中国水产科学  2023, Vol. 30 Issue (01): 75-85  DOI: 10.12264/JFSC2022-0199
0

引用本文 

潘亚雄, 陶晋升, 张宇, 周俊, 潘佳琳, 唐昭阳, 樊轶为, 胡名广, 李慧菊, 黄鑫, 褚武英, 张建社. 翘嘴鳜pgc1基因表达特征及水体镉暴露对其节律性表达的影响[J]. 中国水产科学, 2023, 30(1): 75-85. DOI: 10.12264/JFSC2022-0199.
PAN Yaxiong, TAO Jinsheng, ZHANG Yu, ZHOU Jun, PAN Jialin, TANG Zhaoyang, FAN Yiwei, HU Mingguang, LI Huiju, HUANG Xin, CHU Wuying, ZHANG Jianshe. Expression characteristics of pgc1 and effects of cadmium exposure on its rhythmic expression in Chinese perch Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2023, 30(1): 75-85. DOI: 10.12264/JFSC2022-0199.

基金项目

国家自然科学基金项目(31820103016;32002364);湖南省自然科学基金项目(2021JJ40628).

作者简介

潘亚雄(1989-),男,博士,讲师;研究方向为鱼类生理代谢调控. E-mail:biopyx@163.com

通信作者

通信作者:张建社,教授,研究方向为水生动物营养与品质调控. E-mail:jzhang@ccsu.edu.cn

文章历史

收稿日期:2022-05-21
修改日期:2022-08-10
翘嘴鳜pgc1基因表达特征及水体镉暴露对其节律性表达的影响
潘亚雄1,陶晋升1,张宇1,2,周俊1,潘佳琳1,唐昭阳1,樊轶为1,胡名广1,李慧菊1,黄鑫1,褚武英1,张建社1,     
1. 长沙学院生物与环境工程学院,湖南 长沙 410022
2. 盐城工学院海洋与生物工程学院,江苏 盐城 221051
摘要:镉(Cd)是一种具有高度细胞毒性的重金属,其生物半衰期长,不易降解,水体中即使很低浓度镉也能对鱼类造成较大损伤。过氧化物酶体增殖物激活受体共激活因子1 (peroxisome proliferator activated receptor-γ co-activator-1, pgc1)是一种转录共激活因子,其通过激活PPARγ等转录因子活性而参与一系列基因表达调控,在生物能量代谢、线粒体生物合成、抗氧化等生理过程中起着重要的调控作用。为了阐明鳜(Siniperca chuatsi) pgc1基因序列特征、组织表达及重金属镉胁迫对其昼夜节律性表达的影响,本研究对鳜pgc1αpgc1β基因启动子顺式调控元件、序列特征、组织表达以及水体镉暴露下鳜脑组织中pgc1αpgc1β基因表达的昼夜节律进行了分析。结果表明,鳜pgc1αpgc1β启动子中存在NF-E2、IRF1等能量代谢相关转录因子结合位点,pgc1β启动子上存在节律转录因子KLF9结合位点。鳜pgc1αpgc1β基因都包含完整的LXXLL基序和RRM 结构域,与斑马鱼(Danio rerio) pgc1αpgc1β基因同源性分别为51.6%和59.7%,与人类基因同源性分别为41.5%和28.4%,序列保守性较低。鳜pgc1αpgc1β 基因表达具有明显的组织特异性,均在脑、肾脏、心脏中特异性表达。自然条件下,鳜脑组织中pgc1αpgc1β表达具有显著的昼夜节律性,均为昼高夜低的表达趋势,其基因表达峰值相位分别为ZT 7.07 h和ZT 8.25 h。重金属镉胁迫导致鳜脑组织pgc1αpgc1β基因表达昼夜差异减小,振幅下降,基因表达峰值相位分别提前至 ZT 3.71 h和 ZT 5.65 h,表明水体镉暴露对鳜脑组织pgc1αpgc1β基因昼夜节律性表达具有显著的扰乱作用。
关键词     pgc1     组织表达    镉暴露    昼夜节律    
Expression characteristics of pgc1 and effects of cadmium exposure on its rhythmic expression in Chinese perch Siniperca chuatsi
PAN Yaxiong1,TAO Jinsheng1,ZHANG Yu1,2,ZHOU Jun1,PAN Jialin1,TANG Zhaoyang1,FAN Yiwei1,HU Mingguang1,LI Huiju1,HUANG Xin1,CHU Wuying1,ZHANG Jianshe,1    
1. College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
2. College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 221051, China
Abstract:Cadmium (Cd) is a highly toxic heavy metal element which has a long half-life and is difficult to degrade. Even at very low concentrations, it can cause great damage to fish. Peroxisome proliferator activated receptor-γ co-activator-1 (pgc1) is a transcriptional co-activator that coordinately regulates the activities of PPARγ, plays an important regulatory role in energy metabolism, mitochondrial biosynthesis, and antioxidative system in organisms. In this study, the cis-regulatory elements, sequence characteristics, evolutionary relationship, tissue expression characteristics of pgc1α and pgc1β gene promoter in Chinese perch, and the circadian rhythm of pgc1α and pgc1β genes in brain exposed to cadmium were analyzed. The results showed that NF-E2 and IRF1 binding sites existed in the promoter of pgc1α and pgc1β, and KLF9 binding sites existed in the promoter of pgc1β. Both pgc1α and pgc1β genes contained a complete LXXLL motif and RRM domain. Chinese perch pgc1α and pgc1β shared 51.6% and 59.7% homology with zebrafish and 41.5% and 28.4% homology with human homologous genes, respectively. The expression of pgc1α and pgc1β genes in Chinese perch has obvious tissue specificity, and are highly expressed in the brain, kidney, and heart. Under natural conditions, the expression of pgc1α and pgc1β in Chinese perch brain showed a trend of being high in the day and low in the night, and the peak phase of gene expression was ZT 7.07 h and ZT 8.25 h, respectively. The diurnal variation of pgc1α and pgc1β gene expression in Chinese perch brain was reduced and the amplitude was decreased under heavy metal cadmium stress. The peak phase of gene expression was advanced to ZT 3.71 h and ZT 5.65 h, respectively, indicating that cadmium exposure causes a significant disturbance on the circadian rhythm of pgc1α and pgc1β in Chinese perch brain.
Key words Siniperca chuatsi      pgc1     tissue expression    cadmium    circadian rhythm    

