2. 河南师范大学水产学院,河南 新乡 453002
2. College of Fisheries, Henan Normal University, Xinxiang 453007, China
脂肪是鱼类重要的能量来源,它不仅可以为鱼体提供能量,还可为细胞的正常结构和生理功能提供必需脂肪酸、磷脂、胆固醇和脂溶性维生素等[1]。在一定范围内,增加饲料中的脂肪含量,不仅可以节约成本较高的蛋白原料,还可增加蛋白质效率,促进鱼体生长,并减少水体的氮、磷污染[2-4]。因此,高脂饲料在鱼类养殖中使用得越来越普遍。但在实际养殖过程中,高脂饲料对鱼类生长、代谢和生理功能等方面的负作用逐渐显现,尤其是会引起脂代谢紊乱,导致内脏脂肪含量增加、肝脂肪变性,甚至导致脂肪肝等疾病,并最终影响鱼体健康和鱼肉品质。高脂饲料的这些负面作用在大口黑鲈(Micropterus salmoides)[5]、团头鲂(Megalobrama amblycephala)[6]、草鱼(Ctenopharyngodon idella)[7]、尼罗罗非鱼(Oreochromis niloticus)[8]、虹鳟(Oncorhynchus mykiss)[9]、青鳉(Oryzias latipes)[10]等多种养殖鱼类中得到证实。高脂影响鱼类脂代谢的机制目前尚不完全明确。Ka等[11]通过比较高脂饲喂后的斑马鱼(Danio rerio)与小鼠的肝脏特异性转录组谱,发现二者共有参与脂代谢的多数转录子,且多数与人高血脂相关调节因子同源的基因随着高脂喂养在二者均表现出表达上调的趋势,说明变温动物与恒温动物在脂代谢调节方面具有进化上的保守性,人类用于改善和治疗脂代谢紊乱相关疾病的手段和方法也可适用于鱼类。基于此,研究者们尝试了将多种降脂药物应用于鱼类的高脂饲料中,以改善高脂饲料引起的鱼类脂代谢紊乱,其中中草药及其提取物因原料易得、成本低、副作用小等优点而广受青睐,如:甜菜碱在团头鲂[12]、异育银鲫(Carassius auratus gibelio)[13]和黑鲷(Acanthopagrus schlegelii)[14],垂盆草提取物在尼罗罗非鱼[15-16],金银花提取物和水飞蓟素在草鱼[17-18],甘草次酸在斑点叉尾鮰(Ictalurus punctutus)[19]等养殖鱼中的应用,均起到了很好的促进生长、调节脂代谢、降低脂肪在鱼体内蓄积的作用。
地黄(Rehmannia glutinosa)和山药(Dioscorea opposita)是传统中药中的重要成员,具有降血糖和血脂的作用。以这2种中药为主药的六味地黄丸可显著降低Ⅱ型糖尿病模型大鼠血清总甘油三酯、总胆固醇和游离脂肪酸含量,减少脂肪在皮下、肝脏等部位的蓄积,降低肝脏部分脂代谢相关基因的表达,改善糖尿病导致的脂代谢紊乱[20-21]。给小鼠高脂日粮中添加山药粉,可抑制高脂引起的肝脏炎症反应,减少肝脏胆固醇的合成,并增加胆固醇的分解代谢和脂肪氧化[22]。本课题组在之前的研究中发现,在鲤(Cyprinus carpio)基础饲料中添加4%的地黄粉可显著提高生长性能、改善免疫力和提高抗病能力[23];添加2%的山药粉可通过调节肠道菌群,提高肠道的防御屏障功能[24]。而在鲤高脂饲料中添加地黄和山药的作用效果尚有待评估。黄河鲤是黄河流域长期自然形成的一种特有的经济鲤,是目前河南沿黄区域主要的养殖品种。关于高脂饲料对黄河鲤生长、生理的影响尚未见报道。本研究拟采用黄河鲤为实验对象,研究高脂饲料中添加地黄或山药对其生长、生理和脂代谢的调节作用。
1 材料与方法 1.1 饲料配制配制4种鲤鱼等氮饲料(粗蛋白质量分数设计为34%,实测值见表1):基础饲料(NC)、高脂饲料(HLD)、高脂饲料
饲养实验在河南师范大学水产基地完成。黄河鲤购自河南省延津县渔场,运回实验基地后,先在小型水泥池中暂养2周,期间投喂商品饲料(河南通威饲料有限公司)。正式实验在流水养殖系统中进行。挑选360尾鱼(初始体重79.97 g± 9.86 g),按体重随机放入12个养殖桶中(每桶30尾)。养殖桶体积130 L,直径52 cm,高62 cm。将12桶鱼随机分成4组(每组3个重复):对照组、高脂组、地黄添加组和山药添加组,分别饲喂饲料NC、HLD、HLD+R和HLD+Y。养殖12周,每天投喂3次(8:30、12:30和16:30),前3周饱食投喂,3周后根据增重情况和吃食情况进行调整,按吃食最差的养殖桶内实验鱼平均体重的2%作为日投喂量,即每个养殖桶内都是等量投喂(饲料干物质重量),然后每2周称重1次,以调整投喂量。水流速度6 L/min,采用气石提供氧气。养殖期间,每天光暗分别为12 h;每日换水1次,换水量为养殖水体积的1/3;水温(26.3±1) ℃; pH 6.5~7.8,溶氧量6~8 mg/L。
![]() |
表1 饲料配方及营养组成
Tab. 1 Formulation and proximate composition |
分别于养殖第3周、第7周和第12周末各采集一次样品。取样前,实验鱼禁食24 h,每桶随机选取4尾,MS-222 (100 mg/L)溶液进行麻醉后称重;然后尾静脉抽血,用于血清生化指标的检测;最后无菌条件下解剖,分离肝胰脏,称重,用于计算肝胰脏指数(hepatopancreas somatic indices, HSI),然后取一部分,液氮速冻后于-80 ℃保存,用于甘油三酯(triacylglycerol, TG)和总胆固醇(total cholesterol, TC)含量及脂代谢相关基因表达量的检测。最后一次采集样品时对所有鱼进行称重,根据每桶内鱼的初始体重、每个时间点所取鱼的总重量和总摄食量,计算饲料系数(feed coefficient, FC)。
肝胰脏指数(HSI,%)=(肝胰脏质量/体重)×100
饲料系数(FC)=总摄食量/(每个时间点所取鱼的总重量-初始鱼的总重量)
1.4 血清生化指标的检测将抽取的尾静脉血置于1.5 mL离心管中,4 ℃放置过夜后3500 r/min离心15 min,吸取上清液(即血清)。采用全自动生化分析仪(AU-5800, BECK-MAN)检测以下血清生化指标:乳酸脱氢酶(lactic dehydrogenase, LDH)、碱性磷酸酶(alkaline phosphatase, ALP)、谷丙转氨酶(alanine aminotransferase, ALT)和谷草转氨酶(aspartate aminotransferase, AST)的活性,以及血清甘油三酯(TG)和总胆固醇(TC)含量。
