2. 诺伟司国际贸易(上海)有限公司,上海 200080
2. Novus International Trading (SHANGHAI) Co., Ltd, Shanghai 200080, China
20世纪70年代以来全球水产养殖规模迅速扩大,投饵养殖在水产养殖产量中的比例逐年增加[1],水产饲料蛋白源短缺和环境污染问题日益突出。鱼粉是水产饲料配方中常用的优质蛋白源,每年世界鱼粉产量的70%以上用于生产水产饲料[1]。降低水产饲料,特别是肉食性鱼类饲料中的鱼粉含量是过去40多年水产养殖研究的重要问题[2-3]。现已证明通过合理使用一些陆生动物或植物蛋白原料,如豆粕[4]、鸡肉粉[5]、大豆浓缩蛋白[6]和棉粕[7]等可在一定程度上降低饲料鱼粉含量而不会导致鱼生长速度减慢。然而,当利用羽毛粉作为替代蛋白源时则往往导致鱼生长和饲料利用效率明显下降[8-10]。与鱼粉和鸡肉粉相比,羽毛粉蛋白质含量高,富含缬氨酸、精氨酸、亮氨酸和异亮氨酸等必需氨基酸以及甘氨酸和脯氨酸等功能性氨基酸,是一种性价比较高的蛋白原料[8,11-14]。然而,羽毛粉缺乏蛋氨酸和赖氨酸,其蛋白质主要为角蛋白(包括41%的α角蛋白和38%的β角蛋白与非定形角蛋白),其中α角蛋白和β角蛋白通过二硫键紧密交联形成稳定、疏水性的超螺旋多肽链,难以被胰蛋白酶和胃蛋白酶降解[12-14]。Wang等[8]报道利用水解羽毛粉替代鮸状黄姑鱼(Nibea miichthioides)饲料鱼粉的水平明显低于鸡肉粉和肉骨粉的替代水平。
Zhang等[15]发现经γ射线辐照的豆粕比未辐照的豆粕能够替代花鲈(Lateolabrax japonicus)饲料中更多的鱼粉,Wu等[16-17]认为γ射线辐照可使豆粕和大豆浓缩蛋白中的一部分大分子蛋白转化为小分子蛋白。Ebrahimi-Mahmoudabad等[18]认为辐照可去除豆粕、棉粕和菜粕中的抗营养因子。Ren等[9-10]报道经γ射线辐照的水解羽毛粉比未辐照的水解羽毛粉能够替代大口黑鲈(Micropterus salmoides)和卵形鲳鲹(Trachinotus ovatus)饲料中更多的鱼粉,这意味着γ射线辐照可能是改善羽毛粉在水产饲料中利用效果的有效途径。蛋白酶可在特定位点切割肽链而将蛋白质降解成小分子的肽或氨基酸,故一般认为添加外源蛋白酶有益于改善鱼类对饲料蛋白质的利用[19],但已有的研究结论尚未达成一致。一些研究指出在基于豆粕配方的大西洋鲑(Salmo salar)饲料中添加蛋白酶可显著提高鱼的生产性能和食物利用效率[20];在银鲫(Carassius auratus gibelio)饲料中添加蛋白酶可降低饲料系数,提高饲料磷的贮积效率[21-22];在基于豌豆和菜籽配方的虹鳟(Oncorhynchus mykiss)饲料中添加蛋白酶可提高蛋白质消化率[23]。然而,也有研究表明添加外源蛋白酶未对虹鳟饲料蛋白质消化率以及鱼的生长和饲料系数产生明显的正面影响[24-25]。细菌、放线菌和真菌等微生物可分泌角蛋白酶[12-14]。Lin等[26]确定了从地衣芽孢杆菌(Bacillus licheniformis) PWD-1中分离出的角蛋白酶的基因序列,在此基础上通过微生物发酵实现角蛋白酶的商业化生产。DP-100是一种角蛋白酶商业产品,在饲料中添加DP-100可改善猪的生产性能[27]和肉鸡对植物蛋白原料的利用[28],但其在水产饲料中应用的研究报道尚不多见[29]。
大黄鱼(Larimichthys crocea)属石首鱼科、黄鱼属,为暖温、洄游性、肉食性鱼类。我国大黄鱼人工养殖始于20世纪90年代,2020年国内养殖产量达到22.45万t,居海水鱼类养殖产量之首[30]。Duan等[31]报道初始体重为0.6 g的大黄鱼最适饲料蛋白质和脂肪水平分别为47%和11%,随后围绕大黄鱼营养[32-38]和饲料[39-48]开展了大量的研究,认为将饲料蛋白水平从50%降低至45%不会导致鱼类生长速度减慢[36],而利用肉骨粉、豆粕、花生粕、菜粕、鸡肉粉、虾壳粉、磷虾粉、玉米蛋白粉等可部分替代大黄鱼饲料中的鱼粉[39-44,46-47],利用大豆浓缩蛋白或谷朊粉甚至可完全替代饲料鱼粉[45,48]。然而,迄今养殖生产中仍未实现完全利用配合饲料全过程养殖大黄鱼。最近,Chen等[49]报道大黄鱼最适饲料蛋白质水平为49%~52%,指出以往研究[31,36]和现行配合饲料国家标准[50]均明显低估了大黄鱼饲料蛋白水平。鉴于饲料蛋白水平可影响饲料鱼粉替代水平[51],而已发表的饲料鱼粉替代研究[39-48]中所采用的实验饲料蛋白水平明显低于大黄鱼最适饲料蛋白水平[49],因此有必要对已有结果进行重新评价或验证。本研究报道了在最适饲料蛋白质水平下利用羽毛粉替代饲料鱼粉对大黄鱼摄食、生长、食物利用、鱼体组成和养殖废物排放的影响,并评价了添加DP-100和γ射线辐照对改善羽毛粉替代鱼粉的效果,以明确羽毛粉作为大黄鱼饲料蛋白源的可行性和应用潜力。
1 材料与方法 1.1 实验设计和饲料采用2×2实验设计。以含50%粗蛋白和35%鱼粉的饲料BD为基础饲料,按等蛋白替代原则利用水解羽毛粉替代饲料BD中30%的鱼粉(饲料I0E0)。在饲料I0E0中,分别添加1%的DP-100 (饲料I0E1);或用γ射线辐照羽毛粉替代水解羽毛粉(饲料I1E0);或同时添加1%的DP-100和用γ射线辐照羽毛粉替代水解羽毛粉(饲料I1E1)。所用水解羽毛粉由美国峡谷蛋白公司(Vally Proteins)生产,其他饲料原料,如超级蒸汽鱼粉、去皮豆粕、宠物级鸡肉粉、血球蛋白粉、玉米蛋白粉、谷朊粉、高筋面粉和鱼油等购自浙江省德清县鸿利饲料有限公司(湖州,浙江)。饲料原料营养组成见表1。角蛋白酶DP-100 (酶活≥600000 U/g)由诺伟司国际公司(上海)提供;利用佳翔辐照技术有限公司(杭州,浙江)的SQ(G)-852钴(Co)放射源完成羽毛粉的γ射线辐照(辐照剂量为15 kGy[17])处理。
![]() |
表1 饲料原料营养组成 Tab. 1 Proximate composition of feed ingredients % |
将饲料原料用高速粉碎机粉碎并过80目筛。根据所设计的实验饲料配方依次称重各原料并将其混合均匀(最后加入鱼油)。将手工混匀的饲料原料转入搅拌机中,加入少量的水混合10 min。利用中国水产科学研究院渔业机械研究所设计并生产的SLP-45小型单螺杆饲料膨化机制成直径为3 mm、长度为5 mm的饲料颗粒。待饲料在室温下风干后,将其收集、过筛并分装入密封塑料袋内。饲料使用前储存在冰箱(–20 ℃)中。实验饲料配方和营养组成见表2。
1.2 实验鱼和饲养实验2021年7—10月在舟山市登步岛优辰水产养殖专业合作社(舟山,浙江)进行饲养实验。所用大黄鱼幼鱼购自位于朱家尖的一家海水鱼类养殖场,用活水船运至实验地点并在3 m×3 m×3 m的生产网箱内暂养1个月,暂养期间每天分两次投喂由浙江大学水域生态系统与水产养殖实验室配方、德清县鸿利饲料有限公司生产的大黄鱼配合饲料(粗蛋白和粗脂肪含量分别50%和10%)。选择1200尾个体大小相近、体表无伤的鱼,按每口网箱60尾鱼的密度驯养在20口实验网箱(1 m× 1 m×2 m)中。驯养时间为2周,其间每天5:00和17:00投喂基础饲料BD。
