中国水产科学  2023, Vol. 30 Issue (03): 297-308  DOI: 10.12264/JFSC2022-0354
0

引用本文 

刘鑫, 梁夏颖, 王超宇, 高阳, 姚云龙, 赵哲, 史燕. 暗纹东方鲀渗透压调节相关基因响应盐度变化的表达特征[J]. 中国水产科学, 2023, 30(3): 297-308. DOI: 10.12264/JFSC2022-0354.
LIU Xin, LIANG Xiaying, WANG Chaoyu, GAO Yang, YAO Yunlong, ZHAO Zhe, SHI Yan. Expression characteristics of genes related to osmotic pressure regulation in Takifugu obscurus during salinity acclimation[J]. Journal of Fishery Sciences of China, 2023, 30(3): 297-308. DOI: 10.12264/JFSC2022-0354.

基金项目

国家重点研发计划项目(2018YFD0900200);江苏省种业振兴揭榜挂帅项目(JBGS[2021]133);国家自然科学基金项目(32002424).

作者简介

刘鑫(1997‒),男,硕士研究生,研究方向为鱼类生理. E-mail:201311040016@hhu.edu.cn

通信作者

通信作者:史燕,副教授,研究方向为鱼类遗传与生理. E-mail:yshi@hhu.edu.cn

文章历史

收稿日期:2022-10-28
修改日期:2022-12-09
暗纹东方鲀渗透压调节相关基因响应盐度变化的表达特征
刘鑫1,2,梁夏颖1,2,王超宇1,2,高阳1,2,姚云龙1,2,赵哲1,2,史燕1,2,     
1. 河海大学,江苏省海洋生物资源可持续利用工程研究中心,江苏 南京 210024
2. 河海大学海 洋学院海洋生物系,江苏 南京 210024
摘要:为了探索暗纹东方鲀(Takifugu obscurus)响应盐度变化的渗透压调节机制,本研究将淡水养殖的幼鱼转移至盐度34的海水中进行盐度适应,检测了盐度适应不同时间(1、2、3、5、7、10和14 d)后,Na+和Cl转运蛋白(NHE1)、Na+和葡萄糖转运蛋白(SLC5A1、SLC5A2)、Mg2+转运蛋白(SLC41A1、TRPM6、TRPM7)、Ca2+转运蛋白(Atp2b2)、${\rm{SO}}_4^{2 - }$转运蛋白(SLC13A1SLC26A1)以及水通道蛋白(AQP1AQP10)这11个渗透压调节相关基因在肾脏和肠道中的表达变化情况。研究结果显示,暗纹东方鲀适应盐度变化的14 d中,NHE1SLC5A2SLC41A1SLC26A1AQP1 5个基因的表达变化极其显著,在肾脏中的表达显著升高,最高表达水平可以达到淡水组的30~100倍;但在肠道中,除SLC26A1的表达仍呈上升趋势外,其他4个基因的表达均出现显著的下降,最低下降了40倍。SLC5A1Atp2b2的表达在肾脏和肠道中均呈现一定程度的上升,但上升倍数不显著。TRPM7的表达在肾脏中上升,肠道中下降,但表达倍数变化不显著。肾脏中TRPM6SLC13A1AQP10在淡水中的表达显著高于海水(P<0.05),而肠道中3个基因在海水中的表达则显著高于淡水(P<0.05)。以上表明,暗纹东方鲀在适应盐度变化的过程中,NHE1SLC5A2SLC41A1SLC26A1AQP15个基因分别作为重要的Na+和Cl转运蛋白、Na+和葡萄糖转运蛋白、Mg2+转运蛋白、${\rm{SO}}_4^{2 - }$转运蛋白和水通道蛋白发挥离子转运功能,且肾脏和肠道中的离子转运模式存在差异。本研究结果从分子水平解析暗纹东方鲀响应盐度变化的渗透压调节机制,也提供了广盐性鱼类生理调控的基础数据。
关键词暗纹东方鲀    盐度响应    渗透压调节基因    
Expression characteristics of genes related to osmotic pressure regulation in Takifugu obscurus during salinity acclimation
LIU Xin1,2,LIANG Xiaying1,2,WANG Chaoyu1,2,GAO Yang1,2,YAO Yunlong1,2,ZHAO Zhe1,2,SHI Yan,1,2    
1. Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
2. Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
Abstract:Numerous studies have shown that water salinity impacts fish development and growth. Takifugu obscurus, an anadromous fish of the Yangtze River, regulates osmotic pressure well and is an excellent model organism for studying euryhaline teleosts. The osmotic pressure-regulating organs and tissues of T. obscurus produce a series of physiological responses in reaction to the changes in water salinity during its migratory process. In China, T. obscurus is distributed in the East China Sea, Yellow Sea, Bohai Sea, and inland rivers. Every spring, it spawns along the Yangtze River, and the newly hatched juveniles are fattened in fresh water before returning to the sea at the end of the year or the next spring. In recent years, due to environmental pollution and overfishing, the wild population of T. obscurus has become endangered. The success of artificial propagation has given a significant impetus to the revival of the T. obscurus population. However, there is no systematic research on basic biological issues such as the mechanism of osmotic pressure regulation during its migration. A series of glass tanks with water at different salinities were used to study the changes in osmotic pressure genes in T. obscurus after salinity changes. Feeding was stopped one day before the start of this experiment, and the fish were transferred to a glass tank containing fresh water for 24 h. They were then transferred to 15 salinity artificial seawater and 24 h later they were transferred into water at 34 salinity. Samples were taken from the control group kept in freshwaterand and the 7 experimental groups after 1, 2, 3, 5, 7, 10, and 14 days of salinity stress respectively. Three fish from each group were randomly selected, and kidney and intestinal tissue samples were taken. The osmolality-related gene expression changes in experimental samples were detected using fluorescence quantitative PCR. H+ and Cl transport protein (NHE1), Na+ and glucose transport protein (SLC5A1, SLC5A2), Mg2+ transport protein (SLC41A1, TRPM6, TRPM7), Ca2+ transporter protein (Atp2b2), ${\rm{SO}}_4^{2 - }$transporter protein (SLC13A1, SLC26A1), and water channel protein (AQP1, AQP10) were among the osmolarity-related genes. The results show that the expression of five genes, NHE1, SLC5A2, SLC41A1, SLC26A1, and AQP1, changed significantly during the 14 days of salinity adaptation in T. obscurus. The expression of SLC5A1 and Atp2b2 increased to some extent in both kidney and intestine, but the fold increase was insignificant, while the expression of TRPM7 increased in kidney and decreased in intestine, but the fold change was insignificant. The expression of TRPM6, SLC13A1, and AQP10 in the kidney was significantly higher in freshwater than in seawater, while the expression of the three genes in the intestine was significantly higher in seawater than in freshwater. This suggests that during the salinity acclimation of T. obscurus, the five genes NHE1, SLC5A2, SLC41A1, SLC26A1, and AQP1 each functioned as an important Na+ and Cl transporter, Na+ and glucose transporter, Mg2+ transporter, ${\rm{SO}}_4^{2 - }$transporter, and water channel protein, respectively. The ion transport patterns in the kidney and intestine differed slightly. The results showed that osmoregulatory genes are involved in the physiological process of salinity adaptation in T. obscurus, and this adaptation ability is due to the close cooperation between the kidney and the intestine. The molecular mechanism of osmolarity regulation in T. obscurus was investigated by simulating migratory salinity change conditions, selecting various typical ion regulatory genes related to osmolarity regulation, and characterizing gene expression in the kidney and intestine over a two-week period. The effect of temperature on salinity tolerance, as well as the many relevant genes and pathways involved in osmotic pressure regulation in various tissues discovered using transcriptome sequencing techniques will be studied in the future. The results of this study add to our understanding of the mechanism of osmolarity regulation in T. obscurus and provide a foundation for further research into the molecular mechanism of adaptation to different salinity environments in euryhaline teleosts.
Key words Takifugu obscurus     salinity response    osmoregulatory genes    