1.5 肝胰脏脂代谢相关基因表达量的检测根据已公布的鲤鱼相关基因序列,设计了过氧化物酶体增殖物激活受体(peroxisome proliferators- activated receptors, Ppar)-α、脂蛋白脂肪酶(lipoprotein lipase, Lpl)、肉毒碱棕榈酰基转移酶(carnitine palmitoyltransferase, Cpt)-1、固醇调节元件结合蛋白(sterol regulatory element binding protein, Srebp)- 1c、乙酰辅酶A羧化酶(acetyl CoA carboxylase, Acc)-1和脂肪酸合成酶(fatty acid synthase, Fas)等脂代谢相关基因的荧光定量引物(表2),以鲤鱼18S rRNA为内参基因,检测肝胰脏中的基因表达量。
采用RNAiso Plus (TaKaRa)提取肝胰脏总RNA, 1.0%琼脂糖凝胶电泳检查RNA的完整性,Nanodrop 2000 (Thermo)测定RNA浓度。按照PrimeScript RT reagent kit with gDNA Eraser (TaKaRa)试剂盒说明书进行反转录,合成cDNA (RNA模板量1 μg),稀释10倍后作为荧光定量PCR模板,在LightCycler 480Ⅱ(Roche)上进行荧光定量PCR反应。反应体系:2×SYBR Green(Toyobo) 5 μL,上、下游引物各0.25 μL, cDNA模板1 μL, ddH2O 3.5 μL。反应程序:95 ℃预变性3 min, 95 ℃ 15 s, 56 ℃ 15 s, 72 ℃ 30 s,共40个循环。每个样品测3个重复,目的基因的相对表达量用2-ΔΔCt方法计算。
![]() |
表2 实时荧光定量PCR引物序列 Tab. 2 Quantitative real-time PCR primers |
采用TG和TC测试盒(南京建成)检测肝胰脏组织中相应脂质的含量。基本操作程序:按1(g): 9(mL)的比例,将肝胰脏组织加入无水乙醇,冰浴条件下高速匀浆,离心后取上清;按说明书加入各反应液,37℃ 孵育10 min,酶标仪检测510 nm下的吸光度值,并计算TG和TC含量(mmol/g)。
1.7 数据处理数据以平均值±标准差($\bar{x}\pm \text{SD}$)表示,SPSS 20.0软件进行单因素方差分析和Duncan’s多重比较,P<0.05表示数据差异显著。
2 结果与分析 2.1 生长指标本研究中的养殖试验共持续12周,前3周饱食投喂,3周后改为等量投喂。饱食投喂期间,对照组(NC)实验鱼每次的摄食量明显高于其他组。NC组的平均体重在饲喂3周、7周和12周后均高于其他组,且在第7周和第12周存在显著性差异(P<0.05)。虽然地黄添加组(HLD+R)和山药添加组(HLD+Y)的体重在各时期与高脂组(HLD)无显著性差异,但它们在每个时期均高于HLD组(表3)。
2.2 血清生化指标由图1可以看出,除谷草转氨酶(AST)活性在整个养殖期间各组间无明显差异外,其他血清指标均发生了显著变化。
谷丙转氨酶(ALT)活性在前3周各组间无明显差异,之后高脂组(HLD)开始高于其他组,并分别在第7周和第12周时与地黄添加组(HLD+R)和山药添加组(HLD+Y)有显著性差异;乳酸脱氢酶(LDH)活性在前3周对照组(NC)高于其他组,且与HLD组和HLD+R组有显著性差异,之后各组间不再有明显差异;碱性磷酸酶(ALP)活性在3个时期各高脂组均高于NC组,且在第3周和第7周时有显著性差异(P<0.05)。
![]() |
表3 饲喂3周、7周和12周后各实验组黄河鲤生长指标 Tab. 3 Growth indexes of Cyprinus carpio haematopterus in each group after 3, 7 and 12 weeks of feeding, respectively $\bar{x}\pm \text{SD}$ |
![]() |
图1 饲喂3周、7周和12周后各实验组黄河鲤血清生化指标 (n=12, $\bar{x}\pm \text{SD}$) Fig. 1 Levels of serum biochemical indexes of Cyprinus carpio haematopterus in each group after 3, 7 and 12 weeks of feeding, respectively (n=12, $\bar{x}\pm \text{SD}$) |
HLD组血清甘油三酯(TG)含量在3个时期均高于其他组,HLD+R组在12周时显著低于HLD组,HLD+Y组在第3周和第12周均显著低于HLD 组(P<0.05)。血清总胆固醇(TC)含量除在第3周时HLD组显著高于NC组(P<0.05)外,其他时期各组间均无显著性差异。
2.3 肝胰脏指数和甘油三酯、总胆固醇含量各高脂组肝胰脏的甘油三酯(TG)和总胆固醇(TC)含量总体上高于NC组,且在第12周时,HLD组的TG含量与NC组有显著性差异。前3周饱食投喂的情况下,NC组的肝胰脏指数(HSI)高于其他组,且与HLD+R组有显著性差异;而改为等量投喂后,NC组的HSI很快下降至低于HLD组的水平(表4)。
2.4 肝胰脏脂代谢相关基因的表达在前3周饱食投喂的情况下,所有基因的表达量在各实验组间均无显著差异,但改为等量投喂后,除Srebp-1c外其它基因的表达量均发生了显著变化。其中Acc1、Fas和Ppar-α的表达量在7周和12周时,各高脂组均高于NC组,且HLD组与NC组有显著性差异(P<0.05);高脂饲料中添加地黄粉或山药粉可显著下调Acc1和Fas的表达,但对Ppar-α的表达无影响。各高脂组Cpt-1和Lpl的表达量在第7周时均低于NC组,而12周时又都高于NC组,其中Cpt-1的表达量在第7周时各高脂组均显著低于NC组(P<0.05), 12周时HLD+R组显著高于NC组,HLD+Y组显著高于其他组(P<0.05);在第7周时HLD组和HLD+R组Lpl的表达量显著低于NC组和HLD+Y组,12周时HLD+R组中该基因表达水平显著高于NC组,HLD+Y组显著高于NC组和HLD组(图2)。
