中国水产科学  2023, Vol. 30 Issue (11): 1311-1326  DOI: 10.12264/JFSC2023-0231
0

引用本文 

赵芃, 蒋日进, 印瑞, 刘明智, 龙翔宇, 单晓鸾, 张秋宏, 郝辉擘, 李齐群. 七星列岛产卵场保护区鱼卵、仔稚鱼种类组成及其与环境因子的关系[J]. 中国水产科学, 2023, 30(11): 1311-1326. DOI: 10.12264/JFSC2023-0231.
ZHAO Peng, JIANG Rijin, YIN Rui, LIU Mingzhi, LONG Xiangyu, SHAN Xiaoluan, ZHANG Qiuhong, HAO Huibo, LI Qiqun. Species composition and relationship with environmental factors of fish eggs and larvae in Qixing Islands spawning ground reserve[J]. Journal of Fishery Sciences of China, 2023, 30(11): 1311-1326. DOI: 10.12264/JFSC2023-0231.

基金项目

浙江近海重要经济种产卵场调查与评价项目(HYS-CZ-202329);浙江省农业农村厅渔业资源调查项目(HYS-CZ-202314);浙江省公益技术应用研究项目(LGN21C190005).

作者简介

赵芃(1995‒),女,硕士研究生,研究方向为渔业资源生态学. E-mail:798432454@qq.com

通信作者

通信作者:印瑞,工程师,研究方向为渔业资源生态学. E-mail:yr18368091951@163.com

文章历史

收稿日期:2023-09-28
修改日期:2023-11-28
七星列岛产卵场保护区鱼卵、仔稚鱼种类组成及其与环境因子的关系
赵芃1,2,蒋日进1,2,印瑞1,2,刘明智1,2,龙翔宇1,2,单晓鸾3,张秋宏1,2,郝辉擘1,2,李齐群1,2,     
1. 浙江海洋大学海洋与渔业研究所,浙江 舟山 316021
2. 浙江省海洋水产研究所,农业农村部重点渔场渔业资源科学观测实验站,浙江省海洋渔业资源可持续利用技术研究重点实验室,浙江 舟山 316021
3. 山东省乳山市海洋经济发展中心,山东 乳山 264500
摘要:为了解七星列岛产卵场保护区鱼卵、仔稚鱼种类组成及其与环境因子的关系,于2018年4月、5月、11月和2019年4月、5月、11月使用大型浮游生物网采集6个航次的样品,分析该海域鱼卵和仔稚鱼种类组成、时空分布、群聚结构以及其与环境因子的关系。结果显示,6个航次共采集到鱼卵1490粒,仔稚鱼278尾,隶属于9目26科60种。鱼卵优势种为龙头鱼(Harpodon nehereus)、斑鰶(Konosirus punctatus)等,仔稚鱼优势种为鳀(Engraulis japonicus)、康氏侧带小公鱼(Stolephorus commersonnii)。鱼卵、仔稚鱼资源密度时空分布不均,主要集中于调查海域的东部,2019年较2018年增多。聚类分析和非参数多维标度分析(NMDS)排序结果显示,鱼卵和仔稚鱼群聚组成呈极显著差异(P=0.001),群落结构具有明显的区域划分特征。曼特尔检验(Mantel test)相关性分析和冗余分析(redundancy analysis,RDA)结果显示,温度、盐度、溶解氧等环境因子与鱼卵和仔稚鱼的分布密切相关。研究表明,保护区在建立初期对鱼类早期资源的补充和修复起到了积极作用,但该海域以小型鱼类和低经济价值鱼类为主,在现有渔业资源恢复措施的基础上,应进一步加强重要经济种类的资源保护以及合理开发与利用。
关键词产卵场保护区    鱼卵    仔稚鱼    种类组成    环境因子    
Species composition and relationship with environmental factors of fish eggs and larvae in Qixing Islands spawning ground reserve
ZHAO Peng1,2,JIANG Rijin1,2,YIN Rui,1,2,LIU Mingzhi1,2,LONG Xiangyu1,2,SHAN Xiaoluan3,ZHANG Qiuhong1,2,HAO Huibo1,2,LI Qiqun1,2    
1. Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
2. Zhejiang Marine Fisheries Research Institute; Scientific Observing and Experimental Station of Fishery, Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs; Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan 316021, China
3. Shandong Rushan Marine Economic Development Center, Rushan 264500, China
Abstract:Elucidating the occurrence and persistence of spawning grounds is warranted to minimize the damage caused by human activities to fish. Fish eggs and larvae, which aggregate in high numbers in a limited area, can be particularly vulnerable to negative environmental impacts. The increasing pressure on the fishery resources in Zhejiang fishing grounds have led to a sharp decline in the resources and damaged the structure of fish communities. In 2017, the government established the Qixing Islands and other 9 spawning ground reserves to protect and repair the resources of the main economic fish species. The Qixing Islands are a group of outer reefs in the southernmost part of Zhejiang Province. Located at the intersection of Taiwan Warm Current, Zhejiang and Fujian coastal currents, and the Kuroshio Current, the waters around these islands provide suitable hydrographic environment and abundant food resources, making it an ideal spawning and nursery ground for many fish species. The fish eggs and larvae phase marks a crucial period in early fish life as it is a highly sensitive and vulnerable stage. Changes in its abundance can directly impact population recruitment. Therefore, understanding the community structure of fish eggs and larvae is of great significance for conserving and utilizing marine fish resources. Additionally, fish community structures respond to the changes in environmental factors in the waters where they are located. At present, limited research has been conducted on fish eggs and larvae in the Qixing Islands spawning ground reserve. This study aimed to explore the correlation between the species composition of fish eggs and larvae and their relationship with environmental factors in the spawning ground reserve of Qixing Islands. Samples were collected during six cruises conducted in 2018 (April, May, and November) and 2019 (April, May, and November) using a large plankton net. These samples were then analyzed to assess the species composition, spatio-temporal distribution, community structure, and their relationship with environmental factors of fish eggs and larvae in this area. A total of 1490 eggs and 278 larvae were collected, belonging to 9 orders, 26 families, and 60 species. The most prevalent species of eggs included Harpodon nehereus, Konosirus punctatus, whereas those of larvae included Engraulis japonicus and Stolephorus commersonnii. The spatio-temporal distribution of fish eggs and larvae exhibited a non-stationary characteristic, primarily in the eastern part of the surveyed area. Moreover, there was a higher density of fish eggs and larvae in 2019 than in 2018. Cluster analysis and nonmetric multidimensional scaling (NMDS) sorting results indicated a highly significant difference (P= 0.001) in the cluster composition of eggs and larvae, and the community structure was characterized by obvious regional division. Mantel test correlation analysis and redundancy analysis showed that environmental factors such as temperature, salinity, and dissolved oxygen were closely related to the distribution of fish eggs and larvae. The study indicates that in the early stages of establishing protected areas, there has been a positive impact on the replenishment and restoration of early-stage fish resources. However, the area is predominantly characterized by small-sized and low economic value fish. In light of existing measures for the recovery of fisheries resources, it is recommended to further strengthen the conservation efforts for economically important species and promote their rational development and utilization. Spawning peaked during spring, with the reserve being predominantly populated by warm-temperature or warm-water species of fish during both spring and autumn. Less significant and smaller species dominate over those considered more significant and larger within the community. The spatial distribution trend indicated that the eastern part of the surveyed sea area was closer to the closed area line, followed by coastal areas and central region. Eggs were mainly concentrated in the waters around the closed area line, and larvae were densely distributed in coastal waters. Temperature, salinity, and dissolved oxygen influenced the distribution of eggs and larvae. The community structure of eggs and larvae in the spawning ground reserve of Qixing Islands was in a state of dynamic change, and the establishment of the reserve played a positive role in restoring the early resources of fish. The reserve remains the spawning and nursery ground for most fish species. Consequently, resource protection must be strengthened and rational development and utilization of economically important fish species must be undertaken by building upon the existing restoration measures used for fisheries resources.
Key wordsspawning ground reserve    fish eggs    fish larvae    species composition    environmental factor    