过氧化物酶体增殖物激活受体共激活因子1 (peroxisome proliferator-activated receptor co-activated factor 1, pgc1)在细胞能量代谢中起着重要的调控作用,其通过调节下游靶基因的表达,协同控制线粒体合成、脂质代谢平衡、葡萄糖代谢平衡等多种生理过程[1-2]pgc1主要有pgc1αpgc1β两个基因亚型[3]pgc1α 是线粒体合成相关基因的转录辅激活因子,最早作为脂代谢调控核受体 PPARγ的辅激活因子被发现[4],其在氧化代谢活跃的组织中高表达,通过促进PPARα和NRF1的转录活性调控心肌线粒体生成与脂肪酸β氧化[5-6]pgc1β也在能量代谢中发挥重要调节作用[6-7],如参与葡萄糖异生、脂代谢、线粒体生物合成及氧化分解等生理过程的调控[8-9]

镉(Cd)是一种非必需的有毒重金属,其容易在生物体内蓄积,进而导致器官损伤等毒性作用[10-11]。鱼类作为生活在水中的低等脊椎动物,直接与水中的重金属接触,对Cd具有较高的敏感性[12]。研究表明Cd暴露能诱导鱼类肝脏等组织产生氧化应激反应进而导致组织损伤[13-14],此外Cd还能通过诱导线粒体损伤,降低线粒体氧化能力和ATP合成,进而抑制机体能量代谢[15]。生物节律对生物的生理和行为有重要的调节作用[16],生物体内在的生物钟可以使生物体预知环境的改变,并将外界信息变化传递给生物体相关组织器官,使得各组织内的某些基因表达发生一定的改变,从而使其相关功能适应环境的变化[17]。在鱼类中,关于重金属镉对生物昼夜节律的影响研究还较少,在斑马鱼(Danio rerio)中的研究表明,镉胁迫下斑马鱼表现出运动障碍、昼夜行为活动模式异常等现象[18]pgc1作为细胞能量代谢重要调节因子是否介导了重金属镉的节律毒性效应还未见有报道。

鳜(Siniperca chuatsi)是一种经济价值高的淡水名贵鱼类,其肉质细嫩、味道鲜美、营养丰富,在我国广泛养殖,但其作为典型的肉食性鱼类,需摄食活饵或驯化后摄食高蛋白含量饵料,同时对水质要求较高,对水环境污染耐受性差,易受水质影响而导致存活率低。本研究对鳜 pgc1 基因序列特征及其组织表达模式进行了分析,并研究了水体镉暴露对鳜脑组织昼夜节律的转录调控,为探究重金属镉对鱼类生物节律毒性效应提供了新的视角。