3 讨论 3.1 高脂饲料对黄河鲤食欲、生长性能和肝脂含量的影响在前3周饱食投喂下,对照组(NC)的摄食量明显多于各高脂组,这与Du等[2]在草鱼(Ctenopharyngodon idella)、Boujard等[3]在舌齿鲈(Dicentrarchus labrax)和Li等[25]在大口黑鲈的研究结果一致。高脂可能通过降低实验鱼的食欲从而减少摄食量。Libran-Perez等[26]采用脂肪含量分别为6%和19%的饲料饲喂初始体重34 g 左右的虹鳟,4周后高脂组鱼下丘脑的食欲减退相关肽POMC和CART的基因表达量明显高于低脂组,而促进食欲的相关肽NPY的基因表达量明显低于低脂组。但该研究并未发现两组鱼的摄食量存在差异,且高脂组的生长性能优于低脂组。因此,高脂引起黄河鲤摄食量下降的原因需进一步探讨。从生长性能来看,无论是饱食投喂(前3周),还是等量投喂(3周后),各高脂组鱼的体重均明显低于对照组,饲料系数显著高于对照组,说明饲料中过高的脂肪含量会降低黄河鲤的饲料利用效率和生长性能,这与Li等对团头鲂的研究结果一致,他们比较了脂肪含量分别为5%和15%的饲料对团头鲂生长、生理的影响,结果高脂饲料会显著降低实验鱼的生长和饲料利用效率[27]。Abasubong等[28]将饲料脂肪含量从4% 左右增加到9.5%左右时,鲤鱼的生长性能无明显变化,但饲料利用效率显著降低。从肝胰脏指数(HSI)和脂肪含量来看,前3周饱食喂养后,NC组的HSI显著高于各高脂组,但肝内甘油三酯(TG)和总胆固醇(TC)的含量却低于各高脂组,说明导致此时期NC组HSI升高的主要因素并不是脂肪蓄积,而是其他营养素引起,如糖原储存量的增加。改为等量投喂后,NC组和各高脂组的HSI趋于一致,而肝TG和TC依然低于各高脂组,说明高脂饲料更易引起黄河鲤肝脂肪蓄积,而对HSI并无显著影响。这与Li等[25]对大口黑鲈的研究结果一致,即导致HSI升高的主要因素是饲料中淀粉含量的增加,而高脂饲料主要引起肝胰脏脂肪含量升高。Zhou等[5]对大口黑鲈的研究也表明,饲料中脂肪含量过高会显著影响幼鱼的生长性能和增加肝胰脏的脂肪含量。
![]() |
表4 饲喂3周、7周和12周后各实验组黄河鲤肝胰脏指数和甘油三酯、总胆固醇含量 Tab. 4 HSI and contents of triacylglcerol and total cholesterol in the hepatopancreas of Cyprinus carpio haematopterus in each group after 3, 7 and 12 weeks of feeding, respectively n=12; $\bar{x}\pm \text{SD}$ |
![]() |
图2 饲喂3周、7周和12周后各实验组黄河鲤肝胰脏脂代谢相关基因的相对表达量 (n=6, $\bar{x}\pm \text{SD}$) Fig. 2 The relative expression levels of lipid metabolism-related genes in the hepatopancreas of Cyprinus carpio haematopterus in each group after 3, 7 and 12 weeks of feeding, respectively (n=6, $\bar{x}\pm \text{SD}$) |
鱼类血清酶活性水平常受环境因素的影响,如:白鲢(Hypophthalmichthys molitrix)、鲤暴露于除草剂[29-30]、尖齿胡鲇(Clarias gariepinus)暴露于二氧化肽微粒[31]后血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)和乳酸脱氢酶(LDH)活性水平均升高;微囊藻毒素也可引起白鲢血清ALT和AST活性升高[32]。因此,血清酶活性常被用于反映水生生物受环境因素影响的敏感生物学指标,血清中这些酶活性水平的升高,意味着肝、肾和/或鳃可能受到了损伤[31]。近年来,血清酶活性对高脂饲料的敏感性也开始引起研究者的注意。Zhou等[5]发现,给大口黑鲈饲喂20%的高脂饲料后,血清ALT、AST和ALP含量均升高。ALT和AST主要是由肝脏产生的氨基转移酶,分别催化L-丙氨酸和天冬氨酸的氨基向α-酮戊二酸转移。在人类研究中,血清AST值常常是恒定的,而ALT水平通常与血脂水平和肝脂肪含量呈正相关,其活性是衡量肝细胞损伤或肝脏疾病的首要指标[33-34]。我们的研究结果与此相吻合:AST在整个养殖周期各实验组间无差异;而ALT在第7周和12周时HLD组均高于NC组,且在7周时具有显著性差异,血清和肝脏的甘油三酯和总胆固醇含量虽然在各时期的检测结果不完全一样,但HLD组均高于NC组的规律是一致的。说明同人类一样,鱼类的血清ALT活性水平与血脂和肝脂肪含量可能也具有正相关性,其水平升高也可作为反映肝细胞受损的特异性指标。ALP属于胞外核苷酸酶,水解AMP后形成的腺苷可作为细胞信号分子,参与脂肪细胞和成骨细胞的分化与成熟[35],生理情况下,血清ALP主要来源于肝脏和骨骼,而高脂饮食会增加血清ALP的活性[36]。在本研究中,血清ALP活性在3个时期HLD组均高于NC组,且其差异在3周和7周末时呈显著性,说明食物中的脂肪含量对血清ALP活性水平的影响在人和鱼中是一致的。LDH是参与碳水化合物代谢的关键酶,其血清活性的升高在判断肝脏和肌肉受损方面也有一定的价值[37]。我们的研究结果表明,LDH活性在3周时,各高脂组均低于NC组,且HLD组和HLD+R组均与NC组有显著性差异,之后各组间不再有明显差异。这可能是因为前3周饱食投喂的情况下,对照组的摄食量显著高于各高脂组,因而摄入的碳水化合物也较高的缘故。
3.3 高脂饲料对黄河鲤肝胰脏脂代谢相关基因表达的影响人们通过对哺乳动物的研究认为,高脂饮食可在转录和翻译水平上影响关键组织(如下丘脑、脂肪组织、肝脏和肌肉)脂代谢相关基因的表达[38]。近年来,关于高脂饲料调节鱼类脂代谢相关基因表达的研究也取得了一定进展,但在不同鱼类间的研究结果存在矛盾。SREBP-1是启动肝脏脂肪酸从头合成的转录因子,在碳水化合物充足的情况下,血浆胰岛素激活SREBP-1,上调脂肪酸合成相关酶的基因表达(如Acc、Fas等),启动脂肪酸的合成[39]。Tang等[7]对草鱼、Desouky等[19]对斑点叉尾鮰的研究表明,高脂饲料引起肝脏Srebp1基因的表达显著升高;而He等[40]却发现高脂可显著降低尼罗罗非鱼肝脏Srebp1的表达水平;Landgraf [41] 对斑马鱼的研究结果与我们的一致,即高脂饲料未能引起肝脏Srebp1表达水平发生显著变化。ACC和FAS是参与脂肪酸合成的关键酶。ACC催化乙酰-CoA羧化为丙二酰-CoA,而FAS将丙二酰-CoA转化为棕榈酸,最后棕榈酸被酯化成甘油三酯[42]。