暗纹东方鲀(Takifugu obscurus)属鲀形目(Tetraodontiformes),鲀科(Tetreodontidae),东方鲀属,在我国主要分布于近海及长江中下游地区,为暖水广盐性洄游鱼类[1]。其肉质鲜美,营养价值高,被誉为“长江三鲜”之一。每年的2—5月,暗纹东方鲀洄游至河口,在河流、湖泊等内陆水域中产卵,幼鱼在内陆水域中成长至第二年春天,随后返回海水直至性成熟[2]。作为洄游性鱼类,暗纹东方鲀能够适应不同的盐度环境,拥有较高的渗透压调节能力,是极好的渗透压调控机制研究模型[3]

广盐性鱼类能够适应广泛的盐度波动,主要依赖于机体的渗透压调节功能[4]。转录组学研究表明,渗透压调节是一个涉及多个器官和信号通路的复杂过程,许多酶和转运蛋白在维持渗透压和离子平衡方面发挥重要作用[5]。NHE1转运蛋白(Na+/H+ exchanger 1)和SLC5A转运蛋白(solute carrier family 5)促进了Na+从顶端进入近端小管细胞并交换出H+[6-7]。多种转运蛋白包括非选择性阴离子交换蛋白SLC26A6 (solute carrier family 26 member 6)、Na+/SO42–共转运蛋白SLC13A1 (solute carrier family 13 member 1)、Mg2+转运蛋白SLC41A1 (solute carrier family 41 member 1)等在多个溯河洄游的广盐性鱼类肾脏和肠道中参与二价离子的分泌,通过近端小管分泌Mg2+、${\rm{SO}}_4^{2 - }$、Ca2+[8]。海水鱼类的肠上皮细胞通过SLC26A6、NHE1等分泌${\rm{HCO}}_3^{2 - }$,与二价阳离子结合发生沉淀,降低渗透压,促进肠道水分的重吸收[9-10]。广盐性鱼类从淡水进入海水后,SLC41A1[11]、Atp2b2 (plasma membrane calcium ATPase 2)[12]、TRPM6 (transient receptor potential subfamily 6)和TRPM7 (transient receptor potential subfamily 7)[13]等蛋白的表达水平发生变化,引起肠道渗透压降低。研究发现,AQP (aquaporins)水通道蛋白的表达量在广盐性鱼类洄游过程中显著增多[14]。大西洋鲑的研究也表明AQP1、AQP3、AQP10等水通道蛋白参与了水分子的跨膜运动[15]

目前对包括暗纹东方鲀在内的多种河鲀的转录组测序表明,急性盐度变化影响了数百个与渗透压相关的基因表达,其中包括多个离子转运蛋白和水通道蛋白家族的代表性基因,如SLC13A1SLC5A1、AQP1[16]。王骏[17]进一步对暗纹东方鲀盐度耐受能力的差异做了系统分析,为研究暗纹东方鲀渗透压调节机制奠定了基础。为了深入探索暗纹东方鲀洄游过程中体内渗透压调节的反应过程,本研究模拟洄游时盐度变化条件,选取渗透压调节相关的各种典型离子相关调控基因,对盐度变化两周内肾脏和肠道中的基因表达特征进行鉴定,研究结果将有利于了解暗纹东方鲀洄游过程中的渗透压调节机制,也为研究广盐性鱼类响应不同盐度环境的分子机制提供基础资料。