1 材料与方法 1.1 实验试剂

RNA提取(TRIzol)试剂、Nuclease-Free Water、MonTrack ™ TBE、MonTrack ™ D2000 Plus DNA Ladder、MonPro™ SYBR® Green qPCR Mix (None Rox)购自莫纳生物科技有限公司;CdCl2·5H2O、氯仿、异丙醇、无水乙醇购自上海国药;琼脂糖购自美国 Sigma 公司;Ultra GelGreen 核酸染色剂购自南京诺唯赞生物科技有限公司;Loading Buffer、PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time)试剂盒购自TaKaRa公司。

1.2 实验鱼及饲养管理

实验鱼由长沙市望城区团山湖村鳜鱼养殖场提供,将实验鳜置于室内实验基地在LD光制(光暗比12 h∶12 h,光照期为6:30−18:30,暗周期为 18:30−翌日 6:30)下驯养2周,每天在同一时间段进行投食,保证实验鱼的生物周期性一致,同时,缸中充气以维持水体溶氧充足。待实验鳜状态稳定后,禁食24 h,选取规格一致、健康的鳜6尾,用100 mg/L MS-222 (3-氨基苯甲酸乙酯甲磺酸)对鱼进行麻醉,然后放置在冰上解剖,快速取其肠道、肝脏、脑、肾脏、脾脏、心脏、鳃、肌肉8个组织,置入冷冻管,液氮速冻后,放入-80 ℃冰箱用于后续基因组织表达分析。另选取健康、大小规格一致的鳜,体重(200±15) g (平均值±标准误),随机分为两组,每组3缸,每缸12尾,分别置于容积200 L玻璃缸中,每缸水量为150 L,实验用水为曝气后的城市自来水。向实验缸中加入已经配好的CdCl2母液(对照组不添加,镉处理组水体CdCl2终质量浓度:20 μg Cd/L)。本实验采用静态水养殖系统,缸中持续充气以维持水体溶氧充足,实验在室温和LD光制(水温24.0 ℃±1.0 ℃,光暗比12 h∶12 h)下进行,每天饱食投取饵料鱼2次,投食量根据摄食量调节,半小时后清理剩余饵料鱼和粪便,用已曝气去氯的自来水换取缸中25%的水(镉处理组换的水中提前溶入适量的CdCl2母液,保持水体中的Cd浓度在20 μg Cd/L)。

1.3 样品采集

实验鳜连续镉暴露两周,禁食24 h后开始24h连续取样。取样时间点分别是06:30 (ZT0)、09:30 (ZT3)、12:30 (ZT6)、15:30 (ZT9)、18:30 (ZT12)、21:30 (ZT15)、00:30 (ZT18)、次日03:00 (ZT21)、次日06:30 (ZT24),共9个时间点,ZT0表示每天光照开始的时间。每个时间点每个处理组随机选取3尾鱼,用100 mg/L MS-222对鱼进行麻醉,然后放置在冰上解剖,快速取脑组织,置入冻存管,液氮速冻后,放入-80 ℃冰箱保存备用。

1.4 基因表达检测

采用Trizol法提取样品总RNA(参照说明书进行),琼脂糖凝胶电泳检测总RNA完整性,Nanodrop ND-2000超微量分光光度计测定A260/A280比值和A230/A260比值分析RNA纯度并测定RNA浓度。逆转录使用Takara公司PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time)试剂盒进行,在逆转录前,使用试剂盒中的DNA酶去除总RNA中的基因组DNA残留,使用试剂盒自带引物进行逆转录获得cDNA,稀释后用于qPCR分析。荧光定量PCR使用Monad公司的MonPro™ SYBR® Green qPCR Mix (None Rox)试剂盒进行,qPCR反应采用两步法。qPCR所用引物由Primer 5.0设计(表1),利用2‒ΔΔCT法计算目的基因的相对表达量[19],根据预实验筛选,选择表达最稳定的rpl13elfa作为本研究的内参基因。基因组织表达半定量PCR采用Monad PCR mix进行,反应为25 μL体系,PCR反应结束后,取2 μL的PCR产物在琼脂糖凝胶中电泳,使用Bio-Rad凝胶成像仪对条带拍照。