高脂饲料显著上调斑马鱼肝脏Acc、Fas基因的表达[43],对斑点叉尾鮰肝脏Fas的表达也起上调作用[19],这与我们在黄河鲤中的研究结果是一致的;但草鱼[44]和尼罗罗非鱼[40]摄入高脂饲料会显著降低肝脏Acc和Fas的基因表达。PPRA-α是启动肝脏脂肪酸氧化分解的转录因子,激活后可上调参与脂肪酸运输和氧化相关基因如Cpt1的表达,导致脂肪酸氧化、酮体生成和糖异生;激活的PPAR-α还可上调脂蛋白脂酶(LPL)的活性,促进血浆脂蛋白中甘油三酯的分解[45]。Abasubong等[28]在鲤、Yu等[16]在罗非鱼、Desouky等[19]在斑点叉尾鮰的研究发现,高脂饲料引起肝脏Ppar-α表达下调;而Li等[44]在草鱼的研究得出了与我们相同的结论,即:过量的脂质摄入增加肝脏Ppar-α基因的表达。此外,He等[40]认为高脂饲料对尼罗罗非鱼肝脏Ppar-α基因的表达无影响。CPT1是参与脂质分解代谢的关键酶。在PPAR-α介导下,CPT1催化脂酰CoA转化为脂酰肉碱,从而启动长链脂肪酸在线粒体进行β氧化[46]。Lu等利用15%的高脂饲料饲喂团头鲂,导致肝脏CPT1的基因表达量、酶活性和底物亲和力均显著下降[47];高脂饲料对斑点叉尾鮰[19]和鲤鱼[28]肝脏的Cpt1表达水平也具有下调作用;但斑马鱼摄入高脂后肝脏Cpt1的表达显著上调[43]。LPL的主要作用是水解血浆脂蛋白(如乳糜微粒、极密度脂蛋白等)中的甘油三酯,产生甘油和游离脂肪酸,供组织细胞摄取和利用[48]。目前关于高脂饲料对鱼类肝脏Lpl基因表达的影响,多数研究认为是起上调作用,如在鲤[28]、斑马鱼[43]、瓦氏黄颡鱼(Pelteobagrus vachellii)[49]和罗非鱼[8]的研究均支持这一结论,但在另一项关于斑马鱼的研究中,未观察到高脂对肝脏Lpl表达的影响[41]。我们对黄河鲤的研究结果表明,高脂引起肝脏Cpt-1和Lpl表达水平呈先降后升的趋势。
综上所述,关于高脂饲料对鱼类脂代谢相关基因表达的影响,不同研究可能得出完全相反的结果。这种差异和矛盾可能与鱼的种类和发育阶段、饲料中的脂肪来源以及环境条件等因素不同有关。如Qiang等发现温度与饲料脂肪水平交互作用,影响LPL的mRNA表达,当脂质水平为2%~10%时,高温刺激LPL mRNA的表达;而在高脂水平(14%~17%)时,高温抑制LPL mRNA表达,低温促进LPL mRNA表达[50]。近年来对哺乳动物的研究也表明,高脂饲粮对脂代谢的具体作用还取决于饮食中脂肪的含量和组成,且在不同的动物模型中有特定的影响[38]。
3.4 高脂饲料中添加地黄或山药对黄河鲤生长、生理的调节作用地黄和山药是传统的降糖、降脂中药,其对脂代谢的调节作用在人和哺乳动物中已得到广泛研究。Qin等[51]利用地黄粉水提物饲喂高脂饮食诱导的糖尿病KK-Ay小鼠,可显著降低糖尿病小鼠的空腹血糖水平,改善葡萄糖耐受性,恢复血清总胆固醇、甘油三酯、高密度脂蛋白胆固醇和低密度脂蛋白胆固醇水平。给链脲霉素诱导的糖尿病大鼠模型服用山药粉,可降低血糖、血脂和肝脏胆固醇水平[52-53]。在大鼠高胆固醇饮食中添加山药粉或其活性成分皂苷元(diosgenin),可减少体内脂肪蓄积、改善胆固醇代谢,并通过改善脂质结构和调节氧化应激来控制高胆固醇血症[54-55]。本研究证实地黄和山药对鱼类脂代谢也有一定的调节作用。在高脂饲料中添加4%地黄粉或2%山药粉可降低黄河鲤血清和肝胰脏的甘油三酯和总胆固醇水平,下调Acc1、Fas基因表达和上调Cpt-1、Lpl基因表达,还可降低血清谷丙转氨酶活性和肝胰脏指数,对黄河鲤的摄食和生长也有一定的改善作用,并显著降低饲料系数,提高黄河鲤对高脂饲料的利用效率。因此,利用地黄或山药等中草药可以改善高脂饲料对养殖鱼的不利影响,而且地黄粉和山药粉制备简单、廉价易得,适量添加在高脂饲料中并不会增加养殖成本,为解决当前在水产养殖中采用高脂饲料替代鱼粉过程中存在的问题有重要意义。
4 结论饲料中脂肪含量过高会对黄河鲤造成以下影响:降低食欲和生长性能;增加肝胰脏脂肪蓄积和血脂含量;影响血清酶活性和肝胰脏脂代谢相关基因的表达。高脂饲料中添加地黄或山药可显著改善高脂对黄河鲤生长、生理的不利影响。
[1] |
Sargent J, Bell G, McEvoy L, et al. Recent developments in the essential fatty acid nutrition of fish[J]. Aquaculture, 1999, 177(1-4): 191-199..》Google Scholar
|
[2] |
Du Z Y, Liu Y J, Tian L X, et al. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella)[J]. Aquaculture Nutrition, 2005, 11(2): 139-146..》Google Scholar
|
[3] |
Boujard T, Gélineau A, Covès D, et al. Regulation of feed intake, growth, nutrient and energy utilisation in European Sea bass (Dicentrarchus labrax) fed high fat diets[J]. Aquaculture, 2004, 231(1-4): 529-545..》Google Scholar
|
[4] |
Gélineau A, Corraze G, Boujard T, et al. Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid deposition and hepatic lipogenesis in rainbow trout[J]. Reproduction, Nutrition, Development, 2001, 41(6): 487-503..》Google Scholar
|
[5] |
Zhou Y L, Guo J L, Tang R J, et al. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti- oxidative capacity in juvenile largemouth bass Micropterus salmoides[J]. Fish Physiology and Biochemistry, 2020, 46(1): 125-134..》Google Scholar
