2. 广东省名特优鱼类生殖调控与繁育工程技术研究中心,广东 湛江 524088
2. Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
盐度可影响鱼类的生长和生理代谢活动等[1],当外界环境盐度发生变化时,鱼体会通过启动相关基因表达、形成相关分子调控信号网络、引起上皮运输和渗透调控因子以及自身器官感知盐度的变化等方式来适应环境应激[2]。研究表明,日本黄姑鱼(Nibea japonica)鳃、肾脏和肌肉都存在响应急性盐度胁迫的反应[3]。盐度胁迫促进尼罗罗非鱼(Oreochromis niloticus)肝脂肪分解作用和脂肪酸的氧化,影响脂肪酸组成和脂代谢过程,并通过体内脂代谢调节适应环境的盐度变化[4]。低盐度胁迫可影响大菱鲆(Scophthalmus maximus)肾组织代谢通路相关基因的表达[5],抑制肝脏代谢酶活性[6]。
盐度是影响鱼类性腺发育和成熟的重要因素[7]。在淡水中,松江鲈(Trachidermis fasciatus)卵巢虽可发育,但不能发育到成熟和排卵[8]。大幅度升高盐度可抑制尼罗罗非鱼和黑头软口鲦(Pimephales promelas)的性腺发育和生殖[9-10];在海水条件下,大马哈鱼(Oncorhynchus keta)的性腺发育缓慢,但进入淡水后其性腺可迅速发育并达到性成熟[11]。在淡水中,鳗鲡(Anguilla japonica)性腺不能完全发育成熟,但经过适当盐度的养殖后,可促进性腺发育成熟并排卵[12]。
金钱鱼(Scatophagus argus)又名金鼓鱼,隶属于鲈形目(Perciformes)、金钱鱼科(Scatophagidae)、金钱鱼属(Scatophagus),是我国南方沿海池塘和网箱养殖的重要种类[13]。金钱鱼存在性腺发育不同步的现象,即雄鱼精巢先成熟,但雌鱼卵泡尚未完全发育成熟[14],其人工繁殖技术尚不完善[15]。金钱鱼为广盐性鱼类,盐度可影响金钱鱼幼鱼的鳃线粒体丰富细胞的形态结构,或增加鳃线粒体丰富细胞数量以适应环境盐度的变化[16]。急性盐度胁迫后,金钱鱼肾脏中生长激素水平显著升高以适应高盐度环境[17];在淡水和高盐胁迫后,金钱鱼幼鱼肝脏中抗氧化酶活性提高以抵抗环境盐度变化产生的氧化应激[18]。已有研究表明,环境盐度可能在金钱鱼的性腺发育和成熟中发挥重要作用,如25盐度下饲养的雌鱼性腺指数(gonadosomatic index, GSI)和血清雌二醇(17β-estradiol, E2)水平显著性高于盐度5和35下的相应指标[19]。但盐度在金钱鱼卵巢发育中的作用及作用机理仍不清楚,盐度胁迫对金钱鱼性腺转录组影响的研究尚未见报道。因此,本研究通过转录组测序技术和实时荧光定量PCR技术(RT-qPCR),挖掘和分析响应盐度胁迫40 d后卵巢中的代谢与生殖相关基因,为阐明金钱鱼对环境盐度的适应性及盐度对金钱鱼生殖调控的作用及作用机理提供理论依据。
1 材料与方法 1.1 实验材料雌性金钱鱼成鱼(体长:18.0~24.0 cm,体重:300.0~450.0 g)的暂养和盐度处理均在广东海洋大学东海岛海洋生物研究基地进行。金钱鱼在盐度为25,温度为27~29 ℃的环境中暂养两周,暂养过程采用自然光周期,每天08:00和16:00投喂商业浮性饲料(总投喂量约为鱼体重的1%)。暂养结束后,将金钱鱼立即随机放入6个水泥池(5.0 m× 4.0 m×3.0 m)中,每池30尾鱼。共设置低盐组(5)、高盐组(35)和对照组(25) 3个盐度处理组,每个盐度处理组设置两个重复。低盐组和对照组使用海水和淡水混合配制,高盐组使用海水和海水晶进行配制。按照与暂养相同的饲养条件,在不同盐度处理40 d后,分别在各盐度组随机挑选3尾鱼采用MS-222麻醉后取卵巢组织于液氮中速冻后置于–80 ℃冰箱中保存,以用于后续总RNA提取、反转录和测序。
1.2 总RNA提取按照RNA iso (TAKARA)试剂盒提取卵巢总RNA,采用Nanodrop 2000超微量核酸蛋白测定仪(Thermo Scientific,美国)检验样品浓度和纯度,利用质量分数1%的琼脂糖凝胶电泳检测RNA的完整性,提取的总RNA置于–80 ℃保存,备用。
1.3 RNA文库构建以及测序用Ribo-ZeroTM磁性试剂盒(Epicentre, Madison, WI, USA)去除总RNA中的rRNA,通过Oligo (dT)磁珠富集法富集真核mRNA。将富集得到的mRNA用Fragmentation Buffer片段化为模板,随机寡核苷酸为引物,在M-MuLV逆转录酶体系中合成cDNA第一条链,随后用RNaseH降解RNA链,并在DNA polymerase I体系下,以dNTPs为原料合成cDNA第二条链。QiaQuick PCR提取试剂盒(Qiagen, Venlo,荷兰)纯化双链cDNA、末端修复、加poly (A)尾并连接到Illumina测序适配器。将获得检测合格的cDNA文库送样到广州基迪奥生物科技有限公司进行HiSeq2500高通量测序。
1.4 转录组的组装和注释为了确保后续用于信息分析的数据质量,利用fastp (版本0.18.0)进一步筛选reads,包括移除包含adapters的reads、接头污染的reads、低质量的reads、含N比例大于10%的未知核苷酸reads以及含有50%以上低质量(Q值≤20) reads。采用HISAT2比对系统[20]将clean reads比对到金钱鱼参考基因组,建立参考基因组的索引后对参考基因组进行注释。