实验开始时先将驯养的鱼停喂24 h。每次捕捞40尾鱼,群体称重后随机放入15口实验网箱中,每种实验饲料设3个重复。实验鱼初始体重为(19.7±0.2) g ($\bar x{\rm{ \pm SD}}$, n=15)。放养完成后从剩余的驯养鱼中取3组鱼(每组7尾),测量体长、体重、肝脏重和内脏团重后保存在冰箱(–20 ℃)中作为分析鱼体初始组成的样品。
饲养实验时间为10周,期间每天5:00和17:00按饱食量投喂实验饲料。DP-100保存在冰箱(4 ℃)中。每天早晨称重所需的DP-100以及饲料I0E0和I1E0。将DP-100溶解在纯净水中,然后将定量的DP-100均匀喷洒在饲料I0E0和I1E0并拌匀以制备I0E1和I1E1。同时,在等重量饲料BD、I0E0和I1E0上喷洒等量的纯净水。每天早、晚测定网箱内的水温和盐度。实验期间水温变化范围为19.8~27.1 ℃ (25.9±0.2 ℃, $\bar x{\rm{ \pm SD}}$, n=70);盐度变化范围为29~30 (29.8±0.1, $\bar x{\rm{ \pm SD}}$, n=70)。饲养实验结束时将鱼停喂24 h,然后依次从每个网箱中将鱼捕出并群体称重。从每个网箱取3尾鱼,测量体重、体长、肝脏重和内脏团重量后将其保存在–20 ℃下作为分析实验结束时鱼体组成的样品。
1.3 化学分析实验鱼样品分析前先在室温下化冻、称重,然后放入高压灭菌锅内蒸煮20 min (120 ℃)。将蒸煮后的样品用食品搅拌机打成鱼浆,放入烘箱内(105 ℃)烘干。分别用小型高速粉碎机将烘干的饲料原料、饲料和实验鱼样品粉碎并过40目筛。按照AOAC方法[52]分析水分、粗蛋白、粗脂肪、灰分和能量含量。其中,粗蛋白用Foss-8400全自动凯氏定氮仪(FOSS,瑞典)测定;粗脂肪用SZF-06A粗脂肪分析仪(上海新嘉电子有限公司,中国)测定;总能用Parr-6200氧弹仪(Parr,美国)测定。
![]() |
表2 实验饲料配方和营养组成 Tab. 2 Formulation and proximate composition of test diets % |
摄食率(FI)、增重(WG)、饲料系数(FCR)、营养物质(氮:NRE;磷:PRE)或能量(ERE)贮积效率、肥满度(CF)、肝体比(HSI)、脏体比(VSI)、养殖废物排放量(氮:NW;磷:PW)和单位鱼产量鱼粉消耗量(RCP)按下列公式计算:
FI(%/d)=100×[I/(Nt+N0)/2]/[t×(W0/N0+Wt/Nt)/2]
WG(g)=Wt/Nt–W0/N0
FCR=I/(Wt–W0+Wd)
NRE(%)=100×(Wt/Nt×CNt–W0/N0×CN0)/2×I/(Nt+N0)×CNf]
PRE(%)=100×(Wt/Nt×CPt–W0/N0×CP0)/2×I/(Nt+N0)×CPf]
ERE(%)=100×(Wt/Nt×CEt–W0/N0×CE0)/2×I/(Nt+N0)×CEf]
CF(g/cm3)=100×Ws/Ls3
HSI(%)=100×WL/Ws
VSI(%)=100×WV/Ws
NW[g N/kg鱼产量]=1000×[2×I/(Nt+N0)× CNf/6.25]×(1–NRE)/(Wt/Nt–W0/N0)
PW[g P/kg鱼产量]=1000×[2×I/(Nt+N0)×CPf]× (1–PRE)/(Wt/Nt–W0/N0)
RCP[g鱼粉/g鱼产量]=[2×I/(Nt+N0)×FL]/(Wt / Nt×DMFt–W0/N0×DMF0)
式中,I(g)为每个网箱内投喂的饲料质量;W0(g)和Wt(g)分别为实验开始和结束时网箱内实验鱼体重;N0(g)和Nt(g)分别为实验开始和结束时网箱内实验鱼尾数;t(d)为实验时间;Wd(g)为网箱内的死鱼重量;CN0(%)和CNt(%)分别为实验开始和结束时鱼体的粗蛋白含量;CP0(%)和CPt(%)分别为实验开始和结束时鱼体的磷含量;CE0(KJ/g)和CEt(KJ/g)分别为实验开始和结束时鱼体的总能含量;CNf(%)、CPf(%)和CEf(KJ/g)分别为饲料的粗蛋白、磷和总能含量;Ws(g)、Ls(cm)、WL(g)和WV(g)分别为实验开始和结束时所取样品鱼的体重、体长、肝重和内脏团重;FL(%)为饲料中鱼粉的干物质含量;DMF0(%)和DMFt(%)分别为实验开始和结束时鱼体的干物质含量。
将表示为百分数的数据进行反正弦变换,然后对所有数据进行方差齐性(Levene’s test)和正态分布(Kolmogorov-Smirnov test)检验。采用双因素方差分析(two-way ANOVA)方法检验添加DP-100、用辐照羽毛粉替代水解羽毛粉以及二者交互作用对增重、摄食率、饲料系数、饲料营养物质和能量贮积效率、肥满度、肝体比、脏体比、鱼体组成、单位鱼产量饲料鱼粉消耗量和养殖废物排放量的影响,若处理效应显著,采用邓肯检验(Duncan’s test)进一步比较添加DP-100或用辐照羽毛粉替代水解羽毛粉的影响。采用邓尼特检验(Dunnett test)比较基础饲料(BD)和低鱼粉饲料(I0E0、I1E0、I0E1和I1E1)之间上述指标的差异。基于增重、饲料系数、RCP和NW进行聚类分析比较不同饲料的养殖生产性能。利用SPSS 25.0软件完成方差分析、邓尼特检验和聚类分析,取P<0.05为差异显著性水平。
2 结果与分析 2.1 成活率、摄食、生长和饲料利用效率实验期间,摄食饲料BD、I0E0、I1E0、I0E1和I1E1的鱼成活率分别为(85±11)%、(66±16)%、(76±5)%、(78±8)%和(89±2)%。从表3可见,添加DP-100显著影响实验鱼的终体重(FBW)、WG和FI (P<0.05),但未导致FCR、NRE、PRE和ERE发生显著变化(P>0.05)。以辐照羽毛粉替代水解羽毛粉及其与添加1% DP-100的交互作用对FBW、WG、FI、FCR、NRE、PRE和ERE无显著影响(P>0.05)。摄食含1% DP-100的低鱼粉饲料(I0E1和I1E1)的鱼FI、FBW和WG高于摄食未添加DP-100的低鱼粉饲料(I0E0和I1E0)的鱼(P<0.05)。摄食饲料BD鱼的FBW和WG与摄食饲料I0E1和I1E1的鱼无显著差异(P>0.05),但显著高于摄食饲料I0E0和I1E0的鱼(P<0.05)。摄食饲料BD鱼的FI低于摄食饲料I0E1的鱼(P<0.05),但与摄食饲料I0E0、I1E0和I1E1的鱼无显著差异(P>0.05)。摄食饲料BD的鱼与摄食饲料I0E1、I1E0、I0E0和I1E1的鱼在FCR、NRE、PRE和ERE方面无显著差异(P>0.05)。
2.2 肥满度、HSI、VSI和鱼体组成从表4可见,添加1% DP-100、用辐照羽毛粉替代水解羽毛粉以及二者间的交互作用对肥满度、HSI、VSI和鱼体组成(水分、粗蛋白、粗脂肪、灰分和能量含量)无显著影响(P>0.05)。摄食饲料BD的鱼与摄食饲料I0E0、I1E0、I0E1和I1E1的鱼在肥满度、HSI、VSI和鱼体组成方面无显著差异(P>0.05)。
2.3 饲料鱼粉消耗、养殖废物排放量和养殖生产性能从表5可见,添加1% DP-100、用辐照羽毛粉替代水解羽毛粉以及二者间的交互作用对RCP、NW和PW无显著影响(P>0.05)。摄食饲料BD的鱼RCP显著高于摄食饲料I0E0、I1E0、I0E1和I1E1的鱼(P<0.05),但其NW和PW与后者无显著差异(P>0.05)。从图1可见,饲料I1E1的养殖生产性能接近饲料I0E1,而饲料I0E0的养殖生产性能接近饲料I1E0。与饲料BD相比,饲料I0E1和I1E1的养殖生产性能与饲料I0E0和I1E0较为接近。