|
[6] |
Cao X F, Dai Y J, Liu M Y, et al. High-fat diet induces aberrant hepatic lipid secretion in blunt snout bream by activating endoplasmic reticulum stress-associated IRE1/XBP1 pathway[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2019, 1864(3): 213-223..》Google Scholar
|
[7] |
Tang T, Hu Y, Peng M, et al. Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism- related microRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2019, 234: 34-40..》Google Scholar
|
[8] |
Tian J, Wu F, Yang C G, et al. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile Tilapia, Oreochromis niloticus[J]. Fish Physiology and Biochemistry, 2015, 41(1): 1-18..》Google Scholar
|
[9] |
Figueiredo-Silva A C, Panserat S, Kaushik S, et al. High levels of dietary fat impair glucose homeostasis in rainbow trout[J]. The Journal of Experimental Biology, 2012, 215(Pt 1): 169-178..》Google Scholar
|
[10] |
Fujisawa K, Takami T, Matsuzaki A, et al. Evaluation of the effects of L-carnitine on medaka (Oryzias latipes) fatty liver[J]. Scientific Reports, 2017, 7: 2749..》Google Scholar
|
[11] |
Ka J, Pak B, Han O, et al. Comparison of transcriptomic changes between zebrafish and mice upon high fat diet reveals evolutionary convergence in lipid metabolism[J]. Biochemical and Biophysical Research Communications, 2020, 530(4): 638-643..》Google Scholar
|
[12] |
Adjoumani J J Y, Wang K Z, Zhou M, et al. Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet[J]. Fish Physiology and Biochemistry, 2017, 43(6): 1733-1745..》Google Scholar
|
[13] |
Dong X J, Xue W, Hua J, et al. Effects of dietary betaine in allogynogenetic gibel carp (Carassius auratus gibelio): Enhanced growth, reduced lipid deposition and depressed lipogenic gene expression[J]. Aquaculture Research, 2018, 49(5): 1967-1972..》Google Scholar
|
[14] |
Jin M, Shen Y D, Pan T T, et al. Dietary betaine mitigates hepatic steatosis and inflammation induced by a high-fat-diet by modulating the Sirt1/srebp-1/pparɑ pathway in juvenile black seabream (Acanthopagrus schlegelii)[J]. Frontiers in Immunology, 2021, 12: 694720..》Google Scholar
|
[15] |
Huang L D, Cheng Y, Huang K, et al. Ameliorative effect of Sedum sarmentosum Bunge extract on Tilapia fatty liver via the PPAR and P53 signaling pathway[J]. Scientific Reports, 2018, 8: 8456..》Google Scholar
|
[16] |
Yu K, Huang K, Tang Z Y, et al. Metabolism and antioxidation regulation of total flavanones from Sedum sarmentosum Bunge against high-fat diet-induced fatty liver disease in Nile tilapia (Oreochromis niloticus)[J]. Fish Physiology and Biochemistry, 2021, 47(4): 1149-1164..》Google Scholar
|
[17] |
Meng X L, Zhu Z X, Lu R H, et al. Regulation of growth performance and lipid metabolism in juvenile grass carp (Ctenopharyngodon idella) with honeysuckle (Lonicera japonica) extract[J]. Fish Physiology and Biochemistry, 2019, 45(5): 1563-1573..》Google Scholar