1 材料与方法 1.1 实验用鱼及饲养过程

实验用鱼于2022年6月取自江苏省扬中市某养殖场,选取健康、体重为(100±20) g的暗纹东方鲀幼鱼。实验用鱼暂养在直径2 m,高1.2 m的黑色圆桶中,暂养期间水温(20±2) ℃,光照12 L∶12 D,水体溶氧高于6 mg/L,定时投喂人工配合饵料(投喂量为鱼体重的1%),投喂1 h后及时吸除鱼类粪便。养殖水体持续过滤充氧,每天定时检查鱼健康状况,补足饵料,防止个体间残食。

1.2 盐度适应实验方法

盐度适应实验在90 cm×45 cm×45 cm的玻璃水槽中进行,不同盐度的海水采用曝气24 h后的自来水稀释海水晶配制而成。实验设置3个平行组,每个平行组48尾鱼,分8个时间点取样,共计144尾。

实验开始前1 d停止喂食,实验时将暗纹东方鲀从暂养缸内转到装有淡水的玻璃水槽中24 h;随后将暗纹东方鲀转移至盐度为1的人工海水中暂养24 h;接着转到盐度为34的人工海水中。收集处于淡水玻璃水槽中24 h后的对照组样本和盐度适应1、2、3、5、7、10、14 d后的实验组样本,共8组,每组随机取3尾鱼的肾和肠组织,将组织样置于无RNA酶的1.5 mL离心管中,加入液氮速冻,–80 ℃保存备用。

1.3 总RNA提取及实时荧光定量PCR (qPCR)

取30~50 mg组织并加入1 mL TRIzol (Thermo- fisher,美国),使用组织研磨仪低温破碎组织至无明显颗粒。根据TRIzol说明书从肾和肠组织中提取总RNA;使用超微量紫外分光光度计(Mettler Toledo,瑞士)检测RNA浓度,用1.5%的琼脂糖凝胶检测RNA提取质量。cDNA合成采用诺唯赞HiScript® III RT SuperMix for qPCR (+gDNA wiper)试剂,根据说明书步骤,通过无RNA脱氧核糖核酸酶处理RNA,逆转录合成cDNA第一链,作为基因表达qPCR检测模板,–20 ℃保存备用。

β-actin作为内参基因,使用实时荧光定量PCR仪(Roche,瑞士)对暗纹东方鲀的渗透压调节基因(见表1)进行qPCR检测,程序如下:95 ℃ 30 s预变性;95 ℃ 10 s, 60 ℃ 30 s,共40个循环;最后为1个熔解曲线循环,95 ℃ 15 s, 60 ℃ 60 s。

1.4 qPCR引物设计

在GenBank中查找暗纹东方鲀的渗透压调节相关基因序列,使用Primer Premier 5软件设计特异性引物并通过生工生物工程上海股份有限公司合成。引物序列和基因ID列在表1中。

1.5 数据统计

本实验以淡水对照组的基因表达量作为基准1,进行相对表达量的计算,基因相对表达量采用2–ΔΔCt方法[18],结果以平均值±标准差($\bar x{\rm{ \pm SD}}$)表示,使用SPSS 20软件进行单因素方差分析(one-way ANOVA)。多重比较检验不同时间点的均值差异,当P<0.0001,以****标注;当0.0001<P<0.001,以***标注;当0.001<P<0.01,以**标注;当0.01<P<0.05,以*标注;当P>0.05,不标注。P<0.05认为差异具有显著性;当P>0.05认为差异不具有显著性。

表1  离子通道及转运蛋白相关基因qRT-PCR引物列表 Tab. 1  qRT-PCR primers for ion channel and transporter related genes
2 结果与分析 2.1 Na+/H+转运蛋白基因NHE响应盐度变化的表达特征

以淡水对照组的NHE1基因表达量作为基准1,对暗纹东方鲀肾脏和肠道组织中NHE1基因的表达分析显示,肾脏中NHE1的表达量在适应海水的过程中表现出明显的上调趋势,在转移至海水的1 d内迅速升高,第1天的表达量达到对照组的13.33倍,第2、3、5天的相对表达量分别为11.03、22.25、9.58,差异显著(P<0.05),在转移至海水的第7天其表达量达到峰值,显著高于对照组的表达量,为对照组的45.46倍(P<0.05)。10 d后下降并趋于稳定,但仍显著高于淡水环境下的表达量(P<0.05),第10、14天时相对表达量分别为13.63、14.06 (P<0.05)(图1a)。而在肠道中,定量结果表明NHE1基因经盐度变化后总体呈现先降低后上升的趋势(图1b),当以肠道中NHE1基因的淡水表达量为基准1时,转移至海水后,NHE1在第1天表达量为0.28,第3天出现轻微上调,表达量上调至0.86,第5、7、10天时表达量分别为0.40、0.20、0.16,至第14天时轻微上调,但仍显著低于淡水环境下的表达量(P<0.05)。

图1  暗纹东方鲀肾脏(a)和肠道(b) NHE1基因响应盐度变化的表达特征当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 1  Expression characteristics of NHE1 during salinity acclimation in the kidney (a) and intestine (b) of Takifugu obscurusSignificant differences are indicated by **** (P<0.0001), *** (P<0.001), ** (P<0.01) and * (P<0.05). P<0.05 was considered as significant difference; P>0.05 indicates nonsignificant difference from the control group.
2.2 Na+和葡萄糖共转运蛋白基因响应盐度变化的表达特征