1.5 差异表达基因和通路富集分析利用StringTie软件计算FPKM值,采用DEseq2[21]软件进行差异表达基因(DEGs)分析,以差异倍数|log2(FC)|≥1且P≤0.05作为差异表达基因检测过程中的筛选标准。通过基迪奥在线平台(https://www.omicsmart.com/)对差异表达基因进行GO功能注释和KEGG通路富集分析。
1.6 实时荧光定量PCR利用Primer Premier 5软件设计差异表达基因引物,引物由生工生物工程(上海)股份有限公司合成(表1)。以β-actin为内参基因,采用RT-qPCR对14个差异表达基因进行验证。RT-qPCR根据PerfectStart TM Green qPCR SuperMix试剂盒(北京全式金生物技术有限公司)说明书操作步骤,在实时荧光定量PCR仪(Roche,瑞士)上进行RT-qPCR反应。采用2–∆∆Ct法[22]计算各盐度组间差异表达基因的相对表达量。使用SPSS 25.0软件进行单因素方差分析(P<0.05)。
![]() |
表1 检测金钱鱼卵巢转录组差异表达基因所用引物 Tab. 1 Primers used for verification of DEGs in the ovary transcriptome of Scatophagus argus |
高通量测序结果显示,9个金钱鱼卵巢mRNA转录组库总共获得raw reads数目为398681318, clean reads序列数目为396910398, clean reads比率达到99.4%。测序质量结果显示,所有过滤后转录库Q20均超过97%, Q30则均超过92%, GC含量占比约在51.99%~52.61% (表2)。
![]() |
表2 不同盐度(5, 25和35)暴露下金钱鱼卵巢转录组测序数据的统计汇总结果 Tab. 2 Summary of sequencing data in the ovarian transcriptome of Scatophagus argus under different salinity (5, 25 and 35) exposure |
卵巢组织转录组分析发现,在低盐组相对对照组中有373个DEGs,其中139个DEGs上调,234个DEGs下调;在高盐组相对对照组有874个DEGs,其中142个DEGs上调,732个DEGs下调。以25为对照组,将对比后的DEGs进行韦恩分析(图1),同时在两个比较组中表现的DEGs共有130个,在低盐组相对对照组组中特异性差异的基因有243个,在高盐组相对对照组中特异性差异的基因有744个。
![]() |
图1 不同盐度(5, 25和35)暴露后金钱鱼卵巢转录组中差异表达基因韦恩图 Fig. 1 Venn diagram of DEGs of ovarian transcriptome in Scatophagus argus exposed under different salinity (5, 25 and 35) |
对差异表达基因进行GO功能富集分析,显示共富集到45个GO条目,涉及3个方面:生物学过程(biological process, BP)、分子功能(molecular function, MF)和细胞组分(cellular component, CC),其中BP 20个、MF 9个、CC 16个。生物学过程主要涉及代谢过程、生物调控和发育过程等;分子功能主要涉及催化活性、信号转导活性和分子功能调节等;细胞组分主要涉及细胞组分、细胞以及细胞器等(图2)。
![]() |
图2 不同盐度(5, 25和35)暴露后金钱鱼卵巢中差异表达基因的GO功能富集分析 Fig. 2 GO enrichment analysis of DEGs of ovary in Scatophagus argus under different salinity (5, 25 and 35) exposure |
对差异表达基因进行KEGG富集通路分析,结果显示,低盐组相对对照组共富集到245个通路,差异表达基因显著富集的通路中与代谢相关的有脂肪酸生物合成、半胱氨酸和甲硫氨酸代谢、脂肪酸代谢、皮质醇的合成和分泌、醛固酮的合成和分泌、脂肪细胞脂解的调节以及缬氨酸、亮氨酸和异亮氨酸生物合成(图3a)。高盐组相对对照组共富集到283个通路,其中与生殖调节有关的信号通路只有雌激素信号传导通路(图3b)。
2.4 代谢和生殖相关的差异表达基因的筛选通过富集通路以及参考文献,筛选得到14个与代谢和生殖相关的差异表达基因。其中与代谢相关的差异表达基因有:sds (丝氨酸脱水酶)、atp2b3 (ATP酶质膜钙转运蛋白3)、bhmt (甜菜碱--同型半胱氨酸S-甲基转移酶)、pnpla2 (含2的类patatin磷脂酶结构域);与生殖调节相关的差异表达基因有mmp2 (基质金属肽酶2)、sox9b (SRY盒转录因子9b)、pgr (孕激素核受体)、cyp17a1 (细胞色素P450家族17亚家族A成员1)、esr1 (雌激素受体1)、wt1 (WT1转录因子)、igfbp5 (胰岛素样生长因子结合蛋白5)、igfbp7 (胰岛素样生长因子结合蛋白7)、col17a1 (XVII型胶原蛋白α1链)、fstl1 (卵泡抑素样1)(表3)。