|
[18] |
Xiao P Z, Ji H, Ye Y T, et al. Dietary silymarin supplementation promotes growth performance and improves lipid metabolism and health status in grass carp (Ctenopharyngodon idellus) fed diets with elevated lipid levels[J]. Fish Physiology and Biochemistry, 2017, 43(1): 245-263..》Google Scholar
|
[19] |
Desouky H E, Jiang G Z, Zhang D D, et al. Influences of glycyrrhetinic acid (GA) dietary supplementation on growth, feed utilization, and expression of lipid metabolism genes in channel catfish (Ictalurus punctatus) fed a high-fat diet[J]. Fish Physiology and Biochemistry, 2020, 46(2): 653-663..》Google Scholar
|
[20] |
Li J, Xue Y M, Zhu B, et al. Effects of Liuwei Dihuang Pills on lipid metabolism and the liver structure in spontaneously diabetic OLETF rats[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2018, 39(2): 162-168. [李佳,薛耀明,朱波,等. 从改善“脂毒性”看六味地黄丸对自发性糖尿病OLETF大鼠肝脏的保护[J]. 暨南大学学报(自然科学与医学版), 2018, 39(2): 162-168.].》Google Scholar
|
[21] |
Du H, Xue Y M, Zhu B, et al. The effect of Liuwei Dihuang pills on the expression of SREBP and ACC genes in the liver of type 2 diabetic rats[J]. The Journal of Practical Medicine, 2013, 29(11): 1741-1743. [杜华,薛耀明,朱波,等. 六味地黄丸影响2型糖尿病大鼠肝脏SREBP-1和ACC表达的实验研究[J]. 实用医学杂志,2013, 29(11): 1741-1743.].》Google Scholar
|
[22] |
Shinozaki F, Kamei A, Watanabe Y, et al. Propagule Powder of Japanese yam (Dioscorea japonica) reduces high-fat diet-induced metabolic stress in mice through the regulation of hepatic gene expression[J]. Molecular Nutrition & Food Research, 2020, 64(17): 2000284..》Google Scholar
|
[23] |
Wang J L, Meng X L, Lu R H, et al. Effects of Rehmannia glutinosa on growth performance, immunological parameters and disease resistance to Aeromonas hydrophila in common carp (Cyprinus carpio L.)[J]. Aquaculture, 2015, 435: 293- 300..》Google Scholar
|
[24] |
Meng X L, Hu W P, Wu S K, et al. Chinese yam peel enhances the immunity of the common carp (Cyprinus carpio L.) by improving the gut defence barrier and modulating the intestinal microflora[J]. Fish & Shellfish Immunology, 2019, 95: 528-537..》Google Scholar
|
[25] |
Li X Y, Zheng S X, Ma X K, et al. Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)[J]. Amino Acids, 2020, 52(6): 999-1016..》Google Scholar
|
[26] |
Librán-Pérez M, Geurden I, Dias K, et al. Feeding rainbow trout with a lipid-enriched diet: Effects on fatty acid sensing, regulation of food intake and cellular signaling pathways[J]. The Journal of Experimental Biology, 2015, 218(Pt 16): 2610-2619..》Google Scholar
|
[27] |
Li J Y, Li X F, Xu W N, et al. Effects of dietary choline supplementation on growth performance, lipid deposition and intestinal enzyme activities of blunt snout bream Megalobrama amblycephal fed high-lipid diet[J]. Aquaculture Nutrition, 2016, 22:181-190..》Google Scholar