Na+和葡萄糖共转运蛋白基因SLC5A1SLC5A2的表达分析显示,与淡水环境相比较,肾脏中的SLC5A1基因在转移至海水环境后表达量呈现先升高后降低的趋势(图2a),当以肾脏中SLC5A1对照组的表达量为基准1时,除第3天产生波动外(为对照组水平的1.28倍),适应期前7 d均呈现小幅上调,第1、2、5、7天表达量分别为2.88、2.31、2.77、2.82, 10 d后趋于稳定,稳定后的SLC5A1表达量与淡水对照组无显著差异,第14天时降低至0.88 (P>0.05)。肠道中,盐度变化后,SLC5A1呈现持续高表达,转移至海水的第1天迅速升高,达到了6.13,第2~3天略有波动,实验期间内持续高于淡水对照组,第1、5、7、10天表达量分别为6.13、6.30、5.02、6.63,第14天时,略微降低至4.85,实验期间表达量基本维持在淡水环境下的6倍左右,实验期间各时间点均与对照组差异显著(P<0.05)(图2b)。

图2  暗纹东方鲀Na+和葡萄糖共转运蛋白基因响应盐度变化的表达特征a. 肾脏SLC5A1; b. 肠道SLC5A1; c. 肾脏SLC5A2; d. 肠道SLC5A2.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 2  Expression characteristics of Na+ and glucose cotransporter during salinity acclimation in Takifugu obscurusa. SLC5A1 kidney; b. SLC5A1 intestine; c. SLC5A2 kidney; d. SLC5A2 intestine. Significant differences are indicated by **** (P<0.0001), *** (P<0.001), ** (P<0.01) and * (P<0.05). P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.

SLC5A2表达量在肾脏中呈现先上升后降低的趋势,盐度变化1 d内,SLC5A2迅速上升,达到了对照组的22.11倍,随后在第2天和第7天时达到最大值,表达量分别为49.42和52.00, 10 d后表达量迅速下降,第10天时,降低至对照组的11.63倍,至14 d时与对照组无显著差异,其表达量6.91 (P>0.05)(图2c); 图2d的定量结果表明,肠道中SLC5A2基因的表达量在盐度变化后出现快速完全的下降,盐度变化后1 d内,下调至对照组的0.02倍,实验期间SLC5A2的表达较淡水环境下降低了40倍,随后趋于稳定,至第14天时,表达量为对照组的0.04倍,各时间点与对照组差异显著(P<0.05)。

2.3 Mg2+相关蛋白基因响应盐度变化的表达特征

Mg2+相关蛋白基因SLC41A1TRPM6TRPM7的表达随盐度变化显示出不同的趋势。当以3个基因在肾脏及肠道中的淡水对照组表达量为基准1时,图3a的结果表明,在肾脏中,Mg2+转运蛋白SLC41A1基因表达呈现先上升后下降的趋势,SLC41A1的表达量1 d内迅速升高,远远高于对照组,表达量为57.62,在2 d时达到最大值,上调幅度为淡水对照组的121.11倍,在7 d后趋于稳定,稳定后表达量仍显著高于对照组水平(P<0.05),第14天时,表达量降低至17.20;在肠道中,盐度变化后,SLC41A1的表达呈现下降趋势,表达量1 d内下调至0.21,随后波动较小,各时间点均低于淡水对照组,第7、10、14天时轻微升高,表达量逐渐升高至0.2、0.31、0.39,实验时间内较淡水环境持续低表达,与对照组相比差异显著(P<0.05)(图3b)。

图3  暗纹东方鲀Mg2+离子转运蛋白基因响应盐度变化的表达特征a. 肾脏SLC41A1; b. 肠道SLC41A1; c. 肾脏TRPM6; d. 肠道TRPM6; e. 肾脏TRPM7; f. 肠道TRPM7.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 3  Expression characteristics of Mg2+-transporters during salinity acclimation in Takifugu obscurusa. Kidney SLC41A1; b. Intestine SLC41A1; c. Kidney TRPM6; d. Intestine TRPM6; e. Kidney TRPM7; f. Intestine TRPM7. Significant differences are indicated by **** (P<0.0001), *** (P<0.001), ** (P<0.01) and * (P<0.05). P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.

对Mg2+离子通道TRPM6基因的表达分析显示,TRPM6基因在肾脏中表现出下调趋势,转移至海水环境1 d内,表达量下调至0.10, 1 d后趋于稳定,第2、3、5、7、10、14天的表达量分别为0.15、0.19、0.06、0.1、0.02、0.05,实验期间TRPM6的表达量与对照组差异显著(P<0.05)(图3c);而在肠道中,TRPM6基因的表达则呈现持续上升趋势。TRPM6表达量在1 d内迅速升高,增加到对照组的5.72倍,1~2 d内略有波动,然后继续呈上升趋势,第5、7、10天的表达量分别为5.34、5.03、3.31,至14 d达到峰值,表达量达到对照组的7.31倍,在实验周期内各时间点的表达均显著高于淡水对照组(P<0.05)(图3d)。

图3e 表明,TRPM家族中的TRPM7与其同源基因TRPM6在肾脏中的表达趋势相反。在实验周期内,TRPM7的表达量在盐度变化后呈现先上升后下降趋势,盐度变化的1 d内表达量增加到2.14,在2 d时达到最大值,增加到对照组的4.82倍,然后呈下降趋势,第3、5、7天时表达量分别为2.38、2.49、2.44,继续维持在2倍左右的表达量,于10 d时恢复至盐度变化前的水平,第10、14天表达量分别降低至1.06、1.27,与对照组无显著性差异(P>0.05);在肠道中,如图3f显示,盐度变化后,TRPM7的表达显著下降,在1 d内降低至0.39,随后趋于稳定,第2、3、5、7、10、14天的表达量分别为0.25、0.28、0.36、0.34、0.33、0.36,显著低于对照组(P<0.05)。