七星列岛位于浙江省温州市苍南县所属海域的最南端,其邻近海域长期经受由南向北的台湾暖流、东南面的黑潮暖流以及沿岸的浙闽沿岸流综合影响,地理位置特殊,水文环境适宜,基础饵料丰富,是众多鱼类的理想产卵场、索饵场、越冬场和洄游通道[1]。随着捕捞压力的增强,浙江渔场渔业资源急剧下降,鱼类群落结构遭受严重损害[2],为保护和修复主要经济鱼类的资源,浙江省于2017年设立了七星列岛等10个产卵场保护区。产卵场是鱼类早期生活阶段的主要栖息地,适宜的环境有利于对鱼类群体的数量进行持续补充,为物种的保留和增殖提供保障[3]。七星列岛产卵场保护区保护面积868 km2,主要保护种类为银鲳(Pampus argenteus)、鳓(Ilisha elongata)以及曼氏无针乌贼(Sepiella maindroni)。2014—2015年不同学者分别对七星列岛海域主要鱼类功能群划分以及游泳动物的群落特征等进行了调查分析[1,4]。研究发现,七星列岛海域鱼类组成通常为沿岸海域常见种类,从适温类型上主要划分为暖水种和暖温种,从栖息类型上主要划分为底层近海洄游鱼类、中上层鱼类,由于七星列岛及其邻近海域岛屿众多,该海域还存在部分趋礁性鱼类。此外,鱼类的季节性洄游行为使七星列岛海域鱼类组成春、秋季节更替明显。春季鱼类生殖洄游至近岸进行产卵,秋季浙闽沿岸流带来丰富的营养物质使得大量鱼类在此索饵、育肥以及越冬洄游。目前对于该区域鱼卵和仔稚鱼的相关研究鲜少见报道。

鱼卵和仔稚鱼处于鱼类早期生活史阶段,是鱼类生命周期最为敏感和脆弱的阶段。自然海域中,鱼卵、仔稚鱼的数量变动是鱼类资源补充量的重要影响因素[5]。种类组成是研究群落结构的基础,鱼卵、仔稚鱼群落结构的研究对于海洋鱼类资源养护与利用具有重要意义,鱼类群落结构对其所处水域环境因子的变化具有一定的响应关系[6-7]。20世纪60年代张孝威等[8]对浙江近海重要鱼类鱼卵和仔稚鱼分布进行了调查,周永东等[9]、张琳琳[10]先后对浙江南部沿岸产卵场鱼卵、仔稚鱼进行了春夏季种类组成与分布、春秋季群落结构及与环境因子关系的研究,于春梅等[11]对邻近海域的大陈洋产卵场保护区鱼卵、仔稚鱼种类组成及其与环境因子的关系进行了分析。目前,针对七星列岛产卵场保护区成立以来鱼卵、仔稚鱼的研究资料十分有限,因此,开展保护区鱼卵、仔稚鱼调查研究工作具有重要意义。本研究基于2018年4月、5月、11月和2019年4月、5月、11月6个航次的大型浮游生物网拖网调查数据,分析鱼卵和仔稚鱼种类组成、时空分布整体现状,探讨其与环境因子的关系,丰富保护区鱼卵、仔稚鱼资源动态变化的基础资料,以期为七星列岛产卵场保护区的渔业资源修复以及合理开发提供参考依据。

1 材料与方法 1.1 调查站位与方法

调查区域位于浙江省七星列岛产卵场保护区及其邻近海域,共设置了13个调查站位点(图1),分别于2018年4月、5月、11月以及2019年4月、5月、11月共进行了6个航次的调查。采用大型浮游生物网(网长280 cm,网口内径80 cm,孔径0.505 mm)进行样品采集,每个站位水平拖曳10 min,拖速2~3 kn,网口均配备流量计。利用多功能水质检测仪(JFE-AAQ171)同步监测环境因子数据。样品的采集、固定与分析参照《海洋调查规范》[12]和《海洋监测规范》[13]

1.2 样品处理与鉴定

鱼卵和仔稚鱼样品采用5%甲醛溶液固定于广口瓶中,使用Nikon SMZ800解剖镜对鱼卵和仔稚鱼样品进行形态学鉴定、测量、拍照、以及计数。形态学鉴定参照《中国近海鱼卵与仔鱼》[14]、《日本产稚鱼图鉴》[15]等,并比较历史样品中的模式标本,鉴定到物种所属的最低分类等级,对于无法鉴定到种但能够鉴定到科或属的物种,记录时用科名或属名代替,对于无法鉴定的种类使用未定种命名。重要经济种的确定依据《东海区主要经济种类-三场一通道及保护区图集》[16]等确立。

图1  七星列岛产卵场保护区调查站位 Fig. 1  Survey area of Qixing Islands spawning ground reserve
1.3 数据处理与分析

(1)鱼卵、仔稚鱼资源密度

G a=Na/(S×L×C)

式中,Ga表示鱼卵或仔稚鱼资源密度,单位为粒/尾每立方米(ind/m³); Na表示鱼卵或仔稚鱼个体数,单位为粒/尾(ind); S表示实际使用网具网口面积,单位为平方米(m2); L表示流量计转数;C表示流量计校正值,计0.3[12]

(2)优势种计算

采用相对重要性指数(index of relative importance, IRI)对鱼卵和仔稚鱼的优势种进行计算[17]:

IRI=NF%×104

式中,N%表示每种鱼卵或仔稚鱼资源密度占总资源密度的比例;F%表示每种鱼卵或仔稚鱼出现的频率;IRI>1000的种类为优势种;IRI=100~1000的种类为重要种[18]

(3)群聚结构分析

采用Primer5.0软件对鱼卵和仔稚鱼群聚特征进行等级聚类和非参数多维标度分析(nonmetric multidimensional scaling, NMDS)[19]。群落间的差异显著性检验采用相似性检验(analysis of similarities, ANOSIM)非参数多元分析方法[20]。胁强系数(Stress)的大小反映NMDS二维点阵图效果的优劣程度:Stress≤0.05表示NMDS排序图效果很好;0.05<Stress≤0.1表示NMDS排序图效果总体可信;0.1<Stress<0.2表示NMDS排序图效果具有一定的可信度;Stress≥0.2表示NMDS排序图效果不具有解释意义[21]