![]() |
图3 金钱鱼卵巢中低盐胁迫(a)和高盐胁迫(b)相对对照组差异表达基因富集的前20条KEGG通路 Fig. 3 Top 20 KEGG enriched pathways of ovarian DEGs in Scatophagus argus in low-salinity vs control group (5 vs 25)(a) and high-salinity vs control group (35 vs 25)(b) |
![]() |
表3 不同盐度(5, 25和35)暴露后金钱鱼卵巢中与代谢和生殖相关的显著差异表达基因 Tab. 3 Significant DEGs related to metabolism and reproduction in ovary of Scatophagus argus under different salinity (5, 25 and 35) exposure |
RT-qPCR和RNA-seq结果显示,低盐组相对对照组金钱鱼卵巢中与代谢相关的基因atp2b3的表达上调,sds、bhmt、pnpla2的表达下调;高盐组相对对照组金钱鱼卵巢中与生殖相关的基因sox9b的表达上调,mmp2、pgr、cyp17a1、esr1、igfbp5、igfbp7、col17a1和fstl1等基因的表达下调。RT-qPCR结果与金钱鱼卵巢组织转录组分析的结果相一致(图4)。
3 讨论 3.1 低盐处理对金钱鱼卵巢中代谢通路和代谢相关基因表达的影响盐度可影响鱼类的生长及其生理功能[23]。水体的盐度变化不仅会影响水产动物机体的渗透压调节,还会影响氨基酸代谢、能量代谢等[24-25]。游离氨基酸对硬骨鱼类的细胞体积变化以及在渗透调节中具有重要作用[24,26]。当环境盐度发生变化时,为适应渗透压,大菱鲆幼鱼可通过新陈代谢途径改变体内氨基酸的含量[27];在环境盐度降低时,三疣梭子蟹(Portunus trituberculatus)血清中的精氨酸和脯氨酸含量降低[28];在环境盐度降低时,在南美蓝对虾(Penaeus stylirostris)中甘氨酸和脯氨酸的含量明显降低[29];中华绒螯蟹(Eriocheir sinensis)肌肉中的精氨酸、脯氨酸和丙氨酸含量随着盐度降低而显著降低[30]。当环境盐度发生变化时,不同物种中游离氨基酸种类的变化并不一致,这些氨基酸在渗透调节中作用的机理尚不清楚。在本研究中,低盐处理40 d后,金钱鱼卵巢转录组中前20个KEGG通路显著富集了多个氨基酸代谢通路,如半胱氨酸和甲硫氨酸代谢,缬氨酸、亮氨酸和异亮氨酸生物合成等多个氨基酸代谢通路。低盐度胁迫时,RT-qPCR和RNA-Seq发现金钱鱼sds、bhmt的表达均显著下调。sds编码与丝氨酸和甘氨酸代谢有关的酶,bhmt编码一种胞质酶,能分别催化甜菜碱和高半胱氨酸向二甲基甘氨酸和蛋氨酸的转化。因而,丝氨酸、甘氨酸以及蛋氨酸代谢的下降可能是金钱鱼卵巢应对低盐度胁迫的一个重要调节方式。然而,氨基酸在金钱鱼卵巢渗透调节中的作用以及氨基酸代谢是否会影响金钱鱼卵巢发育等有待进一步深入研究。
![]() |
图4 实时荧光定量PCR与转录组检测金钱鱼卵巢中不同盐度(5、25和35)暴露后组间差异表达基因差异倍数的比较分析 Fig. 4 Comparison of the fold change expression of putative DEGs between RNA-seq and qRT-PCR in ovary in Scatophagus argus under different salinity (5, 25 and 35) exposure |
当受到环境盐度胁迫时,鱼类细胞内外的离子浓度随水体盐度的变化而变化,为了维持体内正常的渗透压,鱼体需要改变细胞膜中脂肪酸的种类和含量以调整膜的通透性,即鱼类渗透压的调节与脂肪酸代谢有关[31]。在本研究中,低盐处理40 d后,金钱鱼卵巢转录组中前20个KEGG通路中显著富集了多个脂肪酸代谢通路,如脂肪酸生物合成、脂肪酸代谢通路、脂肪细胞脂解的调节、醛固酮的合成和分泌等代谢通路。pnpla2编码甘油三脂脂肪酶,该酶能够特异性地将甘油三酯水解为二酰基甘油并释放游离脂肪酸,pnpla2的突变会导致脂肪的蓄积,使得游离脂肪酸含量下降[32]。低盐胁迫时,金钱鱼pnpla2的表达下调,表明卵巢中脂肪酸含量在低盐处理后可能降低。类似的结果还在其他鱼类的研究中发现,如日本鲈(Lateolabrax japonicus)[33]和欧洲舌齿鲈(Dicentrarchus labrax)[34]在低盐度胁迫时二十碳五烯酸和二十二碳六烯酸水平降低,大菱鲆幼鱼[27]的脂肪酸含量总体随盐度降低而减少。此外,在低盐度胁迫下,金钱鱼卵巢组织中多个脂肪酸代谢通路的大部分基因下调,这些结果表明,金钱鱼可能通过降低卵巢内脂肪酸水平的方式以适应低盐环境。然而,脂肪酸在鱼类卵巢渗透压中的作用,以及其代谢随盐度变化的作用有待进一步的研究。