![]() |
表3 不同饲料组大黄鱼摄食、生长和饲料利用效率 Tab. 3 Feed intake, growth and feed utilization efficiencies of Larimichthys crocea fed with different test diets n=3; $\bar x{\rm{ \pm SD}}$ |
![]() |
表4 不同饲料组大黄鱼肥满度、肝体比、脏体比和鱼体组成 Tab. 4 Condition factor, hepatosomatic index, viscerosomatic index and body composition of Larimichthys crocea in different diet groups n=3; $\bar x{\rm{ \pm SD}}$ |
![]() |
表5 不同饲料组大黄鱼饲料鱼粉消耗量和养殖废物排放量 Tab. 5 Fish meal consumption and waste outputs of Larimichthys crocea in different diet groups n=3; $\bar x{\rm{ \pm SD}}$ |
目前,通常以“对照饲料中鱼粉可被其他原料所代替的最大百分比”来表示饲料鱼粉能够被替代的水平[39-48]。然而,当对照饲料中鱼粉含量偏高时,往往出现可被替代的鱼粉百分比和饲料鱼粉绝对含量均较高的现象,即饲料鱼粉可替代水平会因对照组鱼粉含量偏高而被高估,因此Wang等[8]建议用添加替代原料后能够实现的最低饲料鱼粉含量来反映某种原料替代鱼粉的潜力。此外,在鱼类饲养实验中,不同处理组间的生长差异是否显著,既取决于组间的生长差异,又取决于同一处理组内不同重复间的生长差异。当同一处理组内不同重复间的生长差异较大时,往往会掩盖不同处理组间的生长差异。鱼类养殖产量等于个体平均增重、放养密度和成活率三者的乘积,当养殖密度(放养密度和成活率的乘积)较大时,较小的个体生长差异就会导致较大的养殖产量和效益方面的差异。根据鱼类养殖生产的实际情况,本研究设大黄鱼个体生长变化的阈值为10%,当摄食基础饲料和低鱼粉饲料的鱼个体生长差异超过10%后,即使二者个体生长差异在统计学上不显著,仍判定二者间生长存在差异。
![]() |
图1 不同饲料组大黄鱼养殖生产性能BD为基础饲料,饲料I0E0为用水解羽毛粉替代BD中30%的鱼粉,饲料I0E1为在饲料I0E0中添加1%的DP-100,饲料I1E0为用辐照羽毛粉替代I0E0中的水解羽毛粉,饲料I1E1为同时添加1%的DP-100和用辐照羽毛粉替代水解羽毛粉. Fig. 1 Production performance of Larimichthys crocea fed different kinds of mealNote: BD is the basal diet; I0E0 is the diet formuated by replacing 30% of fish meal in BD with feather meal; I0E1 is the diet formulated by adding 1% DP-100 in I0E0; I1E0 is the diet formuated by replacing feather meal in I0E0 with irradiated feather meal; I1E1 is the diet formulated by adding 1% DP-100 and replacing fetaher meal with irradiated feather meal in combination in I0E0. |
以往研究指出,利用肉骨粉[39]、虾壳粉[42]、玉米蛋白粉[43]、磷虾粉[44]和发酵豆粕[47]作为替代原料时,可将大黄鱼饲料中的鱼粉含量分别降低至30%、28%、10%、10%和22%,部分研究认为利用大豆浓缩蛋白[45]和谷朊粉[46]可完全替代饲料鱼粉。本研究中,摄食饲料BD鱼的WG显著高于摄食饲料I0E0和I1E0的鱼(P<0.05),但与摄食饲料I0E1和I1E1的鱼无显著差异(P>0.05);与摄食饲料BD的鱼相比,摄食饲料I0E1和I1E1的鱼WG分别下降了6.4%和7.5%,但低于允许的个体生长变化阈值(10%)。根据上述结果,认为直接添加水解羽毛粉或γ射线辐照羽毛粉不能将大黄鱼饲料鱼粉含量降低至24.5%,而结合添加1%的DP-100可将饲料鱼粉含量降低至这一水平。相比之下,利用γ射线辐照羽毛粉作为替代原料时可将大口黑鲈[9]和卵形鲳鲹[10]饲料鱼粉含量分别降低至18%和20%。因此,初步认为利用羽毛粉可替代大黄鱼饲料鱼粉的水平低于利用羽毛粉替代大口黑鲈和卵形鲳鲹饲料鱼粉的水平。
3.2 添加DP-100和γ射线辐照处理改善大黄鱼对饲料中羽毛粉利用的效果有关外源蛋白酶改善鱼类对羽毛粉利用效果的研究尚未见报道。本研究中,添加1%的DP-100均明显改善了鱼的生长,表明DP-100对改善大黄鱼利用饲料中的羽毛粉(水解羽毛粉或γ射线辐照羽毛粉)具有正面的影响。根据这一结果,初步推测添加角蛋白酶DP-100有益于提高利用羽毛粉替代大黄鱼饲料鱼粉的水平。
对鮸状黄姑鱼的研究结果表明,导致鱼类生长速度减慢的饲料羽毛粉含量明显低于饲料鸡肉粉和肉骨粉含量[8],甚至低于饲料豆粕含量[4],表明在饲料中添加少量的羽毛粉便有可能对鱼的生长产生明显的负面影响。不同鱼类种类饲料中可添加的羽毛粉最高含量不同。例如,在饲料中添加3.5%的水解羽毛粉即可导致鮸状黄姑鱼生长速度明显下降[8],而在大口黑鲈[9]、点带石斑鱼[11]、虹鳟[53]、欧洲舌齿鲈(Dicentrarchus labrax)[54]、日本黄姑鱼(Nibea japonica)[55]饲料中分别添加5.3%、9.4%、15%、12.5%和5.9%的水解羽毛粉不会对鱼的生长产生明显的负面影响。与水解羽毛粉相比,γ射线辐照羽毛粉可替代大口黑鲈[9]和卵性鲳鲹[10]饲料中更多的饲料鱼粉[9-10]。本研究中,利用γ射线辐照羽毛粉替代水解羽毛粉未明显改善大黄鱼的生长,这一结果与针对大口黑鲈[9]和卵形鲳鲹[10]的研究结论不一致,初步分析与本研究中所使用的辐照羽毛粉在辐照处理后放置了较长的时间有关,具体原因和机理有待进一步探讨。
3.3 利用羽毛粉替代饲料鱼粉对大黄鱼饲料利用效率的影响本研究中,摄食饲料BD鱼的FI低于摄食饲料I0E1的鱼,但其FCR、NRE和PRE与摄食饲料I0E0、I1E0、I0E1和I1E1的鱼无显著差异;摄食饲料I0E1和I1E1的鱼FI和WG均高于摄食饲料I0E0和I1E0的鱼。这些结果表明,无论是利用水解羽毛粉还是γ射线辐照羽毛粉替代饲料鱼粉,均不会显著降低大黄鱼的摄食量,但会导致其FCR升高。在低鱼粉饲料中添加1%的DP-100能够提高鱼的摄食量和生长速度,究竟是通过促进大黄鱼摄食进而促进了生长,还是通过促进大黄鱼生长进而增加食欲尚难确定。Wang等[5]报道利用羽毛粉替代鮸状黄姑鱼饲料鱼粉会导致FCR升高。本研究中,摄食饲料BD的鱼FCR略低于摄食饲料I0E0、I1E0、I0E1和I1E1的鱼,但与后者无显著差异。这一结果与对鮸状黄姑鱼研究的结论趋于一致。以往研究报道摄食高鱼粉饲料(对照饲料)的大黄鱼(初始体重为8.0~15.9 g) FI为1.14%~2.67% BW/d, FCR为0.89~1.74[43,45,47,56-59]。本研究中,摄食饲料BD的鱼FI为1.69% BW/d, FCR为1.10,在已报道的大黄鱼FI和FCR[43,45,47,56-59]范围内,表明实验鱼摄食正常。
