [费鸿年,张诗全. 水产资源学[M]. 北京:中国科学技术出版社,1990. ].》Google Scholar
|
[26] |
Cinner J E, Graham N A J, Huchery C, et al. Global effects of local human population density and distance to markets on the condition of coral reef fisheries[J]. Conservation Biology, 2013, 27(3): 453-458..》Google Scholar
|
[27] |
Zar J H. Biostatistical analysis[M]. 4th ed. Upper Saddler River, NJ: Prentice Hall, 1999..》Google Scholar
|
[28] |
Bay L K, Choat J H, van Herwerden L, et al. High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): Evidence of an unstable evolutionary past?[J]. Marine Biology, 2004, 144(4): 757-767..》Google Scholar
|
[29] |
Tuwo A, Rahmani P Y, Samad W, et al. Interannual sex ratio and maturity of Indian parrotfish Chlorurus capistratoides Bleeker, 1847 in Wallace line at Spermonde Archipelago[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 564(1): 012008..》Google Scholar
|
[30] |
Howard K G. Community structure, life history, and movement patterns of parrotfishes: large protogynous fishery species[D]. Manoa: University of Hawaii, 2008..》Google Scholar
|
[31] |
Gust N. Variation in the population biology of protogynous coral reef fishes over tens of kilometres[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(2): 205-218..》Google Scholar
|
[32] |
Taylor B M. Drivers of protogynous sex change differ across spatial scales[J]. Proceedings Biological Sciences, 2013, 281(1775): 20132423..》Google Scholar
|
[33] |
Roos N C, Taylor B M, Carvalho A R, et al. Demography of the largest and most endangered Brazilian parrotfish, Scarus trispinosus, reveals overfishing[J]. Endangered Species Research, 2020, 41: 319-327..》Google Scholar
|
[34] |
Yu D D, Song J J, Liu K K, et al. An ecosystem perspective on fisheries conservation based on the importance of the big old fish[J]. Acta Ecologica Sinica, 2021, 41(18): 7432-7439. [于道德,宋静静,刘凯凯,等. 大型年长鱼类对海洋生态系统生物资源养护的作用[J]. 生态学报,2021, 41(18): 7432-7439. ].》Google Scholar
|
[35] |
Kitching T. Life history variability in maturity and the influence of environment in Atlantic Salmon, Salmo salar, and Bullethead Parrotfish, Chlorurus sordidus and C. spilurus, under climate change[D]. Halifax, Nova Scotia: Dalhousie University, 2021..》Google Scholar
|
[36] |
Angilletta M J Jr. Thermal adaptation: a theoretical and empirical synthesis[M]. Oxford: Oxford University Press, 2009.》Google Scholar
|
[37] |
McIlwain J L, Taylor B M, Bruckner A W. Parrotfish population dynamics from the Marianas Islands, with a description of the demographic and reproductive characteristics of Chlorurus sordidus[R]. Final report to the Western Pacific Regional Fishery Management Council, 2009..》Google Scholar
|
[38] |
Yin M C. Fish ecology[M]. Beijing: China Agriculture Press, 1995. [殷名称. 鱼类生态学[M]. 北京:中国农业出版社,1995. ].》Google Scholar
|
[39] |
Locham A G, Kaunda-Arara B, Wakibia J, et al. Phenotypic divergence in reproductive traits of the marbled parrotfish, Leptoscarus vaigiensis (Quoy and Gaimard, 1824), among reefs of varying protection levels in Kenya[J]. Western Indian Ocean Journal of Marine Science, 2014, 13(1): 69-80..》Google Scholar
|
[40] |
Döring J, Hauss H, Haslob H. Spatial and seasonal variability in reproductive investment of Baltic sprat[J]. Fisheries Research, 2018, 204: 49-60..》Google Scholar
|