3.2 高盐处理对金钱鱼卵巢中生殖调节通路和生殖调节相关基因表达的影响性类固醇激素在鱼类性别维持、性腺发育和生长发育中具有重要作用[35]。在本研究中,高盐度处理40 d后,经KEGG分析发现,显著富集的与生殖调节有关的信号通路为雌激素信号传导通路。筛选到与生殖相关的pgr、cyp17a1、esr1、fstl1等基因差异表达基因。孕激素受体pgr主要受特异配体孕激素的调控[36],在斑马鱼(Danio rerio)的研究中发现,pgr的表达下调会影响延迟卵母细胞的成熟以及影响排卵[37]。Cyp17a1参与性类固醇激素的合成[38],在青鳉(Oryzias latipes)卵母细胞生长过程,cyp17a1可促进17β-estradiol (E2)的产生[39]。Cyp17a1基因的突变可导致尼罗罗非鱼中E2的产生显著下降,cyp17a1对于E2的产生是必不可少的[40]。Esr1的敲除会导致性腺发育不全[41]。转录组和RT-qPCR的结果表明,高盐度胁迫后,pgr、cyp17a1、esr1的表达下调。已有研究表明,金钱鱼性腺在淡水或低盐海水中可正常发育,但需要在较高的盐度(25)中才能生殖[42],但高盐度(35)胁迫会降低金钱鱼雌鱼血清中E2的水平[19], Su等[19]研究表明,金钱鱼性类固醇激素含量在盐度25中最高(相较于盐度5和35),在不同海水盐度下卵巢最终都能发育成熟,但在盐度25中的GSI最高,本研究中,高盐度胁迫40 d后,金钱鱼卵巢中pgr、cyp17a1、esr1的表达下调,这表明高盐度的胁迫会降低金钱鱼卵巢中性类固醇激素的合成,可能会延迟卵巢成熟发育时间甚至影响排卵等。但盐度影响鱼类性腺发育和成熟的作用机理仍需进一步的深入研究。
综上所述,低盐度处理主要降低了半胱氨酸和甲硫氨酸代谢、缬氨酸、亮氨酸和异亮氨酸生物合成;降低脂肪酸合成;皮质醇的合成和分泌、醛固酮的合成和分泌、脂肪细胞脂解的调节等代谢通路和下调了氨基酸和脂肪酸代谢相关的基因,丝氨酸、甘氨酸、蛋氨酸和脂肪酸的代谢的下降可能在低渗透压的调节中起重要作用;高盐度处理则显著影响了雌激素信号传导通路和下调了生殖相关基因,高盐胁迫可能抑制了性类固醇激素的合成和延迟卵巢成熟发育时间等。
[1] |
Rhee J S, Kim B M, Seo J S, et al. Cloning of growth hormone, somatolactin, and their receptor mRNAs, their expression in organs, during development, and on salinity stress in the hermaphroditic fish, Kryptolebias marmoratus[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 161(4): 436-442..》Google Scholar
|
[2] |
Ran F X, Jin W J, Huang S, et al. Research progress on the effects of salinity change on fish[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(8): 10-18. [冉凤霞,金文杰,黄屾,等. 盐度变化对鱼类影响的研究进展[J]. 西北农林科技大学学报(自然科学版), 2020, 48(8): 10-18.].》Google Scholar
|
[3] |
Meng W, Xu K D, Li Z H, et al. Transcriptome analysis of Nibea japonica under acute salinity stress[J]. Journal of Fisheries of China, 2021, 45(5): 649-660. [孟玮,徐开达,李振华,等. 急性盐度胁迫对日本黄姑鱼肌肉组织转录组的影响[J]. 水产学报,2021, 45(5): 649-660.].》Google Scholar
|
[4] |
Song L Y, Cheng Y M, Zhao J L. Effects of salinity on the fatty acid composition and the expression of lipid-metabolism- related genes in the liver of Nile tilapia[J]. Journal of Fishery Sciences of China, 2020, 27(8): 859-867. [宋凌元,程亚美,赵金良. 盐度胁迫对尼罗罗非鱼肝脂肪酸组成与脂代谢相关基因表达的影响[J]. 中国水产科学,2020, 27(8): 859-867.].》Google Scholar
|
[5] |
Cui W X. Construction of transcriptome under salinity stress and research of related functional genes on turbot (Scophthalmus maximus)[D]. Shanghai: Shanghai Ocean University, 2017. [崔文晓. 大菱鲆(Scophthalmus maximus)盐度胁迫转录组构建及相关功能基因研究[D]. 上海:上海海洋大学,2017.].》Google Scholar