|
[28] |
Abasubong K P, Li X F, Zhang D D, et al. Dietary supplementation of xylooligosaccharides benefits the growth performance and lipid metabolism of common carp (Cyprinus carpio) fed high-fat diets[J]. Aquaculture Nutrition, 2018, 24(5): 1416-1424..》Google Scholar
|
[29] |
Ma J G, Li X X, Cui M K, et al. Negative impact of the imidazolium-based ionic liquid[C8mim]Br on silver carp (Hypophthalmichthys molitrix): Long-term and low-level exposure[J]. Chemosphere, 2018, 213: 358-367..》Google Scholar
|
[30] |
Ma J G, Li Y Y, Wu M L, et al. Serum immune responses in common carp (Cyprinus carpio L.) to paraquat exposure: The traditional parameters and circulating microRNAs[J]. Fish & Shellfish Immunology, 2018, 76: 133-142..》Google Scholar
|
[31] |
Tunçsoy M. Impacts of titanium dioxide nanoparticles on serum parameters and enzyme activities of Clarias gariepinus[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(4): 629-636..》Google Scholar
|
[32] |
Li X Y, Li J, Meng F X, et al. Hepatotoxicity and immunotoxicity of MC-LR on silver carp[J]. Ecotoxicology and Environmental Safety, 2019, 169: 28-32..》Google Scholar
|
[33] |
Senior J R. Alanine aminotransferase: A clinical and regulatory tool for detecting liver injury-past, present, and future[J]. Clinical Pharmacology & Therapeutics, 2012, 92(3): 332-339..》Google Scholar
|
[34] |
Kolahdoozan S, Mirminachi B, Sepanlou S G, et al. Upper normal limits of serum alanine aminotransferase in healthy population: A systematic review[J]. Middle East Journal of Digestive Diseases, 2020, 12(3): 194-205..》Google Scholar
|
[35] |
Zaher D M, El-Gamal M I, Omar H A, et al. Recent advances with alkaline phosphatase isoenzymes and their inhibitors[J]. Archiv Der Pharmazie, 2020, 353(5): e2000011..》Google Scholar
|
[36] |
Poupon R. Liver alkaline phosphatase: A missing link between choleresis and biliary inflammation[J]. Hepatology, 2015, 61(6): 2080-2090..》Google Scholar
|
[37] |
Ferriero R, Nusco E, de Cegli R, et al. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure[J]. Journal of Hepatology, 2018, 69(2): 325-335..》Google Scholar
|
[38] |
ReynÃs B R, Palou M, Palou A. Gene expression modulation of lipid and central energetic metabolism related genes by high-fat diet intake in the main homeostatic tissues[J]. Food & Function, 2017, 8(2): 629-650..》Google Scholar
|
[39] |
Alves-Bezerra M and Cohen D E. Triglyceride metabolism in the liver[J]. Comprehensive Physiology, 2017, 8(1):1-8..》Google Scholar
|
[40] |
He A Y, Ning L J, Chen L Q, et al. Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus)[J]. Physiological Reports, 2015, 3(8): e12485..》Google Scholar
|
[41] |
Landgraf K, Schuster S, Meusel A, et al. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity[J]. BMC Physiology, 2017, 17(1): 4..》Google Scholar