3.4 利用羽毛粉替代饲料鱼粉对大黄鱼形态和组成的影响本研究中,摄食饲料BD的鱼与摄食饲料I0E0、I1E0、I0E1和I1E1的鱼在肥满度、HSI、VSI以及全鱼粗蛋白、粗脂肪、灰分和能量含量方面无显著差异,表明利用水解羽毛粉或γ射线辐照羽毛粉替代饲料鱼粉不会导致大黄鱼肥满度、HSI、VSI和鱼体营养物质组成发生明显变化。对鮸状黄姑鱼[8]、点带石斑鱼[11]、大口黑鲈[9]、虹鳟[53]和欧洲舌齿鲈[54]的研究结果表明利用水解羽毛粉替代饲料鱼粉不会显著影响鱼体的营养物质组成,但Ren等[10]报道利用γ射线辐照羽毛粉替代饲料鱼粉导致卵性鲳鲹鱼体蛋白质含量下降。结合已有研究结果,初步认为在饲料中添加羽毛粉不会对大黄鱼外形、肝脏和内脏组织大小以及鱼体营养组成产生负面的影响。
3.5 利用羽毛粉替代饲料鱼粉对大黄鱼养殖产业可持续发展的影响随着投饵养殖规模的不断扩大,鱼类养殖产业对鱼粉的依赖性和对环境的影响不断增加,其发展的可持续性受到广泛关注[1]。水产养殖对鱼粉的依赖性可用单位鱼产量的鱼粉消耗量(RCP)来评价,对环境的影响可用养殖废物排放量来评价[5]。对花鲈[5,15]、卵性鲳鲹[6,60]、日本黄姑鱼[55]和大口黑鲈[9]的研究结果表明,合理替代饲料鱼粉可明显减少鱼类养殖对野生鱼类资源的依赖程度,增加水产品的净供给[5-6,9,15,55,60]。对鮸状黄姑鱼[51]、点带石斑鱼[11]、花鲈[5,15]、卵性鲳鲹[6,60]、日本黄姑鱼[55]和大口黑鲈[9]的研究结果表明,饲料鱼粉替代物对养殖废物排放量的影响因鱼类种类、替代饲料原料种类和鱼粉替代水平而异。例如,通过添加鸡肉粉将花鲈饲料鱼粉含量降低至8%未显著影响氮废物排放量,但导致磷废物排放量增加[5];利用大豆浓缩蛋白替代卵形鲳鲹饲料鱼粉未对氮废物排放量产生显著影响,但可减少磷废物排放量[6];利用鸡肉粉替代点带石斑鱼饲料鱼粉未对氮废物排放量产生显著影响,但利用羽毛粉作为鱼粉替代蛋白源时导致氮废物排放量增加[11];利用豆粕替代卵形鲳鲹饲料鱼粉增加了氮废物排放量,但减少了磷废物排放量[60]。最近,Ren等[9-10]报道利用水解羽毛粉或γ射线辐照羽毛粉替代大口黑鲈和卵形鲳鲹饲料鱼粉未显著影响氮废物排放量,但导致磷废物排放量减少。本研究中,摄食饲料I0E1和I1E1的鱼RCP显著低于摄食饲料BD的鱼,但其氮、磷废物排放量与后者无显著差异,表明通过添加水解羽毛粉或γ射线辐照羽毛粉将饲料鱼粉含量从35.0%降低至24.5%时明显降低了大黄鱼养殖对鱼粉的依赖程度,但未增加养殖的氮、磷污染。这一结果与对大口黑鲈[9]和卵形鲳鲹[10]的研究结论一致。
Zhang等[15]认为采用多指标综合评价比根据单一指标(如WG、FCR和NRE等)评价能够更客观地反映饲料鱼粉替代对养殖生产的影响,提出从生长(WG)、饲料成本(FCR)、品质(肥满度)和养殖污染(单位鱼产量的氮废物排放量)等4个方面综合比较养殖生产性能的方法。由于饲料鱼粉替代通常不会导致鱼体肥满度发生明显变化[5-6,9,11,15,51,54-55],张静雅等[61]将评价指标调整为生长(WG)、饲料成本(FCR)、养殖污染(单位鱼产量的氮废物排放量)和单位鱼产量鱼粉消耗量(RCP)。本研究综合生长、饲料成本、养殖污染和渔业资源消耗比较了投喂饲料BD、I0E0、I1E0、I0E1和I1E1时的养殖生产性能,发现相比于饲料BD,饲料I0E1和I1E1的养殖生产性能与饲料I0E0和I1E0较为接近,这一结果与根据生长(摄食饲料I0E1和I1E1的鱼WG较摄食饲料BD的鱼分别下降了6.4%和7.5%,较摄食饲料I0E0和I1E0的鱼分别增加了16.3%和17.4%)得出的评价结果并不一致,初步反映出单一指标方法和多指标综合方法在评价鱼类养殖生产性能方面的差异和互补性。
4 结论本研究发现添加DP-100有益于改善大黄鱼对饲料羽毛粉的利用,同时添加1%的DP-100和8.5%的水解羽毛粉可将大黄鱼饲料鱼粉含量降低至24.5%。与添加DP-100相比,γ射线辐照处理未能增加羽毛粉替代大黄鱼饲料鱼粉的水平。
[1] |
FAO. The State of World Fisheries and Aquaculture 2020[R]. Rome: FAO, 2020: 1-204..》Google Scholar
|
[2] |
Jannathulla R, Rajaram V, Kalanjiam R, et al. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources[J]. Aquaculture Research, 2019, 50(12): 3493-3506..》Google Scholar
|
[3] |
Naylor R L, Hardy R W, Buschmann A H, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551-563..》Google Scholar
|
[4] |
Wang Y, Kong L J, Li C, et al. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides)[J]. Aquaculture, 2006, 261(4): 1307-1313..》Google Scholar
|
[5] |
Wang Y, Wang F, Ji W X, et al. Optimizing dietary protein sources for Japanese Sea bass (Lateolabrax japonicus) with an emphasis on using poultry by-product meal to substitute fish meal[J]. Aquaculture Research, 2015, 46(4): 874-883..》Google Scholar
|
[6] |
Ren X, Zhu M, Wu Y B, et al. The optimal dietary lipid level for golden pompano Trachinotus ovatus fed the diets with fish meal replaced by soy protein concentrate[J]. Aquaculture Research, 2021, 52(7): 3350-3359..》Google Scholar
|
[7] |
Anderson A D, Alam M S, Watanabe W O, et al. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata[J]. Aquaculture, 2016, 464: 618-628..》Google Scholar
|
[8] |
Wang Y, Guo J L, Bureau D P, et al. Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibea miichthioides)[J]. Aquaculture, 2006, 252(2-4): 476-483..》Google Scholar