|
[6] |
Zhang J S. Effects of low-salinity stress on liver metabolizing enzyme and osmoregulation genes expression of turbot (Scophthalmus maximus)[D]. Shanghai: Shanghai Ocean University, 2020. [张金生. 低盐胁迫对大菱鲆肝脏代谢酶和渗透调节基因表达的影响[D]. 上海:上海海洋大学,2020.].》Google Scholar
|
[7] |
Niu J Y, Liu Z C. Study on ecological factors affecting gonad development of fish[J]. Agriculture and Technology, 2016, 36(16): 109. [牛景彦,刘占才. 影响鱼类性腺发育的生态因素研究[J]. 农业与技术,2016, 36(16): 109.].》Google Scholar
|
[8] |
Shao B X, Wang C X, Huang C F. The influence of environmental salinity on the prolactinand gonadotropin- secretory regions in the pituitary of Trachidermus fasciatus[J]. Oceanologia et Limnologia Sinica, 1980, 11(4): 314-319, 378. [邵炳绪,王昌燮,黄翠芳. 环境盐度对松江鲈鱼垂体激素分泌的影响[J]. 海洋与湖沼,1980, 11(4): 314-319, 378.].》Google Scholar
|
[9] |
Schofield P J, Peterson M S, Lowe M R, et al. Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities[J]. Marine and Freshwater Research, 2011, 62(5): 439..》Google Scholar
|
[10] |
Hoover Z, Weisgerber J N, Pollock M S, et al. Sub-lethal increases in salinity affect reproduction in fathead minnows[J]. Science of the Total Environment, 2013, 463-464: 334-339..》Google Scholar
|
[11] |
Choi Y J, Kim N N, Shin H S, et al. The expression of leptin, estrogen receptors, and vitellogenin mRNAs in migrating female chum salmon, Oncorhynchus keta: The effects of hypo-osmotic environmental changes[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(4): 479-487..》Google Scholar
|
[12] |
Zhang S. Study on mechanisms of effect of salinity on gonadal development of cultured Anguilla japonica[D]. Xiamen: Jimei University, 2012. [张森. 盐度影响人工养殖日本鳗鲡性腺发育的机理研究[D]. 厦门:集美大学,2012.].》Google Scholar
|
[13] |
Sun X N, Liu J Y, Feng G P, et al. Advances in reproductive biology of Scatophagus argus[J]. Fisheries Science & Technology Information, 2020, 47(5): 283-288. [孙雪娜,刘鉴毅,冯广朋,等. 金钱鱼繁殖生物学研究进展[J]. 水产科技情报,2020, 47(5): 283-288.].》Google Scholar
|
[14] |
Lan G B, Yan B, Liao S M, et al. Biology of spotted scat Scatophagus argus: A review[J]. Fisheries Science, 2005, 24(7): 39-41. [兰国宝,阎冰,廖思明,等. 金钱鱼生物学研究及回顾[J]. 水产科学,2005, 24(7): 39-41.].》Google Scholar
|
[15] |