表1  引物序列 Tab. 1  Sequence of primers
1.5 数据处理与统计分析

使用SPSS 19.0软件(SPSS, Michigan Avenue, Chicago, IL,美国)进行数据统计分析,结果采用平均值±标准误(means±SE)表示,并使用单因素方差分析(one-way ANOVA)进行不同时间点指标差异性统计检验,多重比较选择Tukey法,使用独立样本T检验进行不同处理组指标差异性统计检验。在进行显著性分析之前,所有数据进行Kolmogorov-Smirnov分析以检验数据正态分布性,Levene分析以检验方差齐性,显著性水平为P<0.05。生物节律拟合使用Matlab软件进行,拟合的余弦方程为:ƒ(t)=M+Acos(tπ/12-φ);其中ƒ(t)是指在给定时间点基因表达水平;M为基因表达中值,即波动变化的中线;A为节律振荡的振幅;t为时间;φ为峰值相位,是振荡达到峰值对应的时间;同时满足方差分析P<0.05且余弦分析信噪比SE(A)/A<0.30时,则说明该基因具有显著昼夜节律性。

2 结果与分析 2.1 鳜pgc1基因氨基酸序列比对及同源性分析

pgc1αpgc1β基因cDNA全长分别为3822 bp和2817 bp,编码氨基酸长度分别为1273aa和938aa。pgc1α 含有1个LXXLL基序以及1个RRM结构域,而pgc1含有两个 LXXLL 基序以及一个RRM结构域,PGC1α和PGC1β的LXXLL 基序和 RRM 结构域高度保守(图1)。

序列同源性分析表明,鳜 pgc1αpgc1β与斑马鱼基因同源性分别为51.6%和59.7%,与人类基因同源性分别为41.5%和28.4%,序列保守性较低。此外,鳜pgc1αpgc1β两种基因亚型之间序列同源性低至24.9%,表明鳜两种pgc1基因亚型之间存在较大差异。进化分析表明,pgc1分为pgc1αpgc1β两个大类,鳜 pgc1α 先与同源性最高的加州鲈(Micropterus salmoides)汇集在一支,然后与大黄鱼(Larimichthys crocea)、红鳍东方鲀(Taleifugu rubripes)、斑马鱼聚集于同一支,最后与亲缘关系较远的爪蟾、智人、牛聚为一类;pgc1β 拓扑结构与pgc1α类似(图2)。pgc1αpgc1β 两个分支的拓扑结构与物种演化关系一致,且鱼类、两栖类和哺乳类物种均有两个pgc1亚型,表明pgc1αpgc1β两个基因亚型可能产生于脊椎动物祖先共有的基因倍增事件。

2.2 鳜pgc1α和pgc1β上游转录因子结合位点预测

对鳜pgc1αpgc1β基因转录起始位点上游2 kb序列进行转录因子结合位点预测分析,pgc1α基因启动子有多个重要转录因子结合位点(图3),如MYOD、SOX1和IRF1等,而pgc1β基因启动子区域仅有KLF9、NFE2等转录因子结合位点(图4),其中KLF9在昼夜节律与代谢调控中起着重要的作用[20]

2.3 基因组织表达分析

为研究鳜pgc1αpgc1β基因在不同组织中的表达水平,对鳜心、肝、脾、肾、鳃、肠、脑、肌肉组织进行半定量PCR以及实时荧光定量PCR检测,结果如图5所示,pgc1αpgc1β 基因表达具有明显的组织特异性,且均在脑、肾脏、心脏中高表达,在肌肉、肝脏等组织中表达量较低,在各组织中,pgc1α均是主要表达亚型,实时荧光定量和半定量检测结果一致。

图1  鳜 PGC1α、PGC1β 序列分析Sc:鳜;Ms:加州鲈;Lc:大黄鱼;Dr:斑马鱼. Fig. 1  PGC1α and PGC1β sequence analysis of Siniperca chuatsiSc: Siniperca chuatsi; Ms: Micropterus salmoides; Lc: Larimichthys crocea; Dr: Danio rerio.
图2  pgc1基因家族进化分析 Fig. 2  Phylogenetic tree based on pgc1 gene family
图3  鳜pgc1α基因转录因子结合位点预测 Fig. 3  Prediction of transcription factor binding sites of pgc1α gene in Siniperca chuatsi
2.4 镉胁迫对鳜脑组织pgc1α和pgc1β昼夜节律表达的影响

采用实时荧光定量PCR对鳜脑组织中pgc1αpgc1β基因24 h昼夜节律表达进行分析,结果表明,自然条件下鳜 pgc1αpgc1β均呈现出昼高夜低的表达模式(图6),余弦拟合分析表明其表达均具有显著的昼夜节律性,pgc1αpgc1β 表达峰值相位分别为ZT7.07和ZT8.25 (表2)。镉暴露(20 μg Cd/L, 14 d)后,pgc1α基因在鳜脑组织中表达量相比对照组在多个取样时间点均下降,基因表达峰值相位变为ZT3.71,相比对照组ZT7.07提早了3.36 h; pgc1β 基因相位为ZT5.65,相比对照组也提早了2.6 h,且两基因的振幅均减小,表明水体镉暴露会导致鳜脑组织pgc1αpgc1β基因表达昼夜节律性紊乱。

