中国水产科学  2023, Vol. 30 Issue (06): 669-676  DOI: 10.12264/JFSC2023-0046
0

引用本文 

林璐, 王浩, 曾启繁, 包振民. 海湾扇贝南部亚种遗传多样性和选择特征的基因组学解析[J]. 中国水产科学, 2023, 30(6): 669-676. DOI: 10.12264/JFSC2023-0046.
LIN Lu, WANG Hao, ZENG Qifan, BAO Zhenmin. Genomic analysis of the genetic diversity and signatures of selection in a bay scallop southern subspecies Argopecten irradians concentricus[J]. Journal of Fishery Sciences of China, 2023, 30(6): 669-676. DOI: 10.12264/JFSC2023-0046.

基金项目

国家重点研发计划项目(2021YFD1200805);国家自然科学基金项目(32002388).

作者简介

林璐(1999‒),女,硕士研究生,主要从事贝类遗传育种. E-mail:linlu19991214@163.com

通信作者

通信作者:王浩,博士研究生,研究方向为海洋生物基因组学,E-mail:wanghao5533@126.com;
曾启繁,副教授,研究方向为海洋生物基因组学与遗传育种,E-mail:zengqifan@ouc.edu.cn

文章历史

收稿日期:2023-03-09
修改日期:2023-05-06
海湾扇贝南部亚种遗传多样性和选择特征的基因组学解析
林璐1,王浩2,曾启繁1,2,包振民1,2,     
1. 中国海洋大学三亚海洋研究院,海南省热带水产种质重点实验室,海南 三亚 572000
2. 中国海洋大学海洋生命学院,海洋生物遗传学与育种教育部重点实验室,山东 青岛 266003
摘要:为了探究海湾扇贝南部亚种(Argopecten irradians concentricus)的遗传多样性特征,通过全基因组重测序分析,系统解析了其群体遗传结构以及其与海湾扇贝北部亚种(Argopecten irradians irradians)间的遗传差异,共筛查出15059961个高质量单核苷酸多态性(single nucleotide polymorphisms,SNPs)位点。基于全基因组SNP的群体祖先成分推断、主成分分析和系统发生重构皆表明,南北亚种之间存在较为显著的遗传分化。其中,海湾扇贝南部亚种的近交水平和连锁不平衡程度更高。通过选择性清除分析,在海湾扇贝南部亚种中共鉴定出349个正选择基因,其中GHSR、HSF1、HABP2DnaJ等基因可能与其生长速度较快、耐热性较强以及免疫功能较强等环境适应性特征相关。该研究揭示了海湾扇贝亚种间遗传分化和选择特征,为扇贝的基因组研究和分子育种提供了数据支持。
关键词海湾扇贝南部亚种    单核苷酸多态性    遗传分化    选择性清除    
Genomic analysis of the genetic diversity and signatures of selection in a bay scallop southern subspecies Argopecten irradians concentricus
LIN Lu1,WANG Hao,2,ZENG Qifan,1,2,BAO Zhenmin1,2    
1 Key Laboratory of Tropical Aquatic Germplasm of Hainan Province; Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
2 Key Laboratory of Marine Genetics and Breeding, Ministry of Education; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
Abstract:Bay scallop (Argopecten irradians) is an economically important bivalve species in China due to its fast growth rates and suitability for artificial breeding. There are five bay scallop subspecies distributed along the Atlantic coast of North America and the Gulf of Mexico that exhibit distinct growth and thermal stress tolerance characteristics, making them valuable resources for adaptive evolutionary studies. In this study, we used whole-genome resequencing analysis to uncover the genetic diversity and selective signatures of the bay scallop southern subspecies A. i. concentricus via comparison with the northern subspecies A. i. irradians. We identified a total of 15059961 high-quality single nucleotide polymorphisms (SNPs), of which 1616072 were unique to A. i. concentricus and 3319537 were unique to A. i. irradians. Following annotation analysis, a total of 23364701 effects were identified from the 15 million SNP sites. Only 2.819% of the loci were located in the exon regions; the majority of these SNPs were instead located in the intergenic (36.0%) and intron (32.3%) regions. Among the SNPs located within exons, silent mutations accounted for 55.1% (358166), missense mutations accounted for 43.7% (284415), and nonsense mutations accounted for 1.2% (7777). The total numbers of transitions and transversions across all SNPs were 97243196 and 82018037, respectively, resulting in a transitions/transversions ratio of 1.1856. Population structure, principal component analysis (PCA), and phylogenetic analysis based on genome-wide SNPs indicated significant genetic differentiation between A. i. concentricus and A. i. irradians. Linkage disequilibrium (LD) analysis showed that A. i. concentricus retained a higher level of LD compared to that of A. i. irradians, which may have been potentially influenced by domestication selection and inbreeding. Runs of homozygosity (ROH) analysis across the whole genome revealed that A. i. concentricus retained more ROH, indicating a higher level of inbreeding. Population genetic diversity analysis revealed a decrease in genetic diversity in certain regions of the A. i. concentricus genome compared to those of the northern subspecies population; this may be the result of continuous artificial selection for heat tolerance and inbreeding. Selective sweep analysis of A. i. irradians revealed 349 genes under positive selection, including GHSR, HSF1, HABP2, and DnaJ, which may be related to its corresponding rapid growth rate, strong heat tolerance, high immunity, and other environmental adaptation characteristics. Functional enrichment analysis revealed that the genes located in the selective sweep regions were primarily associated with cell signal transduction, maintenance of cell morphology, and regulation of metabolic processes. Overall, this study sheds light on the genetic differentiation and signatures of selection in bay scallop subspecies, thereby providing a valuable resource for scallop genomic research and molecular breeding.
Key words Argopecten irradians concentricus     SNP    genetic differentiation    selective sweep    