Yang W, Chen H P, Jiang D N, et al. An overview on biology and artificial propagation and culture in the spotted scat Scatophagus argus[J]. Journal of Biology, 2018, 35(5): 104-108. [杨尉,陈华谱,江东能,等. 金钱鱼生物学及繁养殖技术研究进展[J]. 生物学杂志,2018, 35(5): 104-108.].》Google Scholar
|
[16] |
Liu J Y, Yu Y F, Feng G P, et al. Effects of different salinities on the structure of gill mitochondria-rich cells of juvenile Scatophagus argus[J]. Marine Fisheries, 2022, 44(2): 209-218. [刘鉴毅,余焱方,冯广朋,等. 不同盐度水平对金钱鱼幼鱼鳃线粒体丰富细胞结构的影响[J]. 海洋渔业,2022, 44(2): 209-218.].》Google Scholar
|
[17] |
Mu X J, Su M L, Gui L, et al. Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus)[J]. General and Comparative Endocrinology, 2015, 215: 25-35..》Google Scholar
|
[18] |
Liu Y S, Xu J B, Shi Y H, et al. Effects of salinity on digestive enzyme and antioxidant enzyme activities of juvenile mackerel[J]. Fisheries Science & Technology Information, 2020, 47(4): 181-185. [刘永士,徐嘉波,施永海,等. 盐度对金钱鱼幼鱼消化酶和抗氧化酶活性的影响[J]. 水产科技情报,2020, 47(4): 181-185.].》Google Scholar
|
[19] |
Su M L, Duan Z Y, Shi H W, et al. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions[J]. Aquaculture Research, 2019, 50(7): 1782-1794..》Google Scholar
|
[20] |
Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360..》Google Scholar
|
[21] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550..》Google Scholar
|
[22] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
|
[23] |
Zhu K C, Song L, Guo H Y, et al. Identification of fatty acid desaturase 6 in golden pompano Trachinotus ovatus (Linnaeus 1758) and its regulation by the PPARαb transcription factor[J]. International Journal of Molecular Sciences, 2018, 20(1): 23..》Google Scholar
|
[24] |
Zhang W X, Pan X, Shen X Q, et al. Effects of salinity stress on anscription and expression in juvenile Hippocampus kuda bleeker[J]. Acta Hydrobiologica Sinica, 2021, 45(5): 995- 1004. [张文馨,潘霞,沈锡权,等. 盐度胁迫对幼体大海马基因转录表达的影响[J]. 水生生物学报,2021, 45(5): 995-1004.].》Google Scholar
|
[25] |
Huang G Q, Zhang L Y, Li J, et al. Effects of salinity acclimatization on the osmoregulation and energy metabolism of brown flounder (Paralichthys olivaceus)[J]. Periodical of Ocean University of China, 2013, 43(5): 44-51. [黄国强,张灵燕,李洁,等. 盐度驯化对褐牙鲆幼鱼渗透压调节和能量代谢的影响[J]. 中国海洋大学学报(自然科学版), 2013, 43(5): 44-51.].》Google Scholar