(4)环境因子分析

采用R语言中的linkET程序包完成鱼卵、仔稚鱼与环境因子关系的Mantel test相关性分析。采用Canoco 5.0软件对鱼卵和仔稚鱼物种丰度与环境因子关系进行研究,阐明不同鱼卵和仔稚鱼受各个环境因子的影响程度。对物种丰度进行消除趋势对应判别分析(decentred correspondence analysis, DCA),根据每个轴的长度大小(length of gradient axis, LGA)选择最佳排序方法。LGA<3,应选择冗余分析(redundancy analysis, RDA); LGA>4,应选择典范对应分析(canonical correspondence analysis, CCA); 3<LGA<4时,两种都可运用[22]。根据DCA分析结果,本研究使用冗余分析(RDA)。

采用Arcgis 10.8软件绘制站位图以及时空分布图,Microsoft Excel、SPSS 26.0软件进行数据处理。

2 结果与分析 2.1 种类组成及年际变化

2018年3个航次调查共采集鱼卵188粒,仔稚鱼73尾,隶属于6目20科37种(表1),鲈形目种类最多,占比58.33%。其中,鱼卵12种,隶属5目8科,鲈形目种类最多(58.33%);仔稚鱼28种,隶属5目16科,鲈形目种类最多(57.14%)。5月种类最多,共23种,占比63.89%。其中,鱼卵(83.33%)、仔稚鱼(57.14%)均为5月种类占比最多。鱼卵、仔稚鱼共有种类分别为鳀(Engraulis japonicus)、龙头鱼(Harpodon nehereus)、蓝圆鲹(Decapterus maruadsi)、鲯鳅(Coryphaena hippurus), 3个航次的调查均发现龙头鱼和鳀。

2019年3个航次调查共采集鱼卵1302粒,仔稚鱼205尾,隶属于9目22科44种(表1),鲈形目种类最多,占比35.71%。其中,鱼卵22种,隶属5目10科,鲈形目种类占比最多(31.82%);仔稚鱼24种,隶属7目16科,鲈形目种类最多(37.50%)。5月种类最多,共23种,占比54.76%。其中,鱼卵(50%)、仔稚鱼(62.5%)均为5月种类占比最多。鱼卵、仔稚鱼共有种类分别为鳀、龙头鱼、鮻(Planiliza haematocheilus)、蓝圆鲹、棱鮻(Planiliza carinata), 3个航次的调查均发现七星底灯鱼(Benthosema pterotum)和鳀。

2.2 优势种、重要种组成及年际变化

2018年鱼卵优势种为龙头鱼和斑鰶(Konosirus punctatus),仔稚鱼优势种为康氏侧带小公鱼(Stolephorus commersonnii)。2019年鱼卵优势种为鲯鳅、鳎科未定种(Soleidae sp.),重要种为斑鰶、棱鮻以及叫姑鱼属未定种(Johnius sp.);仔稚鱼的优势种为鳀,重要种为花鲈(Lateolabrax japonicus)、矛尾虾虎鱼(Chaeturichthys stigmatias)(图2)。

表1  七星列岛产卵场保护区2018—2019年鱼卵和仔稚鱼种类组成 Tab. 1  Species composition of fish eggs and larvae in Qixing Islands spawning ground reserve in 2018—2019
图2  七星列岛产卵场保护区鱼卵、仔稚鱼优势种和重要种组成 Fig. 2  Composition of dominant species and important species of fish eggs and larvae in Qixing Islands spawning ground reserve
2.3 时空分布

2018年采集鱼卵188粒,13个调查站位中有9个站位出现鱼卵,出现频率69.23%,各站位数量在0~83粒之间波动,平均密度14.46 粒/站,最高值位于调查海域东部的禁渔区线附近(715.89×10-3粒/立方米);采集仔稚鱼73尾,13个调查站位中有12个站位出现仔稚鱼,出现频率92.31%,各站位数量在0~36尾之间波动,平均密度5.62尾/站,最高值位于调查区域西部的沿岸海域(75.31×10-3尾/立方米)。

2019年采集鱼卵1302粒,13个调查站位中有12个站位出现鱼卵,出现频率92.31%,各站位数量在0~318粒之间波动,平均密度100.15粒/站,最高值位于调查海域东部的禁渔区线附近(971.66× 10-3粒/立方米);采集仔稚鱼205尾,13个调查站位中均有仔稚鱼分布,出现频率100%,各站位数量在1~47尾之间波动,平均密度15.77 尾/站,最高值位于调查海域的沿岸水域(80.42×10-3尾/立方米)(图3)。

图3  七星列岛产卵场保护区鱼卵和仔稚鱼资源密度时空分布图a. 2018年鱼卵;b. 2018年仔稚鱼;c. 2019年鱼卵;d. 2019年仔稚鱼. Fig. 3  Density distributions of fish eggs and larvae in Qixing Island spawning ground reservea. Fish eggs in 2018; b. Fish larvae in 2018; c. Fish eggs in 2019; d. Fish larvae in 2019.
2.4 群聚结构特征

聚类分析结果显示(图4), 2018年所有站位在21.33%相似性指数水平上划分为A、B、C、D 4个群组,其中A群位于沿岸海域,以康氏侧带小公鱼为主;B群位于调查海域中部,以龙头鱼为主;C群位于调查海域的南部,以龙头鱼和康氏侧带小公鱼为主;D群位于禁渔区线附近,以龙头鱼和斑鰶为主。相似性检验(ANOSIM)非参数多元分析结果显示4个群组存在极显著差异(Global R=0.833, P=0.001),表明2018年鱼卵和仔稚鱼群聚结构区域差异明显。NMDS排序的胁强系数为0.07 (stress<0.1),表明排序效果较好。

2019年所有站位在29.35%相似性指数水平上划分为E、F、G、H、I 5个群组,其中E群位于沿岸海域,以鳀、棱鮻、六丝钝尾虾虎鱼(Amblychaeturichthys hexanema)、矛尾虾虎鱼、拉氏狼牙虾虎鱼(Odontamblyopus lacepedii)、斑尾刺虾虎鱼(Synechogobius ommaturus)为主;F群位于禁渔区线内侧,以鲯鳅、龙头鱼为主;G群位于禁渔区线外侧,以龙头鱼、蓝圆鲹、花鲈、鲯鳅、鳀为主;H群位于调查海域中部,以蓝圆鲹、七星底灯鱼为主;I群位于调查海域南部,以鲻(Mugil cephalus)、龙头鱼为主。相似性检验(ANOSIM)非参数多元分析结果显示5个群组存在极显著差异(global R=0.953, P=0.001),表明2019年鱼卵和仔稚鱼群聚结构区域差异明显。NMDS排序的胁强系数为0.13 (stress<0.2),表明NMDS排序图具有一定的可信度。

图4  七星列岛产卵场保护区2018—2019年鱼卵和仔稚鱼调查站位聚类分析和NMDS排序图a. 2018年鱼卵和仔稚鱼;b. 2019年鱼卵和仔稚鱼. Fig. 4  Group average clustering and NMDS ordination of sampling stations of fish eggs and larvae from 2018 to 2019 in Qixing Islands spawning ground reservea. Fish eggs and larvae in 2018; b. Fish eggs and larvae in 2019.
2.5 环境因子分析