3 讨论

pgc1基因在生物能量代谢中具有重要的作用,但目前对pgc1基因的研究主要集中于哺乳动物,在水生动物上的研究较少。本研究从鳜中鉴定得到两个pgc1亚型(pgc1αpgc1β),该pgc1αpgc1β基因亚型均有pgc1典型结构域,如LXXLL基序和RRM结构域。LXXLL基序是pgc1与细胞核受体转录因子相互作用的关键位点[22-23],在pgc1与激素核受体配体结合域的疏水端相互作用中起着至关重要的作用[24], RRM结构域在调控基 因自身转录中起着重要作用[25],表明鳜两个pgc1基因亚型可能都具有pgc1生物学功能。同源性分析表明,鳜pgc1αpgc1β基因亚型之间序列同源性较低,且pgc1β在鱼类中保守性更低,表明鳜pgc1β可能与pgc1α功能上具有一定差异性。哺乳类中的研究表明,尽管pgc1αpgc1β基因都参与线粒体生物合成、脂肪酸β-氧化和抗氧化基因表达调控,但pgc1αpgc1β基因参与的代谢通路具有差异性,pgc1α在禁食期间促进糖异生,而pgc1β则促进脂肪酸从头合成和VLDL合成和转运[26]。在金鱼中的研究也发现,低温胁迫下pgc1α主要通过调控PPARα转录活性激活脂肪酸氧化代谢,而pgc1β则通过激活NRF1转录活性激活线粒体基因表达[27]

图4  鳜pgc1β基因转录因子结合位点预测 Fig. 4  Prediction of transcription factor binding sites of pgc1β gene in Siniperca chuatsi
图5  鳜pgc1αpgc1β 组织表达分析(A)基于DNA凝胶电泳半定量分析;(B) qPCR相对表达量分析;大写字母表示pgc1α水平差异显著(P<0.05),小写字母表示pgc1β水平差异显著(P<0.05),不同的字母表示差异显著(P<0.05). Fig. 5  Relative mRNA expression of pgc1α and pgc1β tissue expression of Siniperca chuatsi(A) Semi-quantitative analysis based on DNA gel electrophoresis; (B) qPCR relative expression analysis. The uppercase letter indicates the pgc1α significant indigenous level (P<0.05); the lowercase letter indicates the pgc1β significant indigenous level (P<0.05), and different letters indicate the difference significant indigenous level (P<0.05).
图6  正常投喂组、镉胁迫组鳜脑中的 pgc1αpgc1β 基因的节律表达白色和黑色条带分别代表昼夜两个阶段,图中每个时间点的数值代表 pgc1α、pgc1β 基因在该区时的表达水平,采用$\bar{x}\pm \text{SD}$表示,不同区时之间的差异由不同的*表示(*P<0.05; **P<0.01; ***P<0.001). Fig. 6  Rhythm expression of pgc1α and pgc1β genes in normal feeding group and cadmium stress group of Siniperca chuatsi brainWhite and black bands represent two phases of day and night, respectively. The value of each time point in the figure represents the expression level of pgc1α、pgc1β gene in the region, expressed as ($\bar{x}\pm \text{SD}$), and the difference between different regions is indicated by different * (*P<0.05; **P<0.01; ***P<0.001).
表2  鳜脑pgc1αpgc1β基因的节律性参数 Tab. 2  Rhythmic parameters of pgc1α and pgc1β genes transcription in brain of Siniperca chuatsi

本研究在鳜pgc1αpgc1β启动子上预测到IRF1、NFE2和KLF9等多个转录因子靶向位点。其中KLF9直接受核心生物钟基因调控,是营养代谢昼夜节律调控的枢纽基因[20],表明鳜pgc1表达可能受节律因子直接调控,而可能在营养物质的节律性调控中发挥作用。在小鼠pgc1启动子中也发现KLF9能够直接结合到小鼠pgc1α的启动子区,参与小鼠pgc1α转录活性的调控[28],说明KLF9对pgc1的转录调控在鱼类和哺乳类中具有一定的保守性。IRF1参与了pgc1α 介导的心肌能量代谢重塑[29], NFE2则在调节细胞能量代谢、炎症反应等生理过程中发挥着重要作用[30]。此外,哺乳类中的研究揭示pgc1基因表达受SREBP1等脂代谢调控基因调控而参与脂类代谢稳态调控[8]。然而本研究在鳜pgc1αpgc1β基因启动子上均未发现脂代谢相关转录因子结合位点,表明鱼类pgc1αpgc1β在脂代谢调控中可能与哺乳类具有一定差异性。