2.4 钙转运ATP酶基因Atp2b2响应盐度变化的表达特征

实时荧光定量结果表明,盐度变化对于肾脏中Atp2b2基因表达的影响较小,如图4a所示,转移至海水1~2 d时,Atp2b2基因表达基本不受影响,以对照组为基准1时,第1、2天的表达量分别为对照组的0.71、1.20倍,表达量在海水环境下的第3天出现轻微上调,达到了对照组的2.34倍,存在显著性差异(P<0.05),至5 d时基本恢复至对照组水平,第5、7、10、14天的表达量分别为对照组的1.29、1.90、0.52、0.51倍,变化较小;图4b表明,海水环境同样对肠道中Atp2b2的基因表达影响较小,Atp2b2在盐度变化的1~3 d内没有出现显著变化,表达量分别2.59、1.38、2.88,至第5天较淡水环境下增加至4.85倍,存在显著性差异(P<0.05),随后基本恢复至对照组水平,第7、10、14天表达量分别为1.61、2.27、2.41,稳定后与对照组无显著差异(P>0.05)。

图4  暗纹东方鲀Ca2+离子转运蛋白基因响应盐度变化的表达特征a. 肾脏Atp2b2; b. 肠道Atp2b2. 当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 4  Expression characteristics of Ca2+-transporter during salinity acclimation in Takifugu obscurusa. Kidney Atp2b2; b. Intestine Atp2b2. Significant differences are indicated by **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
2.5 ${\rm{SO}}_4^{2 - }$离子转运蛋白基因响应盐度变化的表达特征

对${\rm{SO}}_4^{2 - }$离子转运蛋白家族基因SLC13A1SLC26A1的检测显示,肾脏中SLC13A1在盐度变化后,呈现出持续下调趋势,转移至海水环境下1 d内,SLC13A1的表达量迅速下降至0.05,除在2 d、5 d、7 d出现波动外,期间表达量升至0.99、0.59、0.55,各时间点均显著低于对照组,直到第14天,表达量仍显著低于淡水环境,表达量为0.20,存在显著性差异(P<0.05)(图5a);由图5b可见,肠道中,SLC13A1基因的表达经盐度适应后呈现持续上调趋势,进入海水环境1 d内SLC13A1肠道中的表达量增加到对照组的6.35倍,1~2 d内轻微降低,在3 d时表达量较对照组增加了10.23倍,随后呈现下降趋势,第5、7、10天的表达量分别6.70、4.27、4.60,在海水养殖第14天时的表达量达到最高,表达量达到了11.71,差异显著(P<0.05)。

图5  暗纹东方鲀${\rm{SO}}_4^{2 - }$离子转运蛋白基因响应盐度变化的表达特征a. 肾脏SLC13A1; b. 肠道SLC13A1; c. 肾脏SLC26A1; d. 肠道SLC26A1.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 5  Expression characteristics of ${\rm{SO}}_4^{2 - }$-transporters during salinity acclimation in Takifugu obscurusa. Kidney SLC13A1; b. Intestine SLC13A1; c. Kidney SLC26A1; d. Intestine SLC26A1. Significant differences are indicated by **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.

而${\rm{SO}}_4^{2 - }$离子转运蛋白SLC26A1基因在肾脏中的表达随着时间的推移整体呈现出先上升后下降的趋势,盐度变化后的1 d内迅速升高,相对于淡水表达量为1时,SLC26A1第1天的表达量达到了44.27, 1~3 d内略微波动,第2、3天的表达量分别为对照组的31.88、21.59倍,在第5天表达量达到最大值88.75,随后其表达量呈现下降趋势,第7、10天的表达量依次为56.07、32.87,至第14天时恢复至淡水组(FW)的水平,为对照组的6.23倍,统计数据上无显著性差异(P>0.05)(图5c);在肠道中,SLC26A1基因的表达趋势与肾脏中明显不同,盐度变化后,SLC26A1的表达持续上调,1~2 d内逐渐增加,分别达到3.29、2.52,第3、5、10天时表达量逐渐增加,分别为对照组的8.49、11.37、20.49倍,至14 d时表达量达到最高,较淡水下的增加了20.47倍,实验周期内没有表现出下降的趋势,差异显著(P<0.05,图5d)。

2.6 水通道蛋白基因响应盐度变化的表达特征

水通道蛋白基因AQP1的实时定量结果显示,在转移至海水后,肾脏中AQP1基因呈现先上升后下降的表达趋势,在海水环境下的1~2 d内表达量逐渐升高,表达量为3.80、12.63 (以淡水条件下AQP1组织内的表达量为单位1),至第3天AQP1在海水环境中的表达量达到峰值,为对照组的28.79倍,随后表达量快速下降,第5、7、10、14天的表达量降低至5.23、3.07、1.19、0.45,海水条件下的第10天时基本恢复至转移前水平,与淡水环境相比无显著差异(P>0.05图6a);由图6b可见,在肠道中,AQP1基因呈现持续下降趋势,盐度变化后1 d内降低至对照组的0.11倍,除5~ 7 d略微波动外,第5、7天的表达量分别为对照组的0.61、0.46倍,其余时间点稳定表达呈下降趋势,14 d时仍显著低于对照组,表达量为仅为0.21 (P<0.05,图6b)。

而水通道蛋白AQP10基因在肾脏与肠道中的表达特征与AQP1的表达趋势相反。图6c表明,在海水环境中,肾脏中AQP10的表达量显著低于对照组,盐度变化后1 d内表达量下降至0.34,随后AQP10在肾脏中维持低表达水平,直至实验周期结束,结束时表达量为对照组的0.25倍(图6c)。如图6d所示,肠道中的AQP10的表达水平在转移至海水后,1~3 d内略微波动,以AQP10在肠道中的对照组表达量为基准1, AQP10的表达量在1~3 d内分别为7.02、3.59、2.05,随后逐渐升高,在5~7 d内分别达到了对照组的14.96、13.55倍,第14天时AQP10的表达量达到最高,较淡水环境下的表达增加了19.82倍,变化显著(P<0.05)。