Mantel test分析结果表明(图5), 2018年底盐(BSS)与鱼卵分布呈显著正相关(P<0.05)关系,底温(BST)与鱼卵分布有较强正相关关系;表盐(SSS)与仔稚鱼分布有较强正相关关系。2019年底盐(BSS)和经度(Lon)与鱼卵分布呈较强正相关关系;溶解氧(DO)与仔稚鱼分布呈极显著正相关(P<0.01)关系。

RDA分析结果表明(图6), 2018年10个环境因子解释了鱼卵物种与环境关系的53%,第一轴(RDA-1)与第二轴(RDA-2)的特征值分别为0.1178和0.0990,其与环境因子的相关性分别为0.9730和0.9258。RDA-1的蒙特卡洛显著性检验值为F=2, P=0.026,显著相关,RDA-2的蒙特卡洛显著性检验值为F=1.9, P=0.006,极显著相关。斑鰶、龙头鱼鱼卵受底温影响较大,鳀鱼卵受表温影响较大,大黄鱼(Larimichthys crocea)鱼卵主要受溶解氧影响;10个环境因子解释了仔稚鱼物种与环境关系的45.9%,第一轴(RDA-1)与第二轴(RDA-2)的特征值分别为0.1268和0.0813,其与环境因子的相关性分别为0.7987和0.9221。RDA-1的蒙特卡洛显著性检验值为F=2.3, P=0.002,极显著相关,RDA-2的蒙特卡洛显著性检验值为F= 1.2, P=0.238,未呈现显著相关性。丝背细鳞鲀(Stephanolepis cirrhifer)、细鳞鯻(Terapon jarbua)受表盐、pH影响较大,黄姑鱼(Nibea albiflora)、鳀、竿虾虎鱼(Luciogobius guttatus)、黄鳍东方鲀(Takifugu xanthopterus)、棱鮻、美肩鳃鳚(Omobranchus elegans)、八部副鳚(Parablennius yatabei)受纬度影响较大,髭缟虾虎鱼(Tridentiger barbatus)主要受浑浊度和溶解氧影响,龙头鱼、蓝圆鲹、康氏侧带小公鱼、中华侧带小公鱼(Stolephorus chinensis)受表温、溶解氧影响较大,带鱼(Trichiurus lepturus)、六丝钝尾虾虎鱼主要受叶绿素a和底盐影响。

2019年9个环境因子解释了鱼卵物种与环境关系的51.8%,第一轴(RDA-1)与第二轴(RDA-2)的特征值分别为0.1838和0.0916,其与环境因子的相关性分别为0.8399和0.8022。RDA-1的蒙特卡洛显著性检验值为F=2.3, P=0.01,极显著相关,RDA-2的蒙特卡洛显著性检验值为F=1.3, P=0.23,未呈现显著相关性。蓝圆鲹、日本拟鳎(Pseudaesopia japonica)、鲔(Euthynnus affinis)、鮻、龙头鱼鱼卵受经度影响较大,圆鮀鲣(Auxis rochei)、鲯鳅、鳀受纬度影响较大,黄姑鱼、黄鲫(Setipinna taty)鱼卵受叶绿素a影响较大,棱鮻、斑鰶鱼卵主要受经度和表盐影响;9个环境因子解释了仔稚鱼物种与环境关系的64.2%,第一轴(RDA-1)与第二轴(RDA-2)的特征值分别为0.1904和0.1303,其与环境因子的相关性分别为0.9677和0.958。RDA-1的蒙特卡洛显著性检验值为F=3.5, P=0.002,极显著相关,RDA-2的蒙特卡洛显著性检验值为F=1.6, P=0.032,显著相关。鳀、长鳍篮子鱼受纬度影响较大,龙头鱼、棱鮻主要受浑浊度影响,七星底灯鱼、安氏新银鱼(Neosalanx anderssoni)主要受表盐和经度影响,花鲈、蓝圆鲹、康氏侧带小公鱼主要受温度和底盐影响,带鱼、褐菖鲉(Sebastiscus marmoratus)、鲻、鮻受叶绿素a影响较大,拉氏狼牙虾虎鱼、矛尾虾虎鱼、六丝钝尾虾虎鱼、斑尾刺虾虎鱼、日本绯鲤(Upeneus japonicus)、丝背细鳞鲀(Stephanolepis cirrhifer)主要受溶解氧影响。

3 讨论 3.1 七星列岛产卵保护区鱼卵、仔稚鱼种类组成及分布特征

6个航次的调查共采集鱼卵、仔稚鱼60种,相比2017和2018年浙江南部海域的72种略有减少[11]。这可能受限于调查海域的范围,保护区位于浙江南部海域的最南端,面积较小,分布在该海域的鱼类有限。研究发现,本次调查的产卵高峰期为春季,该季节鱼卵、仔稚鱼数量占采集总量的77.49%。此外,春、秋两季均以暖温种或暖水种鱼类为主,调查海域位于暖温带海区,属亚热带季风气候,同时在台湾暖流和黑潮的影响下,受到高温的大洋水不断入侵[23],使得大量的暖温种和暖水种鱼类在此栖息、活动。优势种和重要种以斑鰶、康氏侧带小公鱼、矛尾虾虎鱼等小型低经济价值鱼类[24]为主,这与邻近海域的大陈洋产卵场保护区[11]结果相似。龙头鱼属于小型底层鱼类,繁殖力强、产卵期较长,产卵数量受外界干扰因素的影响较小,使其逐渐演变为优势种类,本研究中龙头鱼等次要经济种类逐渐成为优势类群,与楼丹等[25]、孙浩奇[26]的研究结果一致。

时空分布结果显示,调查海域鱼卵、仔稚鱼资源密度2019年较2018年有所上升,空间分布呈现调查海域东部的禁渔区线附近>沿岸>中部的趋势。鱼卵主要集中分布于东部的禁渔区线附近,以龙头鱼鱼卵为主。仔稚鱼在西部的沿岸海域密集分布,主要聚集的鱼类有康氏侧带小公鱼、鳀、虾虎鱼等。这与鱼卵、仔稚鱼的游泳能力以及亲体的产卵期、产卵区相关。Miller等[27]认为鱼卵不具有游泳能力,其分布通常取决于亲体的产卵习性,亲体通常由深海、外海向近岸或浅海进行生殖洄游。龙头鱼通常在春季由外海海域向近岸洄游产卵[28],本研究发现龙头鱼鱼卵多聚集于禁渔区线附近的海域,该水域处于低温的浙闽沿岸流[29]与高温的台湾暖流以及黑潮的交汇处,冷暖水的交汇可能使龙头鱼的产卵亲体多聚集于此进行产卵,这与浙江南部近海龙头鱼生物学特征和空间分布格局[30]的研究结果相似。已有研究表明,仔稚鱼具有捕食以及微弱的巡游性游泳能力,在饵料生物分布的海域仔稚鱼会降低巡游速度,并滞留在该水域内[31-32]。周永东等[16]、薛利建等[33]认为鳀的产卵亲体主要在春季由福建外海及浙江中南部相继进入沿岸岛礁区附近产卵,田丰歌等[34]、吴光宗[35]、张良成[36]认为康氏侧带小公鱼的亲体通常于每年春季到秋季初期集中于近岸浅水水域产卵,虾虎鱼的亲体主要栖息于河口浅水区以及海岸带,通常于冬季至次年的秋季初期产卵。本研究发现,仔稚鱼聚集的主要种类中,鳀、康氏侧带小公鱼、虾虎鱼等主要集中分布在沿岸海域,这与以上学者的结论基本吻合。调查区沿岸海域在台湾暖流、浙闽沿岸流以及海底摩擦的影响下产生沿岸的上升流和向岸流[37],将营养物质带到水域上层,促进饵料生物的大量生成,这可能使得鳀、康氏侧带小公鱼、虾虎鱼类等生长发育至仔稚鱼阶段时,多滞留在沿岸海域。聚类分析将保护区鱼卵、仔稚鱼划分为禁渔区线海域群组、沿岸海域群组、中部以及南部海域群组,且禁渔区线海域群组的资源密度均高于沿岸海域,这也进一步印证了时空分布的结果。