|
[42] |
Wu X, Huang T H. Recent development in acetyl-CoA carboxylase inhibitors and their potential as novel drugs[J]. Future Medicinal Chemistry, 2020, 12(6): 533-561..》Google Scholar
|
[43] |
Huang C C, Sun J, Ji H, et al. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): Focusing on the transcriptional level[J]. Fish Physiology and Biochemistry, 2020, 46(5): 1631-1644..》Google Scholar
|
[44] |
Li A X, Yuan X C, Liang X F, et al. Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2016, 457: 43-49..》Google Scholar
|
[45] |
Goto T. A review of the studies on food-derived factors which regulate energy metabolism via the modulation of lipid-sensing nuclear receptors[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(4): 579-588..》Google Scholar
|
[46] |
Schlaepfer I R, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology, 2020, 161(2): bqz046..》Google Scholar
|
[47] |
Lu K L, Xu W N, Wang L N, et al. Hepatic β-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet[J]. PLoS ONE, 2014, 9(3): e93135..》Google Scholar
|
[48] |
Basu D, Goldberg I J. Regulation of lipoprotein lipase- mediated lipolysis of triglycerides[J]. Current Opinion in Lipidology, 2020, 31(3): 154-160..》Google Scholar
|
[49] |
Zheng K K, Zhu X M, Han D, et al. Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae[J]. Aquaculture, 2010, 299(1-4): 121-127..》Google Scholar
|
[50] |
Qiang J, Tao Y F, He J, et al. Influences of dietary lipid and temperature on growth, fat deposition and lipoprotein lipase expression in darkbarbel catfish (Pelteobagrus vachellii)[J]. Journal of Thermal Biology, 2017, 69: 191-198..》Google Scholar
|
[51] |
Qin Z X, Wang W, Liao D Q, et al. UPLC-Q/TOF-MS-based serum metabolomics reveals hypoglycemic effects of Rehmannia glutinosa, Coptis chinensis and their combination on high-fat-diet-induced diabetes in KK-ay mice[J]. International Journal of Molecular Sciences, 2018, 19(12): 3984..》Google Scholar
|
[52] |
Go H K, Rahman M M, Kim G B, et al. Antidiabetic effects of yam (Dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-induced diabetes[J]. Nutrients, 2015, 7(10): 8532-8544..》Google Scholar
|
[53] |
Rozeno Pessoa L, Rêgo T, Asht L, et al. Serum and liver lipids distributions in streptozotocin induced diabetic rat treated with diet containing yam (Dioscorea bulbifera) flour[J]. Nutricion Hospitalaria, 2015, 31(4): 1647-1653..》Google Scholar
|
[54] |
Kusano Y, Tsujihara N, Masui H, et al. Consumption of Japanese yam improves lipid metabolism in high-cholesterol diet-fed rats[J]. Journal of Nutritional Science and Vitaminology, 2016, 62(5): 350-360..》Google Scholar
|
[55] |
Son I S, Kim J H, Sohn H Y, et al. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(12): 3063-3071..》Google Scholar
|