|
[9] |
Ren X, Huang D, Wu Y B, et al. Gamma ray irradiation improves feather meal as a fish meal alternate in largemouth bass Micropterus salmoides diet[J]. Animal Feed Science and Technology, 2020, 269: 114647..》Google Scholar
|
[10] |
Ren X, Zhu M, Wu Y B, et al. Increasing fish meal replacement level with feather meal in golden pompano Trachinotus ovatus diet through gamma-ray irradiation[J]. Aquaculture Research, 2022, 53(2): 518-527..》Google Scholar
|
[11] |
Li K, Wang Y, Zheng Z X, et al. Replacing fish meal with rendered animal protein ingredients in diets for Malabar grouper, Epinephelus malabaricus, reared in net pens[J]. Journal of the World Aquaculture Society, 2009, 40(1): 67-75..》Google Scholar
|
[12] |
Onifade A A, Al-Sane N A, Al-Musallam A A, et al. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources[J]. Bioresource Technology, 1998, 66(1): 1-11..》Google Scholar
|
[13] |
Korniłłowicz-Kowalska T, Bohacz J. Biodegradation of keratin waste: Theory and practical aspects[J]. Waste Management, 2011, 31(8): 1689-1701..》Google Scholar
|
[14] |
Daroit D J, Brandelli A. A current assessment on the production of bacterial keratinases[J]. Critical Reviews in Biotechnology, 2014, 34(4): 372-384..》Google Scholar
|
[15] |
Zhang Y Q, Wu Y B, Jiang D L, et al. Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus)[J]. Animal Feed Science and Technology, 2014, 197: 155-163..》Google Scholar
|
[16] |
Wu Y, Wang Y, Ren G, et al. Improvement of fish meal replacements by soybean meal and soy protein concentrate in golden pompano diet through γ-ray irradiation[J]. Aquaculture Nutrition, 2016, 22(4): 873-880..》Google Scholar
|
[17] |
Wu Y B, Ren G, Qin J G, et al. The suitable dose of gamma irradiation on soybean meal as a fish meal substitute in diets for golden pompano (Trachinotus ovatus)[J]. Aquaculture Research, 2016, 47(6): 1944-1953..》Google Scholar
|
[18] |
Ebrahimi-Mahmoudabad S R, Taghinejad-Roudbaneh M. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds[J]. Radiation Physics and Chemistry, 2011, 80(12): 1441-1447..》Google Scholar
|
[19] |
Zheng C C, Wu J W, Jin Z H, et al. Exogenous enzymes as functional additives in finfish aquaculture[J]. Aquaculture Nutrition, 2020, 26(2): 213-224..》Google Scholar
|
[20] |
Carter C G, Houlihan D F, Buchanan B, et al. Growth and feed utilization efficiencies of seawater Atlantic salmon, Salmo salar L., fed a diet containing supplementary enzymes[J]. Aquaculture Research, 1994, 25(1): 37-46..》Google Scholar
|
[21] |
Shi Z, Li X Q, Kabir Chowdhury M A, et al. Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio[J]. Aquaculture, 2016, 460: 37-44..》Google Scholar
|
[22] |
Liu W, Wu J P, Li Z, et al. Effects of dietary coated protease on growth performance, feed utilization, nutrient apparent digestibility, intestinal and hepatopancreas structure in juvenile Gibel carp (Carassius auratus gibelio)[J]. Aquaculture Nutrition, 2018, 24(1): 47-55..》Google Scholar
|
[23] |
Drew M D, Racz V J, Gauthier R, et al. Effect of adding protease to coextruded flax: Pea or canola: Pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss)[J]. Animal Feed Science and Technology, 2005, 119(1-2): 117-128..》Google Scholar