图5  2018—2019年鱼卵和仔稚鱼与环境因子的相关性分析 Fig. 5  Correlation analysis of fish eggs and larvae with environmental factors by Mantel test from 2018 to 2019
图6  鱼卵、仔稚鱼与环境因子的冗余分析a. 2018年鱼卵;b. 2018年仔稚鱼;c. 2019年鱼卵;d. 2019年仔稚鱼. SST:表层温度;BST:底层温度;SSS:表层盐度;BSS:底层盐度;DO:溶解氧;Chl.a:叶绿素a;Turb:浑浊度;Lon:经度;Lat:纬度. E1801、E1904:斑鰶;E1802、A1808、E19011、A1912:龙头鱼;E1808、A1813、E1916、A1919:鳀;E1809:大黄鱼;A1801、A1903:带鱼;A1802:竿虾虎鱼;A1803、E1905:黄姑鱼;A1804:黄鳍东方鲀;A1805、E1909、A1909:蓝圆鲹;E1806、E1910、A1910:棱鮻;A1807、A1901:六丝钝尾虾虎鱼;A1809:美肩鳃鳚;A18011、A1916:丝背细鳞鲀;A1814:细鳞鯻;A1815:小黄鱼;A1817:髭缟虾虎鱼;A1818:八部副鳚;A1819:康氏侧带小公鱼;A1822:中华侧带小公鱼;E1906:黄鲫;E1912:鲯鳅;E1913:日本拟鳎;E1914、A1917:鮻;A1923:鲻;E1917:鲔;E1920:圆鮀鲣;A1902:斑尾刺虾虎鱼;A1904:海蛾鱼;A1905:褐菖鲉;A1906:拉氏狼牙虾虎鱼;A1907:花鲈;A1908:长鳍篮子鱼;A1913:矛尾虾虎鱼;A1914:虻鲉;A1915:七星底灯鱼;A1920:日本绯鲤;A1924:安氏新银鱼. Fig. 6  Redundancy analysis of fish eggs and larvae with environmental factorsa. Fish eggs in 2018; b. Fish larvae in 2018; c. Fish eggs in 2019; d. Fish larvae in 2019. SST: surface temperature; BST: bottom temperature; SSS: surface salinity; BSS: bottom salinity; DO: bottom chemical oxygen; Chl.a: chlorophyll a; Turb: turbidity; Lon: longitude; Lat: latitude. E1801, E1904: Konosirus punctatus; E1802, A1808, E19011, A1912: Harpodon nehereus; E1808, A1813, E1916, A1919: Engraulis japonicus; E1809: Larimichthys crocea; A1801, A1903: Trichiurus lepturus; A1802: Luciogobius guttatus; A1803, E1905: Nibea albiflora; A1804: Takifugu xanthopterus; A1805, E1909, A1909: Decapterus maruadsi; E1806, E1910, A1910: Planiliza carinata; A1807, A1901: Amblychaeturichthys hexanema; A1809: Omobranchus elegans; A18011, A1916: Stephanolepis cirrhifer; A1814: Terapon jarbua; A1815: Larimichthys polyactis; A1817: Tridentiger barbatus; A1818: Parablennius yatabei; A1819: Stolephorus commersonnii; A1822: Stolephorus chinensis; E1906: Setipinna taty; E1912: Coryphaena hippurus; E1913: Pseudaesopia japonica; E1914, A1917: Planiliza haematocheilus; A1923: Mugil cephalus; E1917: Euthynnus affinis; E1920: Auxis rochei; A1902: Synechogobius ommaturus; A1904: Pegasus laternarius; A1905: Sebastiscus marmoratus; A1906: Odontamblyopus lacepedii; A1907: Lateolabrax japonicus; A1908: Siganus canaliculatus; A1913: Chaeturichthys stigmatias; A1914: Erisphex pottii; A1915: Benthosema pterotum; A1920: Upeneus japonicus; A1924: Neosalanx anderssoni.

20世纪60年代,浙江近岸海域鱼卵、仔稚鱼主要以小黄鱼(Larimichthys polyactis)、大黄鱼等底层高经济价值鱼类为主[8]。随着海洋经济的快速发展,人类在海洋日益频繁的活动以及工业和生活污水的排入对海洋渔业资源造成了严重的损害,2011年浙江南部沿岸海域春、夏季鱼卵、仔稚鱼的主要种类演变为斑鰶、鳀、龙头鱼、鮻、褐菖鲉、棱鮻、长鳍篮子鱼(Siganus canaliculatus)、鲬(Platycephalus indicus)和虾虎鱼科等,小型低经济价值鱼类占鱼卵、仔稚鱼总量的比例大幅增加,银鲳、小黄鱼、大黄鱼等重要经济鱼类所占比例缩减明显[9]。2017年浙江近海主要经济鱼类产卵场保护区建立,该年和2018年浙江南部近岸海域春秋季鱼卵、仔稚鱼主要种类以鮻、龙头鱼、矛尾虾虎鱼、斑尾刺虾虎鱼、六丝钝尾虾虎鱼等小型低经济价值鱼类为主,其中大黄鱼成为2018年仔稚鱼的重要种,但高经济价值鱼类的鱼卵、仔稚鱼的数量整体较小[10]。本调查采集到重要经济种分别为大黄鱼、小黄鱼、带鱼、蓝圆鲹和鳀,其资源密度由2018年的4.28×10-3 ind/m3上升至2019年的22.01×10-3 ind/m3,但占比均偏低,分别为2018年的3.26%和2019年的7.98%,未采集到银鲳、鳓等保护种类。综上所述,七星列岛产卵场保护区鱼卵、仔稚鱼的群落结构处于动态变化状态,保护区内鱼卵、仔稚鱼的种类组成已产生由高经济价值鱼类向小型低经济价值鱼类转化的结构更替,由于大多数小型中上层饵料鱼类生命周期短,其资源量极度依赖上一年的亲体补充量[38],因此,应关注调查海域鳀等小型中上层饵料鱼类数量的增加对保护区鱼卵、仔稚鱼群落稳定性的影响。保护区的建立对调查海域渔业资源的保护和可持续利用产生了积极的作用,七星列岛产卵场保护区依然是大多数鱼类的产卵场和育幼场,在现有渔业资源恢复措施的基础上,应加强对重要经济鱼类的资源保护以及合理开发与利用。