图6  暗纹东方鲀水通道蛋白基因响应盐度变化的表达特征a. 肾脏AQP1; b. 肠道AQP1; c. 肾脏AQP10; d. 肠道AQP10.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 6  Expression characteristics of aquaporins during salinity acclimation in Takifugu obscurusa. Kidney AQP1; b. Intestine AQP1; c. Kidney AQP10; d. Intestine AQP10. Significant differences are indicated by **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
3 讨论

暗纹东方鲀作为广盐性鱼类,能够通过体内生理调节适应较大的盐度变化。淡水环境的离子稀少,水体渗透压较低,鱼体吸水,并通过肾脏的过滤作用,在重吸收离子的同时排出多余的水分。海水环境的离子丰富,鱼体水分流失,二价离子通过肾脏排泄。本研究中肾脏Na+和H+转运蛋白(NHE1)、Na+和葡萄糖共转运蛋白(SLC5A2)、Mg2+转运蛋白(SLC41A1)、${\rm{SO}}_4^{2 - }$转运蛋白(SLC26A1)、水通道蛋白(AQP1)的表达量在从淡水过渡到海水的过程中呈现极其显著的增加,表明鱼体因外界环境变化,肾脏出现了相应的功能转变。高渗压力下,NHE1排出H+将导致细胞内${\rm{HCO\bar 3}}$浓度升高,刺激Cl和${\rm{HCO\bar 3}}$交换,反输送的Na+和Cl产生细胞内渗透压的净增加,有助于Mg2+、${\rm{SO}}_4^{2 - }$从血液浓缩至高浓度尿液中[19]。而SLC5A1SLC5A2两种同源基因的表达进一步优化了对Na+和葡萄糖的重吸收。在海水环境下,SLC5A1SLC5A2的基因表达量更高,可能暗示着高渗条件下暗纹东方鲀吸收葡萄糖的能力更强。SLC41A1参与脊椎动物的Mg2+稳态调节,同时有研究表明提高饲料中Mg2+含量,金鱼(Carassius auratus Linnaeus)中SLC41A表达量升高[20]。本研究中,转移至海水环境下的SLC41A1表达出现显著升高,这与红鳍东方鲀(Takifugu rubripes)的研究相一致[11],表明暗纹东方鲀中SLC41A1对Mg2+的运输至关重要。SLC26家族成员是小型阴离子的多功能转运蛋白,包括Cl、${\rm{HCO\bar 3}}$、硫酸盐、草酸盐和甲酸盐[21]。在暗纹东方鲀中SLC26A1可以以交换${\rm{HCO\bar 3}}$介导${\rm{SO}}_4^{2 - }$分泌到细胞外,有利于维持细胞内的酸碱平衡。本研究中SLC13A1基因在海水环境下表达量降低,在日本鳗(Anguilla japonica)中有相似的研究结果[22]。同时,本研究发现水通道蛋白AQP1基因在盐度适应中的表达量明显升高,表明AQP1有效增强了暗纹东方鲀的液体分泌能力,有利于等渗尿的形成,促进了Mg2+、${\rm{SO}}_4^{2 - }$的分泌。对日本青鳉(Oryzias latipes)[23]、欧洲海鲈(Dicentrarchus labrax)[24]AQP1基因的研究也具有类似的结果。本研究中海水盐度变化后,肾脏中AQP10的表达下调,这与欧洲鳗(Anguilla anguilla)[25]和日本青鳉的研究结果一致,但在日本青鳉中AQP10基因的表达不受盐度的影响[26],而在大西洋鲑(Salmo salar)中AQP10的表达出现了下调[15]。这表明当盐度变化时,鱼类肾脏均表现出了对环境盐度的积极响应,但不同鱼类变化趋势相似性较低,可能与物种差异、组织特定区段的特异性有关。

肠道是鱼体内直接与海水接触的组织,海水中的水分需要通过肠道的吸收作用进入鱼体,因此肠道是海洋硬骨鱼获取水分的重要器官。本研究中肠道Na+和H+转运蛋白(NHE1)、Na+和葡萄糖共转运蛋白(SLC5A2)、Mg2+转运蛋白(SLC41A1、TRPM7)以及水通道蛋白AQP1在转移到海水环境后出现显著的下调。海水环境下的肠道具有低渗水的特性[27],在本实验中水通道蛋白AQP1在海水环境下表达降低,为减少水的通透性奠定了物理基础。同时研究表明海水环境下的Mg2+在肠道中几乎不被吸收[28],在分子层面上表现为Mg2+转运蛋白(SLC41A1、TRPM7)的表达量在海水环境下的下调。Na+和葡萄糖共转运蛋白(SLC5A2)在转移到海水环境后表达量急剧下降,与SLC5A1形成了鲜明的对比,推测在肠道中SLC5A1起到主要的重吸收葡萄糖的作用。同时,本研究中SO42–转运蛋白(SLC13A1、SLC26A1)、Mg2+转运蛋白(TRPM6)以及水通道蛋白AQP10在盐度变化过程中上调。此前,TRPM6被证明参与了肾脏和肠道镁离子的吸收。同时,TRPM6激酶磷酸化TRPM7的丝氨酸,调节TRPM7的胞内转运[29]。本研究中从淡水转移到海水后,肠道中TRPM6表达量上调,而TRPM7表达量下降。这可能预示着TRPM6负调控TRPM7参与体内的Mg2+重吸收的过程,以此减少肠道对于Mg2+的渗透性。在哺乳动物中,AQP10则主要在人类十二指肠和空肠中表达,促进肠道中水的转运[30],在暗纹东方鲀中可能有相似的功能,即AQP10主要负责肠道中水的重吸收作用。