组织表达分析表明,鳜 pgc1αpgc1β 基因表达具有显著的组织特异性,且均在脑、心脏和肾脏中表达量较高,而在肌肉和肝脏等组织中表达较低。pgc1在能量代谢调控中具有重要作用,哺乳类中的研究发现pgc1主要在高能量需求的组织中表达,如心脏、肌肉、脑、肾脏和棕色脂肪组织等[31]。本研究发现鱼类pgc1组织分布与哺乳类具有部分一致性,但与哺乳类不同,pgc1αpgc1β基因均在鳜肌肉组织中低表达,这可能与鱼类骨骼肌与哺乳类骨骼肌的组成差异性有关。哺乳类动物骨骼肌肌纤维呈嵌合式分布,富含线粒体的氧化型肌纤维和线粒体较少的酵解型肌纤维散漫分布,肌肉组织pgc1的表达包括了两种类型肌纤维的基因表达。鱼类骨骼肌以酵解型的白肌纤维为主,其线粒体含量较少[32]。鳜肌肉组织中pgc1表达量低也说明pgc1在肌肉中的表达可能主要存在于氧化代谢旺盛的红肌,而在白肌中表达量较低。

昼夜节律是普遍存在的一种生命现象,以24 h为周期调控生物体新陈代谢、生理机能和行为等过程,在维持生物体的生理功能、调节机体应对内外环境的适应性中发挥重要作用[33]。生物体能量代谢具有显著的昼夜节律变化特征,其昼夜节律性调控与机体代谢稳态密切相关[34]。与哺乳类一样,鱼类活动具有稳定的昼夜节律性。我们已在鳜中克隆到了全部的核心生物钟基因(clocks、bmal1、pers、crys、rors、rev-erbs等),证实了鳜和哺乳类具有同样的由核心生物钟调控的昼夜节律性机制[35]。研究表明pgc1α 通过与核心生物钟基因作用,在能量代谢昼夜节律性调控中起着关键作用[36]。本研究发现鳜脑组织中pgc1αpgc1β基因呈现显著的昼夜节律性表达,且都呈昼高夜低型表达趋势,基因表达峰值分别出现在ZT7.07和ZT8.25。位于脑组织中的松果体是鱼类核心生物组织,控制着鱼类的生物节律[37],本研究首次证实pgc1αpgc1β基因在鱼类脑组织存在昼夜节律性表达。生物钟会受到环境胁迫等因素的影响而改变,而生物节律的异常可能导致机体功能紊乱或疾病的产生[38],研究表明重金属镉具有很强的内分泌毒性效应,能通过影响脑组织褪黑素分泌而导致机体生物钟紊乱[39-40]。而脑组织也是水体重金属镉毒性的重要靶器官[41],但关于重金属镉对鱼类昼夜节律影响的研究还较少。本研究发现水体镉暴露对鳜脑组织pgc1αpgc1β昼夜节律性表达具有显著影响。镉胁迫下,pgc1α和pgc1β峰值相位相比对照组分别提早了3.36 h和2.6 h,且基因表达振幅均减弱,表明水体镉暴露会导致鳜脑组织pgc1αpgc1β表达昼夜节律紊乱。本研究为从昼夜节律角度研究水体重金属污染对鱼类毒性效应提供了新的视角。