|
[24] |
Dalsgaard J, Verlhac V, Hjermitslev N H, et al. Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed diets with high inclusion of plant-based protein[J]. Animal Feed Science and Technology, 2012, 171(2-4): 181-191..》Google Scholar
|
[25] |
Yigit N O, Bahadir Koca S, Didinen B I, et al. Effect of protease and phytase supplementation on growth performance and nutrient digestibility of rainbow trout (Oncorhynchus mykiss, Walbaum) fed soybean meal-based diets[J]. Journal of Applied Animal Research, 2018, 46(1): 29-32..》Google Scholar
|
[26] |
Lin X, Kelemen D W, Miller E S, et al. Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1[J]. Applied and Environmental Microbiology, 1995, 61(4): 1469-1474..》Google Scholar
|
[27] |
Li Y F, He J, Zhang B, et al. Effect of keratinase supplementation on growth performance, serum profiles and antioxidant capacity in weanling pigs[J]. Chinese Journal of Animal Science, 2016, 52(18): 66-71. [李元凤,何健,张波,等. 角蛋白酶对仔猪生长性能、血清生化指标及抗氧化指标影响的研究[J]. 中国畜牧杂志,2016, 52(18): 66-71.].》Google Scholar
|
[28] |
Selle P H, Liu S Y, Cai J, et al. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: Influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility[J]. Animal Production Science, 2013, 53(5): 378..》Google Scholar
|
[29] |
Xue M, Wang J, Tao Q Y. Study on the effect of keratinase DP100 and HFMR technology on replacing fish meal in crucian carp feed formula[J]. Chinese Journal of Animal Science, 2016, 52(16): 83-86. [薛敏,王嘉,陶青燕. 角蛋白酶DP100与HFMR技术对鲫鱼饲料配方中替代鱼粉效果的研究[J]. 中国畜牧杂志,2016, 52(16): 83-86.].》Google Scholar
|
[30] |
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China Fishery Statistical Yearbook in 2021[M]. Beijing: China Agriculture Press,2021: 1-158. [中华人民共和国农业农村部渔业渔政管理局. 2021中国渔业统计年鉴[M]. 北京:中国农业出版社,2021: 1-158]..》Google Scholar
|
[31] |
Duan Q Y, Mai K S, Zhong H Y, et al. Studies on the nutrition of the large yellow croaker, Pseudosciaena crocea R. I: Growth response to graded levels of dietary protein and lipid[J]. Aquaculture Research, 2001, 32: 46-52..》Google Scholar
|
[32] |
Mai K S, Zhang C X, Ai Q H, et al. Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R[J]. Aquaculture, 2006, 251(2-4): 346-353..》Google Scholar
|
[33] |
Mai K S, Wan J L, Ai Q H, et al. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R[J]. Aquaculture, 2006, 253(1-4): 564-572..》Google Scholar
|
[34] |
Ai Q H, Mai K S, Tan B P, et al. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea[J]. Aquaculture, 2006, 261(1): 327-336..》Google Scholar
|
[35] |
Zhang C X, Ai Q H, Mai K S, et al. Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R[J]. Aquaculture, 2008, 283(1-4): 123-127..》Google Scholar
|
[36] |
Sun R J, Zhang W B, Xu W, et al. Effects of dietary protein level and feeding frequency on the growth performance, body composition and protein metabolism of juvenile large yellow croaker, Pseudosciaena crocea R.[J]. Acta Hydrobiologica Sinica, 2013, 37 (2): 281-289. [孙瑞健,张文兵,徐 玮,等. 饲料蛋白质水平与投喂频率对大黄鱼生长、体组成及蛋白质代谢的影响[J]. 水生生物学报,2013, 37 (2): 281-289]..》Google Scholar
|
[37] |