本研究通过对11种重要溶质和水转运蛋白在盐度变化14 d内肾脏和肠道中的基因表达特征分析发现,在适应盐度变化中,NHE1SLC5A2SLC41A1SLC26A1AQP1 5个基因出现了极其显著的表达变化,提示其表达的蛋白可能分别作为重要的Na+和Cl转运蛋白、Na+和葡萄糖转运蛋白、Mg2+转运蛋白、${\rm{SO}}_4^{2 - }$转运蛋白和水通道蛋白发挥离子转运功能。研究同时发现,暗纹东方鲀在盐度变化后TRPM6SLC13A1AQP10等多个基因在肾脏与肠道中的表达趋势不同,表明肾脏与肠道中的离子转运模式存在一定差异。研究结果有利于从分子水平解析暗纹东方鲀的渗透压调节机制,也提供了广盐性鱼类生理调控的基础数据。

参考文献
[1]
Song L Z, Song J K, Wang X J. A postembryonic study on the morphological and growth pattern of the lateral line system in the pufferfish Takifugu obscurus[J]. Chinese Journal of Zoology, 2010, 45(6): 19-29. [宋丽姿,宋佳坤,王晓杰. 暗纹东方鲀侧线系统早期形态和生长发育[J]. 动物学杂志,2010, 45(6): 19-29.].》Google Scholar
[2]
Jeong S Y, Kim J H, Lee W O, et al. Salinity changes in the anadromous river pufferfish, Takifugu obscurus, mediate gene regulation[J]. Fish Physiology and Biochemistry, 2014, 40(1): 205-219..》Google Scholar
[3]
Kim J H, Kim S J, Min G S, et al. Nutritional condition determined using RNA/DNA ratios of the river pufferfish Takifugu obscurus under different salinities[J]. Marine Ecology Progress Series, 2008, 372: 243-252..》Google Scholar
[4]
Shi Z H, Huang X X, Fu R B, et al. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus[J]. Aquaculture, 2008, 275(1-4): 306-310..》Google Scholar
[5]
Wang J, Zhu X X, Sun Y F, et al. Changes in transcriptome and ultrastructure reveal salinity tolerance of obscure puffer Takifugu obscurus[J]. Frontiers in Marine Science, 2022, 9: 854140..》Google Scholar
[6]
Parker M D, Myers E J, Schelling J R. Na+–H+ exchanger-1 (NHE1) regulation in kidney proximal tubule[J]. Cellular and Molecular Life Sciences, 2015, 72(11): 2061-2074..》Google Scholar
[7]
Obata F, Ozuru R, Tsuji T, et al. Stx2 induces differential gene expression and disturbs circadian rhythm genes in the proximal tubule[J]. Toxins, 2022, 14(2): 69..》Google Scholar
[8]
Gregório S F, Carvalho E S M, Encarnação S, et al. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.)[J]. The Journal of Experimental Biology, 2013, 216(Pt 3): 470-479..》Google Scholar
[9]
Whittamore J M. Osmoregulation and epithelial water transport: Lessons from the intestine of marine teleost fish[J]. Journal of Comparative Physiology B, 2012, 182(1): 1-39..》Google Scholar
[10]
Carvalho E S M, Gregório S F, Power D M, et al. Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation[J]. Journal of Comparative Physiology B, 2012, 182(8): 1069-1080..》Google Scholar
[11]
Islam Z, Hayashi N, Yamamoto Y, et al. Identification and proximal tubular localization of the Mg²+ transporter, Slc41a1, in a seawater fish[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2013, 305(4): R385-R396..》Google Scholar
[12]
Lin C H, Kuan W C, Liao B K, et al. Environmental and cortisol-mediated control of Ca2+ uptake in tilapia (Oreochromis mossambicus)[J]. Journal of Comparative Physiology B, 2016, 186(3): 323-332..》Google Scholar
[13]
Arjona F J, Chen Y X, Flik G, et al. Tissue-specific expression and in vivo regulation of zebrafish orthologues of mammalian genes related to symptomatic hypomagnesemia[J]. Pflügers Archiv-European Journal of Physiology, 2013, 465(10): 1409-1421..》Google Scholar
[14]
Hill A E, Shachar-Hill B, Shachar-Hill Y. What are aquporins for[J] The Journal of Membrane Biology, 2004, 197(1): 1-32..》Google Scholar
[15]
Tipsmark C K, Sørensen K J, Madsen S S. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation[J]. The Journal of Experimental Biology, 2010, 213(3): 368-379..》Google Scholar
[16]
Zhang H Y, Hou J L, Liu H J, et al. Adaptive evolution of low-salinity tolerance and hypoosmotic regulation in a euryhaline teleost, Takifugu obscurus[J]. Marine Biology, 2020, 167(7): 90..》Google Scholar
[17]
Wang J. Effect of environmental factors on salinity tolerance of Takifugu obscurus and its difference in transcriptomics level[D]. Nanjing: Nanjing Normal University, 2018. [王骏. 暗纹东方鲀耐受盐度能力的环境因子效应及其在转录组学水平上的差异[D]. 南京:南京师范大学,2018.].》Google Scholar
[18]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
[19]
Alexander R T, Grinstein S. Na+/H+ exchangers and the regulation of volume[J]. Acta Physiologica, 2006, 187(1-2): 159-167..》Google Scholar
[20]
Kodzhahinchev V, Kovacevic D, Bucking C. Identification of the putative goldfish (Carassius auratus) magnesium transporter SLC41a1 and functional regulation in the gill, kidney, and intestine in response to dietary and environmental manipulations[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017, 206: 69-81..》Google Scholar
[21]
Seidler U, Nikolovska K. Slc26 family of anion transporters in the gastrointestinal tract: Expression, function, regulation, and role in disease[J]. Comprehensive Physiology, 2019, 9(2): 839-872..》Google Scholar
[22]