参考文献
[1]
Liu C, Lin J D. PGC-1 coactivators in the control of energy metabolism[J]. Acta Biochimica et Biophysica Sinica, 2011, 43(4): 248-257..》Google Scholar
[2]
Chen S D, Lin T K, Lin J W, et al. Activation of calcium/ calmodulin-dependent protein kinase IV and peroxisome proliferator-activated receptor γ coactivator-1α signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal CA1 subfield after tra[J]. Journal of Neuroscience Research, 2010, 88(14): 3144-3154..》Google Scholar
[3]
Scarpulla R C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011, 1813(7): 1269-1278..》Google Scholar
[4]
Puigserver P, Wu Z D, Park C W, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829-839..》Google Scholar
[5]
Lehman J J, Barger P M, Kovacs A, et al. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis[J]. The Journal of Clinical Investigation, 2000, 106(7): 847-856..》Google Scholar
[6]
Lin J D, Puigserver P, Donovan J, et al. Peroxisome proliferator- activated receptor γ coactivator 1β (PGC-1β), A novel PGC-1-related transcription coactivator associated with host cell factor[J]. Journal of Biological Chemistry, 2002, 277(3): 1645-1648..》Google Scholar
[7]
Vianna C R, Huntgeburth M, Coppari R, et al. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance[J]. Cell Metabolism, 2006, 4(6): 453-464..》Google Scholar
[8]
Finck B N, Kelly D P. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease[J]. The Journal of Clinical Investigation, 2006, 116(3): 615-622..》Google Scholar
[9]
Shao D. Molecular mechanism of PGC-1β-regulated mitochondrial biogenesis in myotubes and hepatic heme biosynthesis in rat hepatocytes[D]. Beijing: Peking Union Medical College, 2010. [邵迪. PGC-1β调节小鼠C2C12细胞线粒体发生和大鼠肝细胞血红素合成的机制研究[D]. 北京:中国协和医科大学,2010.].》Google Scholar
[10]
Cavas T, Garanko N N, Arkhipchuk V V. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate[J]. Food and Chemical Toxicology, 2005, 43(4): 569-574..》Google Scholar
[11]
Liu W C, Li M Y. Research advance of toxicological effects and toxigenictity mechanism of cadmium[J]. Guangdong Trace Elements Science, 2005, 12(12): 1-5. [刘伟成,李明云. 镉毒性毒理学研究进展[J]. 广东微量元素科学,2005, 12(12): 1-5.].》Google Scholar
[12]
Wang X N, Zheng X, Yan Z G, et al. Screening of native fishes for deriving aquatic life criteria[J]. Research of Environmental Sciences, 2014, 27(4): 341-348. [王晓南,郑欣,闫振广,等. 水质基准鱼类受试生物筛选[J]. 环境科学研究,2014, 27(4): 341-348.].》Google Scholar
[13]
Xie D M, Gong S L, Li Y W, et al. Cadmium induces histological damage and oxidative stress in the liver of zebrafish[J]. Journal of Chongqing Normal University (Natural Science), 2018, 35(4): 31-36, 2. [谢冬梅,龚仕玲,李英文,等. 镉诱导斑马鱼肝脏的组织学损伤和氧化应激[J]. 重庆师范大学学报(自然科学版), 2018, 35(4): 31-36, 2.].》Google Scholar
[14]
Liu J, Qu W, Kadiiska M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. Toxicology and Applied Pharmacology, 2009, 238(3): 209-214..》Google Scholar
[15]
Lu Z. Mitochondrial toxicity and mechanism of cadmium and arsenic on juvenile olive flounder Paralichthys olivaceus[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2020. [路珍. 镉和砷对褐牙鲆幼鱼线粒体的毒性效应及其作用机制[D]. 阳台:中国科学院大学(中国科学院烟台海岸带研究所), 2020.].》Google Scholar
[16]
Liu Z Y, Zhou Z C, Lü W Q. Effects of light cycle on the circadian rhythm of juvenile Nile tilapia Oreochromis niloticus[J]. Journal of Shanghai Ocean University, 2019, 28(2): 180-189. [刘曾宇,周志成,吕为群. 光照周期对尼罗罗非鱼幼鱼昼夜节律调节的作用[J]. 上海海洋大学学报,2019, 28(2): 180-189.].》Google Scholar
[17]
Ben-Shlomo R, Kyriacou C P. Circadian rhythm entrainment in flies and mammals[J].Cell Biochemistry and Biophysics, 2002, 37(2): 141-156..》Google Scholar
[18]
Xiao B, Chen T M, Zhong Y B. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish[J]. Biochemical and Biophysical Research Communications, 2016, 481(3-4): 201-205..》Google Scholar
[19]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
[20]
Knoedler J R. Identification of Genomic Targets of Krüppel- like Factor 9 in Mouse Hippocampal Neurons: Evidence for a Role in Modulating Peripheral Circadian Clocks[D]. Michigan: University of Michigan, 2016..》Google Scholar
[21]