Yi X W, Zhang F, Xu W, et al. Effects of dietary lipid content on growth, body composition and pigmentation of large yellow croaker Larimichthys croceus[J]. Aquaculture, 2014, 434: 355-361..》Google Scholar
|
[38] |
Li S, Yin J, Zhang H, et al. Effects of dietary carbohydrate and lipid levels on growth performance, feed utilization, body composition and non-specific immunity of large yellow croaker (Larimichthys crocea)[J]. Aquaculture Nutrition, 2019, 25(5): 995-1005..》Google Scholar
|
[39] |
Ai Q H, Mai K S, Tan B P, et al. Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea[J]. Aquaculture, 2006, 260(1-4): 255-263..》Google Scholar
|
[40] |
Zhang L, Mai K S, Ai Q H, et al. Use of a compound protein source as a replacement for fish meal in diets of large yellow croaker, Pseudosciaena crocea R.[J]. Journal of the World Aquaculture Society, 2008, 39(1): 83-90..》Google Scholar
|
[41] |
Li J, Zhang L, Mai K S, et al. Potential of several protein sources as fish meal substitutes in diets for large yellow croaker, Pseudosciaena crocea R.[J]. Journal of the World Aquaculture Society, 2010, 41: 278-283..》Google Scholar
|
[42] |
Yi X W, Li J, Xu W, et al. Shrimp shell meal in diets for large yellow croaker Larimichthys croceus: Effects on growth, body composition, skin coloration and anti-oxidative capacity[J]. Aquaculture, 2015, 441: 45-50..》Google Scholar
|
[43] |
He J J, Wang P, Feng J, et al. Effects of replacing fish meal with corn gluten meal on the growth, serum biochemical indices and liver histology of large yellow croaker Larimichthys crocea[J]. Acta Hydrobiologica Sinica, 2017, 41(3): 506-515. [何娇娇,王萍,冯建,等. 玉米蛋白粉替代鱼粉对大黄鱼生长、血清生化指标及肝脏组织学的影响[J]. 水生生物学报,2017, 41(3): 506-515.].》Google Scholar
|
[44] |
Tang B J, Zheng H F, Wang S J, et al. Effects of Antarctic krill Euphausia superba meal inclusion on growth, body color, and composition of large yellow croaker Larimichthys crocea[J]. North American Journal of Aquaculture, 2021, 83(4): 255-266..》Google Scholar
|
[45] |
Wang P, Zhu J Q, Feng J, et al. Effects of dietary soy protein concentrate meal on growth, immunity, enzyme activity and protein metabolism in relation to gene expression in large yellow croaker Larimichthys crocea[J]. Aquaculture, 2017, 477: 15-22..》Google Scholar
|
[46] |
Wang P, Lou Y D, Feng J, et al. Effect of replacing fish meal with wheat gluten meal on growth, serum biochemical indexes and antioxidant enzyme activity of juvenile large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2018, 42(5): 733-743. [王萍,娄宇栋,冯建,等. 小麦蛋白粉替代鱼粉对大黄鱼幼鱼生长、血清生化指标及抗氧化能力的影响[J]. 水产学报,2018, 42(5): 733-743.].》Google Scholar
|
[47] |
Wang P, Zhou Q C, Feng J A, et al. Effect of dietary fermented soybean meal on growth, intestinal morphology and microbiota in juvenile large yellow croaker, Larimichthys crocea[J]. Aquaculture Research, 2019, 50(3): 748-757..》Google Scholar
|
[48] |
Fan X J, Yin H, Chai R Y, et al. Effects of dietary wheat gluten meal on growth, intestinal morphology, and microbiome in juvenile large yellow croaker Larimichthys crocea[J]. Israeli Journal of Aquaculture-Bamidgeh, 2020, 72: 1-11..》Google Scholar
|
[49] |