Nakada T, Zandi-Nejad K, Kurita Y, et al. Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2005, 289(2): R575-R585..》Google Scholar
[23]
Ellis L V, Bollinger R J, Weber H M, et al. Differential expression and localization of branchial AQP1 and AQP3 in Japanese medaka (Oryzias latipes)[J]. Cells, 2019, 8(5): 422..》Google Scholar
[24]
Giffard-Mena I, Boulo V, Aujoulat F, et al. Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): The effect of salinity on AQP1 and AQP3 expression[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2007, 148(2): 430-444..》Google Scholar
[25]
Ma Q, Liu X F, Li A, et al. Effects of osmotic stress on the expression profiling of aquaporin genes in the roughskin sculpin (Trachidermus fasciatus)[J]. Acta Oceanologica Sinica, 2020, 39(6): 19-25..》Google Scholar
[26]
Madsen S S, Bujak J, Tipsmark C K. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: Challenging the paradigm of intestinal water transport?[J]. The Journal of Experimental Biology, 2014, 217(Pt 17): 3108-3121..》Google Scholar
[27]
Takei Y, Wong M K S, Pipil S, et al. Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2017, 312(2): R231-R244..》Google Scholar
[28]
Hirano T, Mayer-Gostan N. Eel esophagus as an osmoregulatory organ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 1348-1350..》Google Scholar
[29]
Brandao K, Deason-Towne F, Zhao X Y, et al. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions[J]. Cellular and Molecular Life Sciences, 2014, 71(24): 4853-4867..》Google Scholar
[30]
Engelund M B, Madsen S S. Tubular localization and expressional dynamics of aquaporins in the kidney of seawater- challenged Atlantic salmon[J]. Journal of Comparative Physiology B, 2015, 185(2): 207-223..》Google Scholar
表1  离子通道及转运蛋白相关基因qRT-PCR引物列表 Tab. 1  qRT-PCR primers for ion channel and transporter related genes
图1  暗纹东方鲀肾脏(a)和肠道(b) NHE1基因响应盐度变化的表达特征当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 1  Expression characteristics of NHE1 during salinity acclimation in the kidney (a) and intestine (b) of Takifugu obscurusSignificant differences are indicated by **** (P<0.0001), *** (P<0.001), ** (P<0.01) and * (P<0.05). P<0.05 was considered as significant difference; P>0.05 indicates nonsignificant difference from the control group.
图2  暗纹东方鲀Na+和葡萄糖共转运蛋白基因响应盐度变化的表达特征a. 肾脏SLC5A1; b. 肠道SLC5A1; c. 肾脏SLC5A2; d. 肠道SLC5A2.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 2  Expression characteristics of Na+ and glucose cotransporter during salinity acclimation in Takifugu obscurusa. SLC5A1 kidney; b. SLC5A1 intestine; c. SLC5A2 kidney; d. SLC5A2 intestine. Significant differences are indicated by **** (P<0.0001), *** (P<0.001), ** (P<0.01) and * (P<0.05). P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
图3  暗纹东方鲀Mg2+离子转运蛋白基因响应盐度变化的表达特征a. 肾脏SLC41A1; b. 肠道SLC41A1; c. 肾脏TRPM6; d. 肠道TRPM6; e. 肾脏TRPM7; f. 肠道TRPM7.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 3  Expression characteristics of Mg2+-transporters during salinity acclimation in Takifugu obscurusa. Kidney SLC41A1; b. Intestine SLC41A1; c. Kidney TRPM6; d. Intestine TRPM6; e. Kidney TRPM7; f. Intestine TRPM7. Significant differences are indicated by **** (P<0.0001), *** (P<0.001), ** (P<0.01) and * (P<0.05). P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
图4  暗纹东方鲀Ca2+离子转运蛋白基因响应盐度变化的表达特征a. 肾脏Atp2b2; b. 肠道Atp2b2. 当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 4  Expression characteristics of Ca2+-transporter during salinity acclimation in Takifugu obscurusa. Kidney Atp2b2; b. Intestine Atp2b2. Significant differences are indicated by **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
图5  暗纹东方鲀${\rm{SO}}_4^{2 - }$离子转运蛋白基因响应盐度变化的表达特征a. 肾脏SLC13A1; b. 肠道SLC13A1; c. 肾脏SLC26A1; d. 肠道SLC26A1.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 5  Expression characteristics of ${\rm{SO}}_4^{2 - }$-transporters during salinity acclimation in Takifugu obscurusa. Kidney SLC13A1; b. Intestine SLC13A1; c. Kidney SLC26A1; d. Intestine SLC26A1. Significant differences are indicated by **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
图6  暗纹东方鲀水通道蛋白基因响应盐度变化的表达特征a. 肾脏AQP1; b. 肠道AQP1; c. 肾脏AQP10; d. 肠道AQP10.当P<0.0001,以****标注;当0.00010.05,不标注. P<0.05为显著性差异;当P>0.05,不具有显著性差异. Fig. 6  Expression characteristics of aquaporins during salinity acclimation in Takifugu obscurusa. Kidney AQP1; b. Intestine AQP1; c. Kidney AQP10; d. Intestine AQP10. Significant differences are indicated by **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. P<0.05 was considered as a significant difference; P>0.05 indicates nonsignificant difference from the control group.
暗纹东方鲀渗透压调节相关基因响应盐度变化的表达特征
刘鑫,梁夏颖,王超宇,高阳,姚云龙,赵哲,史燕,