|
[26] |
Liu L, Chen C, Li Y L, et al. Effects of short-term salinity stress on antioxidant and digestive physiology of hybrid progeny(Cromilepptes altivelis ♀ × Epinephelus lanceolatus ♂)[J]. Marine Sciences, 2018, 42(2): 78-87. [刘玲,陈超,李炎璐,等. 短期低盐度胁迫对驼背鲈(♀)×鞍带石斑鱼(♂)杂交子代幼鱼抗氧化及消化生理的影响[J]. 海洋科学,2018, 42(2): 78-87.].》Google Scholar
|
[27] |
Zeng L, Lei J L, Liu B, et al. Effects of salinities on muscle amino acid and fatty acid composition of juvenile turbot (Scophthalmus maximus)[J]. Marine Sciences, 2014, 38(12): 40-47. [曾霖,雷霁霖,刘滨,等. 盐度对大菱鲆幼鱼肌肉氨基酸和脂肪酸组成的影响[J]. 海洋科学,2014, 38(12): 40-47.].》Google Scholar
|
[28] |
Long X W, Wu R F, Hou W J, et al. Effects of water salinity on the growth, ovarian development, osmoregulation, metabolism and antioxidant capacity of adult female swimming crab(Portunus trituberculatus)[J]. Journal of Fisheries of China, 2019, 43(8): 1768-1780. [龙晓文,吴仁福,侯文杰,等. 水体盐度对雌性三疣梭子蟹生长、卵巢发育、渗透压调节、代谢和抗氧化能力的影响[J]. 水产学报,2019, 43(8): 1768-1780.].》Google Scholar
|
[29] |
Cobb B F 3rd, Conte F S, Edwards M A. Free amino acids and osmoregulation in penaeid shrimp[J]. Journal of Agricultural and Food Chemistry, 1975, 23(6): 1172-1174..》Google Scholar
|
[30] |
Wang Y R, Li E C, Yu N, et al. Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis[J]. PLoS One, 2012, 7(5): e37316..》Google Scholar
|
[31] |
Xie D Z, Wang S Q, You C H, et al. Influencing factors and mechanisms on HUFA biosynthesis in teleosts[J]. Journal of Fishery Sciences of China, 2013, 20(2): 456-466. [谢帝芝,王树启,游翠红,等. 鱼类高度不饱和脂肪酸合成的影响因素及其机理[J]. 中国水产科学,2013, 20(2): 456-466.].》Google Scholar
|
[32] |
Han S L. The interaction between lipophagy and lipolysis in regulation of lipid metabolism in fish[D]. Shanghai: East China Normal University, 2021. [韩思兰. 鱼类脂滴自噬与脂滴水解在脂代谢调控中的互作机制研究[D]. 上海:华东师范大学,2021.].》Google Scholar
|
[33] |
Xu J, Yan B L, Teng Y J, et al. Analysis of nutrient composition and fatty acid profiles of Japanese Sea bass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater[J]. Journal of Food Composition and Analysis, 2010, 23(5): 401-405..》Google Scholar
|
[34] |
Hunt A Ö, Özkan F, Engin K, et al. The effects of freshwater rearing on the whole body and muscle tissue fatty acid profile of the European sea bass (Dicentrarchus labrax)[J]. Aquaculture International, 2011, 19(1): 51-61..》Google Scholar