海产品富含蛋白质和微量营养素,是全世界食品消费的重要组成部分[1]。全球水产养殖产量在水产品总产量中的占比不断增加,从2000年的25.7%上升到2018年的46.0%,已逐步成为食品行业中增长最快的产业[2]。扇贝属于软体动物门(Mollusca),双壳纲(Bivalvia),翼形亚纲(Pteriomorphia),为滤食性贝类,广泛分布于世界各海域,。作为重要的水产养殖物种,扇贝闭壳肌味道鲜美且富含类胡萝卜素、不饱和脂肪酸等营养成分,被誉为海产“八珍”之一,是全球消费量最大的双壳类动物之一[3]。此外,扇贝壳主要成分为碳酸钙,可作为优质钙源用作饲料添加,研磨成粉后具有良好的吸附性,可用于污水处理等工业,具有较高的经济价值[4-5]

得益于人工繁育和养殖技术的逐步完善,我国扇贝养殖产业近年来发展迅速。目前,国内水产养殖产业中主要的扇贝物种包括海湾扇贝(Argopecten irradians)、虾夷扇贝(Mizuhopecten yessoensis)、栉孔扇贝(Azumapecten farreri)等[4,6-7]。其中,海湾扇贝北部亚种和南部亚种分别于1982年和1991年由美国大西洋沿岸引入我国[8-9]。由于海湾扇贝具有生长快、养殖1年就可以达到商品规格,并且耐温范围广等特点,引进后迅速在黄渤海区形成了国际上新兴的海湾扇贝养殖产业,引领了海洋水产养殖业发展的第三次“浪潮”[10]。海湾扇贝南北亚种在贝壳颜色、形态等外观特征上存在明显差异,北部亚种除左壳(常为上壳)颜色与南部亚种相同都呈多态性外,其右壳(常为下壳)颜色也呈多态性,可能为白、黄或橙色,而南部亚种右壳由于缺乏色素而呈白色[11]。南北亚种对温度的适应性也不同,北部亚种扇贝对寒冷的北方水域更耐受,但不能在温暖的南方水域生存;南部亚种扇贝更适应温暖的南方水域,但在12 ℃或更低的温度下会停止生长[12]。因此,对南北亚种生长和适应性性状遗传差异的解析,对海湾扇贝种质资源的遗传改良具有潜在的重要意义。

本研究对海湾扇贝南北亚种进行了全基因组重测序分析,利用全基因组范围的单核苷酸多态性(single nucleotide polymorphism, SNP)数据揭示其群体结构和选择特征。研究结果扩充了扇贝基因组研究的数据资源,为扇贝种质资源调查和分子育种工作提供了重要参考。