Liu J J, Chu W Y, Zhu X, et al. Embryonic development characteristics and rhythmic expression analysis of RORα gene under starvation in Siniperca chuatsi[J]. Journal of Guangxi Normal University (Natural Science Edition), 2021, 39(5): 190-197. [刘晶洁,褚武英,朱鑫,等. 鳜RORα基因的胚胎发育特征及饥饿对其节律性表达影响分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 190-197.].》Google Scholar
[22]
Li Y, Kovach A, Suino-Powell K, et al. Structural and biochemical basis for the binding selectivity of peroxisome proliferator-activated receptor γ to PGC-1α[J]. Journal of Biological Chemistry, 2008, 283(27): 19132-19139..》Google Scholar
[23]
Lu K L, Policar T, Song X J, et al. Molecular characterization of PGC-1β (PPAR gamma coactivator 1β) and its roles in mitochondrial biogenesis in blunt snout bream (Megalobrama amblycephala)[J]. International Journal of Molecular Sciences, 2020, 21(6): 1935..》Google Scholar
[24]
Villena J A. New insights into PGC-1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond[J]. The FEBS Journal, 2015, 282(4): 647-672..》Google Scholar
[25]
Xu C, Liu W B, Xie D Z, et al. Molecular characterization of PGC1β from Megalobrama amblycephala and responsiveness to dietary carbohydrate levels and glucose and insulin loadings[J]. Journal of Fishery Sciences of China, 2021, 28(8): 959-967. [徐超,刘文斌,谢帝芝,等. 团头鲂PGC1β基因克隆及高糖胁迫、葡萄糖和胰岛素负荷对其mRNA表达的影响[J]. 中国水产科学,2021, 28(8): 959-967.].》Google Scholar
[26]
Piccinin E, Villani G, Moschetta A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1 coactivators[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(3): 160-174..》Google Scholar
[27]
LeMoine C M R, Genge C E, Moyes C D. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature[J]. The Journal of Experimental Biology, 2008, 211(Pt 9): 1448-1455..》Google Scholar
[28]
Zhang L. KLF9 is a key mediator of heart mitochondrial function[D]. Beijing: Peking Union Medical College, 2018. [张磊. KLF9调节心脏线粒体代谢功能的分子机制研究[D]. 北京:北京协和医学院,2018.].》Google Scholar
[29]
Huang Y H, Wang S B, Zhou J, et al. IRF1-mediated downregulation of PGC1α contributes to cardiorenal syndrome type 4[J]. Nature Communications, 2020, 11: 4664..》Google Scholar
[30]
Yin Y Y, Peng H, Shao J B, et al. Regulatory role of NF-E2-related factor 2 pathway in mitochondrial function[J]. Chinese Journal of Pharmacology and Toxicology, 2019, 33(7): 542-549. [尹圆圆,彭辉,邵军波,等. NF-E2相关因子2通路对线粒体功能的调控作用[J]. 中国药理学与毒理学杂志,2019, 33(7): 542-549.].》Google Scholar
[31]
Larrouy D, Vidal H, Andreelli F, et al. Cloning and mRNA tissue distribution of human PPARγ coactivator-1[J]. International Journal of Obesity, 1999, 23(12): 1327-1332..》Google Scholar
[32]
Shi J, Chu W Y, Zhang J S. Muscle growth, differentiation and gene expression regulation in fish[J]. Acta Hydrobiologica Sinica, 2013, 37(6): 1145-1152. [石军,褚武英,张建社. 鱼类肌肉生长分化与基因表达调控[J]. 水生生物学报,2013, 37(6): 1145-1152.].》Google Scholar
[33]
Kim Y H, Lazar M A. Transcriptional control of circadian rhythms and metabolism: A matter of time and space[J]. Endocrine Reviews, 2020, 41(5): 707-732..》Google Scholar
[34]
Poggiogalle E, Jamshed H, Peterson C M. Circadian regulation of glucose, lipid, and energy metabolism in humans[J]. Metabolism, 2018, 84: 11-27..》Google Scholar
[35]
Wu P, Li Y L, Cheng J, et al. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi)[J]. BMC Genomics, 2016, 17(1): 1008..》Google Scholar
[36]
Lin J D. Minireview: The PGC-1 coactivator networks: Chromatin-remodeling and mitochondrial energy metabolism[J]. Molecular Endocrinology (Baltimore, Md), 2009, 23(1): 2-10..》Google Scholar
[37]
Ben-Moshe Z, Foulkes N S, Gothilf Y. Functional development of the circadian clock in the zebrafish pineal gland[J]. BioMed Research International, 2014, 2014: 235781..》Google Scholar
[38]
Koch C E, Leinweber B, Drengberg B C, et al. Interaction between circadian rhythms and stress[J]. Neurobiology of Stress, 2017, 6: 57-67..》Google Scholar
[39]
Lafuente A. The hypothalamic-pituitary-gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches[J]. Food and Chemical Toxicology, 2013, 59: 395-404..》Google Scholar
[40]
Xiao B, Chen T M, Zhong Y B. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish[J]. Biochemical and Biophysical Research Communications, 2016, 481(3-4): 201-205..》Google Scholar
[41]
Zheng J L, Yuan S S, Wu C W, et al. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2016, 180: 36-44..》Google Scholar