|
[35] |
Wang J L, Yang Y M, Yang Q, et al. Effects of sex steroid hormones(estradiol and testosterone) on growth traits of female, male and pseduo-male Chinese tongue sole(Cynoglossus semilaevis)[J]. South China Fisheries Science, 2021, 17(4): 27-34. [王佳林,杨英明,杨倩,等. 性类固醇激素雌二醇、睾酮对半滑舌鳎雌、雄、伪雄鱼生长性能的影响[J]. 南方水产科学,2021, 17(4): 27-34.].》Google Scholar
|
[36] |
Shi H J, Ru X Y, Liu Y Q, et al. Transcriptomic analysis of hypothalamus in female Scatophagus argus after 17β-estradiol injection[J]. Journal of Guangdong Ocean University, 2021, 41(2): 76-85. [石红娟,茹笑影,刘玉琪,等. 17β-雌二醇注射雌性金钱鱼下丘脑转录组分析[J]. 广东海洋大学学报,2021, 41(2): 76-85.].》Google Scholar
|
[37] |
Wu X J, Zhu Y. Downregulation of nuclear progestin receptor (Pgr) and subfertility in double knockouts of progestin receptor membrane component 1 (pgrmc1) and pgrmc2 in zebrafish[J]. General and Comparative Endocrinology, 2020, 285: 113275..》Google Scholar
|
[38] |
Zhai Y, Liu J Y, Jia L Y, et al. Cloning, tissue distribution and expression of cyp17a1 at different ovarian development stages in spotted scat (Scatophagus argus)[J]. Journal of Guangdong Ocean University, 2018, 38(5): 1-7. [翟毅,刘建业,贾丽英,等. 金钱鱼cyp17a1基因克隆、组织分布及在卵巢发育中的表达[J]. 广东海洋大学学报,2018, 38(5): 1-7.].》Google Scholar
|
[39] |
Zhou L Y, Wang D S, Shibata Y, et al. Characterization, expression and transcriptional regulation of P450c17-I and-II in the medaka, Oryzias latipes[J]. Biochemical and Biophysical Research Communications, 2007, 362(3): 619-625..》Google Scholar
|
[40] |
Yang L Y, Zhang X F, Liu S J, et al. Cyp17a1 is required for female sex determination and male fertility by regulating sex steroid biosynthesis in fish[J]. Endocrinology, 2021, 162(12): bqab205..》Google Scholar
|
[41] |
Couse J F, Yates M M, Deroo B J, et al. Estrogen receptor-β is critical to granulosa cell differentiation and the ovulatory response to gonadotropins[J]. Endocrinology, 2005, 146(8): 3247-3262..》Google Scholar
|
[42] |
Cai Z P, Wang Y, Hu J W, et al. Reproductive biology of Scatophagus argus and artificial induction of spawning[J]. Journal of Tropical Oceanography, 2010, 29(5): 180-185. [蔡泽平,王毅,胡家玮,等. 金钱鱼繁殖生物学及诱导产卵试验[J]. 热带海洋学报,2010, 29(5): 180-185.].》Google Scholar
|