3.2 七星列岛产卵保护区鱼卵、仔稚鱼与环境因子的关系

本研究发现,保护区鱼卵、仔稚鱼对温度、盐度、溶解氧、叶绿素a等海洋环境理化因子的变化较为敏感。这与岱衢洋产卵场[39]和大陈洋产卵场[11]鱼卵、仔稚鱼的研究结果相似。此外,鱼卵、仔稚鱼的分布也受到经度和纬度的影响。相关研究表明[40-41],经度作为空间因子并不直接影响鱼卵的分布,而是由环境因子产生间接影响,纬度可以直接影响温度。通过对鱼卵、仔稚鱼种类与环境因子的RDA分析发现,温度对鱼卵、仔稚鱼的影响与其亲体栖息的水层相关。例如,康氏侧带小公鱼、蓝圆鲹、鳀、中华侧带小公鱼等中上层鱼类,其鱼卵、仔稚鱼的分布主要与表层温度相关。龙头鱼等栖息于底层的鱼类,其鱼卵、仔稚鱼的分布与主要底层温度相关。

盐度对鳀、斑鰶、棱鮻等适盐度较高的鱼类鱼卵影响较大,对带鱼、蓝圆鲹等洄游性鱼类仔稚鱼以及花鲈、安氏新银鱼等适盐度较高的仔稚鱼影响较大。以上鱼卵、仔稚鱼主要出现在春季采集的样品中,调查海域在春季主要受浙闽沿岸流的影响,处于高低盐混合水域,盐度梯度变化较大,可能有利于鱼卵、仔稚鱼的生长发育。张晨捷等[42]研究发现,盐度通过渗透压对鱼卵的发育以及仔稚鱼的生长产生影响。王九江等[43]将其影响进行了划分,盐度通过对渗透压的调节影响鱼卵的孵化,通过对肠道酶活性的调节影响仔稚鱼的代谢。

本研究发现,溶解氧、叶绿素a与仔稚鱼的分布关系密切,这与春季珠江口水域鱼卵和仔稚鱼的研究结果相似[44]。六丝钝尾虾虎鱼、斑尾刺虾虎鱼、拉氏狼牙虾虎鱼、矛尾虾虎鱼、中华侧带小公鱼等近岸性种类以及龙头鱼、大黄鱼、丝背细鳞鲀、细鳞鯻等底层和中下层鱼类受溶解氧影响较大。调查海域近岸有较多岛礁分布,水生植物丰富,为仔稚鱼的生长发育提供充足的溶解氧,这与大亚湾鱼卵、仔稚鱼的研究[43]、人工鱼礁区和岛礁区浮游动物群落特征对仔稚鱼的影响[42]研究结果一致。已有学者指出[45-47],叶绿素a浓度的升高会造成水体富营养化,影响浮游动植物类群的分布,从而使仔稚鱼的分布直接或间接受到影响。黄姑鱼、黄鲫、褐菖鲉的仔稚鱼均以浮游生物为食[48-50],本研究发现黄姑鱼、黄鲫、带鱼等栖息于泥沙底质的鱼类以及褐菖鲉等栖息于岛礁和海藻丛的岛礁性鱼类受叶绿素a影响较大。

本次调查工作获得了浙江省海洋水产研究所渔业资源与生态研究室老师们的大力协助,特表谢忱!