Chen Z, Yu A, Wang L, et al. Reassessment of dietary protein and lipid requirements for large yellow croaker Larimichthys crocea reared in net pens[J/OL]. Journal of the World Aquaculture Society, 2023. https://doi.org/10.1111/jwas.13013..》Google Scholar
|
[50] |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard of the People’s Republic of China GB/T 36206-2018 Formula Feed for Yellow Croaker (Larimichthys crocea Richardson)[M]. Beijing: China Standards Press of China, 2018: 1-8. [中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会. 中华人民共和国国家标准GB/T 36206-2018大黄鱼配合饲料 [M]. 北京:中国标准出版社,2018: 1-8.].》Google Scholar
|
[51] |
Wang Y, Kong L, Li C, et al. The potential of land animal protein ingredients to replace fish meal in diets for cuneate drum, Nibea miichthioides, is affected by dietary protein level[J]. Aquaculture Nutrition, 2010, 16(1): 37-43..》Google Scholar
|
[52] |
AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of the Association of Analytical Chemist[M]. 16th ed. Arlington, Virgini: AOAC, 1995..》Google Scholar
|
[53] |
Bureau D P, Harris A M, Bevan D J, et al. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets[J]. Aquaculture, 2000, 181(3-4): 281-291..》Google Scholar
|
[54] |
Campos I, Matos E, Marques A, et al. Hydrolyzed feather meal as a partial fishmeal replacement in diets for European seabass (Dicentrarchus labrax) juveniles[J]. Aquaculture, 2017, 476: 152-159..》Google Scholar
|
[55] |
Wu Y B, Ren X, Chai X J, et al. Replacing fish meal with a blend of poultry by-product meal and feather meal in diets for giant croaker (Nibea japonica)[J]. Aquaculture Nutrition, 2018, 24(3): 1085-1091..》Google Scholar
|
[56] |
Cai Z N, Mai K S, Ai Q H. Regulation of hepatic lipid deposition by phospholipid in large yellow croaker[J]. The British Journal of Nutrition, 2017, 118(12): 999-1009..》Google Scholar
|
[57] |
Wang J, Ai Q H, Mai K S, et al. Dietary chromium polynicotinate enhanced growth performance, feed utilization, and resistance to Cryptocaryon irritans in juvenile large yellow croaker (Larmichthys crocea)[J]. Aquaculture, 2014, 432: 321-326..》Google Scholar
|
[58] |
Li X S, Ji R L, Cui K, et al. High percentage of dietary palm oil suppressed growth and antioxidant capacity and induced the inflammation by activation of TLR-NF-κB signaling pathway in large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology, 2019, 87: 600-608..》Google Scholar
|
[59] |
Du J L, Xu H L, Li S L, et al. Effects of dietary chenodeoxycholic acid on growth performance, body composition and related gene expression in large yellow croaker (Larimichthys crocea) fed diets with high replacement of fish oil with soybean oil[J]. Aquaculture, 2017, 479: 584-590..》Google Scholar
|
[60] |
Wang Y, Ma X Z, Wang F, et al. Supplementations of poultry by-product meal and selenium yeast increase fish meal replacement by soybean meal in golden pompano (Trachinotus ovatus) diet[J]. Aquaculture Research, 2017, 48(4): 1904-1914..》Google Scholar
|
[61] |
Zhang J Y, Ren X, Li W Y, et al. Potential of replacing fish meal with cottonseed protein concentrate in black sea bass(Centropristis striata) diet[J]. Journal of Fisheries of China, 2020, 44(11): 1873-1882. [张静雅,任幸,李伟业,等. 利用棉籽浓缩蛋白替代条纹锯鮨饲料鱼粉的潜力[J]. 水产学报,2020, 44(11): 1873-1882.].》Google Scholar
|