参考文献
[1]
Hu C Y, Shui Y Y, Tian K, et al. Functional group classification and niche identification of major fish species in the Qixing Islands Marine Reserve, Zhejiang Province[J]. Biodiversity Science, 2016, 24(2): 175-184. [胡成业,水玉跃,田阔,等. 浙江七星列岛海洋特别保护区主要鱼类功能群划分及生态位分析[J]. 生物多样性,2016, 24(2): 175-184.].》Google Scholar
[2]
Liu M Z, Jiang R J, Yang F, et al. Health status assessment of the Dachenyang Spawning Ground Reserve[J]. Oceanologia et Limnologia Sinica, 2023, 54(1): 303-311. [刘明智,蒋日进,杨凡,等. 大陈洋产卵场保护区综合健康状况评价[J]. 海洋与湖沼,2023, 54(1): 303-311.].》Google Scholar
[3]
Chen M Q, Tuo Y C, Li J, et al. Preliminary study on index system describing hydraulic characteristics of fish spawning ground[J]. Journal of Hydraulic Engineering, 2013, 44(11): 1303-1308. [陈明千,脱友才,李嘉,等. 鱼类产卵场水力生境指标体系初步研究[J]. 水利学报,2013, 44(11): 1303- 1308.].》Google Scholar
[4]
Zhang C C, Shui Y Y, Qin H L, et al. Community characteristics of swimming animal in the waters of Qixing Islands in spring and autumn[J]. Journal of Fisheries of China, 2017, 41(3): 382-391. [张春草,水玉跃,覃胡林,等. 七星列岛海域春秋季游泳动物群落特征[J]. 水产学报,2017, 41(3): 382-391.].》Google Scholar
[5]
Wan R J, Jiang Y W. The species and biological characteristics of the eggs and larvae of osteichthyes in the Bohai Sea and Yellow Sea[J]. Journal of Shanghai Fisheries University, 2000, 9(4): 290-297. [万瑞景,姜言伟. 渤、黄海硬骨鱼类鱼卵与仔稚鱼种类组成及其生物学特征[J]. 上海水产大学学报,2000, 9(4): 290-297.].》Google Scholar
[6]
Clark F N, Marr J C. Part II: Population dynamics of the Pacific Sardine[R]. Washington: CalCOFl Report, 1953: 4..》Google Scholar
[7]
Fang D D, Yang H L, Zhang H, et al. Fish community structure and diversity in the middle reaches of the Yangtze River[J]. Journal of Fisheries of China, 2023, 47(2): 154-170. [方冬冬,杨海乐,张辉,等. 长江中游鱼类群落结构及多样性[J]. 水产学报,2023, 47(2): 154-170.].》Google Scholar
[8]
Zhang X W, Sha X S. Report on the survey of offshore fishery resources in Zhejiang-Research on the distribution of ichthyoplankton of important fish species in Zhejiang offshore[R]. (Unpublished). Hangzhou: Zhejiang Provincial Aquatic Resources Survey Committee, 1964: 35-69. [张孝威,沙学绅. 浙江近海渔业资源调查报告-浙江近海重要鱼类鱼卵和仔鱼分布的研究[R](未公开发表). 杭州:浙江省水产资源调查委员会,1964: 35-69.].》Google Scholar
[9]
Zhou Y D, Jin H W, Zhang H L, et al. Species composition and abundance distributions of ichthyoplankton along the south coast of Zhejiang province in spring and summer[J]. Oceanologia et Limnologia Sinica, 2013, 44(3): 590-598. [周永东,金海卫,张洪亮,等. 浙江南部沿岸产卵场春、夏季鱼卵、仔稚鱼种类组成与分布[J]. 海洋与湖沼,2013, 44(3): 590-598.].》Google Scholar
[10]
Zhang L L. Community structure of ichthyoplankton in spring and autumn and its relationship with environmental factors in the south of Zhejiang Province coastal waters[D]. Zhoushan: Zhejiang Ocean University, 2020: 9-10. [张琳琳. 浙江南部近岸海域春秋季鱼卵、仔稚鱼群落结构及与环境因子的关系[D]. 舟山:浙江海洋大学,2020: 9-10.].》Google Scholar
[11]
Yu C M, Jiang R J, Yin R, et al. Species composition of ichthyoplankton and its relationship with environmental factors in Dachenyang spawning ground reserve[J]. Journal of Zhejiang Ocean University (Natural Science), 2021, 40(6): 477-485. [于春梅,蒋日进,印瑞,等. 大陈洋产卵场保护区鱼卵、仔稚鱼的种类组成及其与环境因子的关系[J]. 浙江海洋大学学报(自然科学版), 2021, 40(6): 477-485.].》Google Scholar
[12]
General Administration of Quality Supervision, Inspection and Quarantine of PRC. Specifications for oceanographic survey. Part 6: Marine biological survey: GB/T 12763.6- 2007[S]. Beijing: Standards Press of China, 2007. [国家质检总局. 海洋调查规范第6部分 海洋生物调查:GB/T 12763.6-2007[S]. 北京:中国标准出版社,2007.].》Google Scholar
[13]
General Administration of Quality Supervision, Inspection and Quarantine of PRC. The specification for marine monitoring. Part 7: Ecological survey for offshore pollution and biological monitoring: GB 17378.7-2007[S]. Beijing: Standards Press of China, 2007. [国家质检总局. 海洋监测规范第7 部分:近海污染生态调查和生物监测:GB 17378.7- 2007[S]. 北京:中国标准出版社,2007.].》Google Scholar
[14]
Zhang R Z, Lu S F, Zhao C Y, et al. Fish eggs and fish larvae in coastal waters of China[M]. Shanghai: Shanghai Science and Technology Press, 1985: 18-196. [张仁斋,陆穗芬,赵传絪,等. 中国近海鱼卵与仔鱼[M]. 上海:上海科学技术出版社,1985: 18-196.].》Google Scholar
[15]
Okiyama M. An atlas of early stage fishes in Japan[M]. Tokyo: Tokai University Press, 1988: 1-1154. [沖山宗雄. 日本产稚鱼图鉴[M]. 东京:东海大学出版会,1988: 1- 1154.].》Google Scholar
[16]
Zhou Y D, Li S F, Yu C G, et al. Atlas of three fields, one corridor and protected areas for major economic categories in East China Sea district[M]. Beijing: China Ocean Press, 2018: VI-V, 62-83. [周永东,李圣法,俞存根,等. 东海区主要经济种类三场一通道及保护区图集[M]. 北京:海洋出版社,2018: VI-V, 62-83.].》Google Scholar
[17]
Pinkas L, Oliphant M S, Lverson I L K. Food habits of albacore, bluefish tuna, and bonito in California waters[J]. Water Research, 1971, 18(6): 653-594..》Google Scholar
[18]
Wan R J, Zeng D Y, Bian X D, et al. Species composition and abundance distribution pattern of ichthyoplankton and their relationship with environmental factors in the East China Sea ecosystem[J]. Journal of Fisheries of China, 2014, 38(9): 1375-1398. [万瑞景,曾定勇,卞晓东,等. 东海生态系统中鱼卵、仔稚鱼种类组成、数量分布及其与环境因素的关系[J]. 水产学报,2014, 38(9): 1375-1398.].》Google Scholar
[19]
Bray J R, Curtis J T. An ordination of the upland forest communities of southern Wisconsin[J]. Ecological Monographs, 1957, 27(4): 325-349..》Google Scholar
[20]
Clarke K R. Non-parametric multivariate analyses of changes in community structure[J]. Australian Journal of Ecology, 1993, 18(1): 117-143..》Google Scholar
[21]
Quetglas A, Carbonell A, Sánchez P. Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (North-Western Mediterranean) biological aspects of some deep-sea species[J]. Estuarine, Coastal and Shelf Science, 2000, 50(6): 739-749..》Google Scholar
[22]
Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO[M]. New York: Cambridge University Press, 2003..》Google Scholar
[23]
Qin Y C, Lan X H, Lu K, et al. The summer thermohaline structure of 2011 of the southern East China Sea shelf and its implications for the intrusion of Taiwan Warm Current and Kuroshio Current[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 151-159. [秦亚超,蓝先洪,陆凯,等. 东海南部陆架水体2011年夏季温盐结构及其对台湾暖流和黑潮入侵的指示[J]. 海洋地质与第四纪地质,2021, 41(5): 151-159.].》Google Scholar
[24]
Bian X D, Wan R J, Shan X J, et al. Preliminary analysis on recruitment variation and the exogenous driving factors to early life stages of small pelagic fishes in the Laizhou Bay[J]. Journal of Fishery Sciences of China, 2022, 29(3): 446-468. [卞晓东,万瑞景,单秀娟,等. 莱州湾中上层小型鱼类早期资源量动态及其外在驱动因素[J]. 中国水产科学,2022, 29(3): 446-468.].》Google Scholar
[25]
Lou D, Shi H X, Jiao H F, et al. Fishing output for spawning stock of Scomberomorus niphonius in Xiangshan Bay[J]. Hebei Fisheries, 2010(10): 38-39, 49. [楼丹,施慧雄,焦海峰,等. 象山港蓝点马鲛渔获情况初步研究[J]. 河北渔业,2010(10): 38-39, 49.].》Google Scholar
[26]
Sun H Q. A study on the biological characteristics, temporal and spatial distribution, and the relationship with environmental factors of Harpadon nehereus in Zhejiang Province coastal waters[D]. Zhoushan: Zhejiang Ocean University, 2022: 35-56. [孙浩奇. 浙江近海龙头鱼生物学特征及其时空分布与环境因子关系[D]. 舟山:浙江海洋大学,2022: 35- 56.].》Google Scholar
[27]
Miller B S, Kendall A W. Early life history of marine fishes[M]. Berkeley: University of California Press, 2009..》Google Scholar
[28]
Pan X W. The primary study on biology of Harpadon nehereus in the East China Sea[D]. Shanghai: Shanghai Ocean University, 2011: 5-7. [潘绪伟. 东海区龙头鱼渔业生物学的初步研究[D]. 上海:上海海洋大学,2011: 5-7.].》Google Scholar
[29]
Sun X P. China offshore regional seas[M]. Beijing: China Ocean Press, 2006: 106-129, 272-291. [孙湘平. 中国近海区域海洋[M]. 北京:海洋出版社,2006: 106-129, 272- 291.].》Google Scholar
[30]
Du X X. Biological characteristics and spatial distribution pattern of Harpadon nehereus in offshore water of southern Zhejiang[D]. Shanghai: Shanghai Ocean University, 2018: 25-47. [杜晓雪. 浙江南部近海龙头鱼的生物学特征及其空间分布格局[D]. 上海:上海海洋大学,2018: 25-47.].》Google Scholar
[31]
Yin M C, Blaxter J H S. Cruising speeds during early development and starvation of marine fish larvae[J]. Oceanologia et Limnologia Sinica, 1989, 20(1): 1-9. [殷名称,Blaxter J H S. 海洋鱼类仔鱼在早期发育和饥饿期的巡游速度[J]. 海洋与湖沼,1989, 20(1): 1-9.].》Google Scholar
[32]
Iles T D, Sinclair M. Atlantic herring: Stock discreteness and abundance[J]. Science, 1982, 215(4533): 627-633..》Google Scholar
[33]
Xue L J, Liu Z F. Study on the biomass distribution & biological characteristics of Engraulis japonicus in the East China Sea[J]. Journal of Zhejiang Ocean University (Natural Science), 2005, 24(4): 312-317. [薛利建,刘子藩. 东海日本鳀数量分布和生物学特性的研究[J]. 浙江海洋学院学报(自然科学版), 2005, 24(4): 312-317.].》Google Scholar
[34]
Tian F G, He W, Huang B B, et al. Spatial distribution of eggs of Stolephorus commersonnii in the Pearl River Estuary[J]. Chinese Journal of Ecology, 2023, 42(3): 694-701. [田丰歌,何薇,黄彬彬,等. 珠江口康氏侧带小公鱼鱼卵的空间分布特征[J]. 生态学杂志,2023, 42(3): 694-701.].》Google Scholar
[35]
Wu G Z. The ecological characteristics of distribution of eggs, larvae and juveniles of the Engraulis japonicus (temminck & Schlegel) and Anchoviella commersonii (lecépède) in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 1989, 20(3): 217-229. [吴光宗. 长江口海区鳀鱼和康氏小公鱼鱼卵和仔、稚鱼分布的生态特征[J]. 海洋与湖沼,1989, 20(3): 217-229.].》Google Scholar
[36]
Zhang L C. Study on the community structure and fishery biological characteristics of Gobioidei in Laizhou Bay[D]. Shanghai: Shanghai Ocean University, 2019: 2-32. [张良成. 莱州湾虾虎鱼群落结构及渔业生物学研究[D]. 上海:上海海洋大学,2019: 2-32.].》Google Scholar
[37]
Guo B H, Lin K, Song W X. Some problems of seawater flow in the southern East China Sea in summer[J]. Acta Oceanologica Sinica, 1985, 7(2): 143-153. [郭炳火,林葵,宋万先. 夏季东海南部海水流动的若干问题[J]. 海洋学报,1985, 7(2): 143-153.].》Google Scholar
[38]
Shi Y C, Chen X J. A review of stock assessment methods on small pelagic fish[J]. Marine Fisheries, 2019, 41(1): 118- 128. [石永闯,陈新军. 小型中上层海洋鱼类资源评估研究进展[J]. 海洋渔业,2019, 41(1): 118-128.].》Google Scholar
[39]
Fan Z W, Jiang R J, Zhang H L, et al. Community structure of ichthyoplankton and its relationship with environmental factors in Daiquyang spawning ground[J]. Journal of Fisheries of China, 2020, 44(4): 606-620. [樊紫薇,蒋日进,张洪亮,等. 岱衢洋产卵场鱼卵、仔稚鱼群落结构及其与环境因子的关系[J]. 水产学报,2020, 44(4): 606-620.].》Google Scholar
[40]
Yin J, Wang J, Zhang C L, et al. Spatial and temporal distribution characteristics of Larimichthys polyactis eggs in Haizhou Bay and adjacent regions based on twostage GAM[J]. Journal of Fishery Sciences of China, 2019, 26(6): 1164-1174. [尹洁,王晶,张崇良,等. 利用two-stage GAM 研究海州湾及其邻近海域小黄鱼鱼卵的时空分布特征[J]. 中国水产科学,2019, 26(6): 1164-1174.].》Google Scholar
[41]
Zhu W B, Zhu H C, Zhang Y Z, et al. Quantitative distribution of juvenile Engraulis japonicus and the relationship with environmental factors along the Zhejiang coast[J]. Journal of Fishery Sciences of China, 2021, 28(9): 1175-1183. [朱文斌,朱海晨,张亚洲,等. 浙江沿岸日本鳀幼鱼数量分布及其与环境因子的关系[J]. 中国水产科学,2021, 28(9): 1175- 1183.].》Google Scholar
[42]
Zhang C J, Shi Z H, Wang J G, et al. On salinity-related effects on osmoregulation mechanism in marine teleost[J]. Marine Fisheries, 2013, 35(1): 108-116. [张晨捷,施兆鸿,王建钢,等. 盐度影响海水硬骨鱼类渗透压调节机理的研究与展望[J]. 海洋渔业,2013, 35(1): 108-116.].》Google Scholar
[43]
Wang J J, Liu Y, Xiao Y Y, et al. Population characteristics of fish eggs and larvae and their relationship with environmental factors in Daya Bay[J]. Journal of Fishery Sciences of China, 2019, 26(1): 14-25. [王九江,刘永,肖雅元,等. 大亚湾鱼卵、仔稚鱼种群特征与环境因子的相关关系[J]. 中国水产科学,2019, 26(1): 14-25.].》Google Scholar
[44]
Xiao Y Z, Wang R, Ou Q, et al. Relationship between abundance distribution of fish eggs, larvae and juveniles and environmental factors in the Pearl River Estuary in spring[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(4): 488-495. [肖瑜璋,王蓉,欧强,等. 春季珠江口水域鱼卵和仔稚鱼的分布及其与环境因子的关系[J]. 台湾海峡,2010, 29(4): 488-495.].》Google Scholar
[45]
Wang L G, Li Y F, Du F Y, et al. Zooplankton community characteristics and impact on ichthyoplankton in artificial reefs and island reefs of Daya Bay[J]. South China Fisheries Science, 2018, 14(2): 41-50. [王亮根,李亚芳,杜飞雁,等. 大亚湾人工鱼礁区和岛礁区浮游动物群落特征及对仔稚鱼的影响[J]. 南方水产科学,2018, 14(2): 41-50.].》Google Scholar
[46]
Li J W, Xu D P, Li W, et al. Spatial and temporal distribution of fish assemblages and its relationship with environmental factors in Lake Gehu[J]. Journal of Fisheries of China, 2022, 46(4): 546-556. [李经纬,徐东坡,李巍,等. 滆湖鱼类群落时空分布及其与环境因子的关系[J]. 水产学报,2022, 46(4): 546-556.].》Google Scholar
[47]
Quinlan E L, Jett C H, Phlips E J. Microzooplankton grazing and the control of phytoplankton biomass in the Suwannee River estuary, USA[J]. Hydrobiologia, 2009, 632(1): 127- 137..》Google Scholar
[48]
Zhang Y Z, Zheng S D. The feeding habits and the growth of Nibea miichthioides in the early developmental stage[J]. Oceanologia et Limnologia Sinica, 1999, 30(2): 117-126. [张雅芝,郑斯电. 鮸状黄姑鱼早期发育阶段的摄食与生长特性[J]. 海洋与湖沼,1999, 30(2): 117-126.].》Google Scholar
[49]
Guo B, Zhang B, Dai F Q, et al. Diet composition and ontogenetic variation in feeding habits of juvenile Setipinna taty in the Haizhou Bay[J]. Journal of Fisheries of China, 2010, 34(6): 921-927. [郭斌,张波,戴芳群,等. 海州湾黄鲫幼鱼的食性及其随叉长的变化[J]. 水产学报,2010, 34(6): 921-927.].》Google Scholar
[50]
Xue B, Jiang R J, Wang K, et al. Feeding habits of Sebastiscus marmoratus in the Gouqi Island based on stable istope analysis[J]. Journal of Fisheries of China, 2017, 41(9): 1415- 1423. [薛彬,蒋日进,王凯,等. 应用稳定同位素技术分析枸杞岛近岸海域褐菖鲉的食性[J]. 水产学报,2017, 41(9): 1415-1423.].》Google Scholar