1 材料与方法 1.1 样品采集及全基因组测序

本研究共采集30只海湾扇贝用于全基因组测序和遗传分析,包括6只海湾扇贝南部亚种(Argopecten irradians concentricus)(取自广东湛江)和24只海湾扇贝北部亚种(Argopecten irradians irradians)(取自山东青岛胶南和山东烟台莱州)。通过活体解剖收集其横纹肌组织,并用常规苯酚-氯仿萃取法提取了全基因组DNA[13]。使用DNA文库试剂盒(诺唯赞,ND617-02),利用酶切打断、磁珠分选的方法构建了插入片段大小为250~350 bp的DNA双端测序文库,并于Illumina NovaSeq平台完成DNA测序。之后利用Trimmomatic软件对原始下机数据进行质量控制,过滤低质量的reads,参数为LEADING:3 TRAILING:3 SLIDINGWINDOW: 4:15 MINLEN:36[14]

1.2 SNP标记开发和功能注释

本研究使用Bowtie2 (版本2.3.4.1)默认参数将高质量reads比对到海湾扇贝的参考基因组序列[12,15]。利用Samtools (版本1.6)软件计算每个样本的基因组覆盖深度,并构建参考索引、格式转换和按基因组坐标排序得到储存测序数据比对的BAM文件[16]。使用Picard (http://broadinstitute.github. io/picard/version1.92)软件去除BAM文件中PCR重复数据。利用Genome Analysis Toolkit (GATK)中的HaplotypeCaller模块获取每个样本的全基因组SNP信息[17]。利用GATK中的GenotypeGVCFs模块对每个样本的gVCF文件进行联合基因分型。随后使用GATK的VariantFiltration和SelectVariants模块来获取高质量的双等位基因SNPs。为了确保变异的位点和个体均一性,所有的SNP都经Vcftools (版本0.1.16)筛选,筛选标准为:次等位基因频率(MAF)<0.05,位点的个体缺失比例(max-missing)>0.8,最小测序深度(minDP)< 4[18]。利用SnpEff软件注释了每个SNP所在的基因组元件,确定了发生突变的类型和突变的影响[19]

1.3 遗传多态性和连锁规律解析

本研究基于全基因组SNPs,利用CMplot绘制SNP分布密度图;采用ADMIXTURE软件进行群体结构分析[20];借助IQ-TREE软件构建了最大似然法(maximum likelihood, ML)系统发生树[21];采用PLINK软件对所有测序样本进行主成分分析(principal component analysis, PCA)[22];采用Vcftools计算两个亚种的核苷酸多态性(θπ)、群体遗传分化指数(FST)[18];采用Stacks对两个亚种的杂合度进行统计分析[23];利用PopLDdecay对两个亚种进行了连锁不平衡(linkage disequilibrium, LD)衰减分析[24];借助PLINK软件鉴定了每个亚种的连续性纯合片段(Runs of homozygosity, ROHs)的总数(ROHs最小长度设定为100 kb)[22]

1.4 选择性清除分析

基因组中的正选择区域具有较高遗传分化和低核苷酸多态性的特征,本研究采用全基因组中前5%极值的θπ比值和前1%极值的FST作为显著受选择区域[25-27]。将正选择区域内的基因定义为受选择的候选基因。利用TBtools进行Gene Ontology (GO)富集分析[28]。利用费舍尔精确检验确定候选基因所富集的GO条目,显著性水平α=0.05。

2 结果与分析 2.1 海湾扇贝SNP标记开发和功能注释

将本研究来自2个亚种的30只海湾扇贝的全基因组重测序文库比对到参考基因组,每个文库基因组的平均覆盖深度为21×,其中大约90%读长为唯一比对。经过SNP质量控制后,在两个亚种中共鉴定出15059961个高质量SNP,其中1616072个SNP为南部亚种特有,3319537个SNP为北部亚种特有。经过注释分析,15 M的SNP位点中有23364701个位点在功能基因区产生影响。仅有2.82% (656477个)的位点分布于外显子区,而位于基因间区和内含子区的SNPs超过36.0% (8384921个)和32.3% (7522832个)(表1)。位于外显子内的SNPs中,沉默突变占55.1% (358166个),错义突变占43.7% (284415个),由于产生终止密码子而引起的无义突变占1.20% (7777个)。所有SNP中包含了97243196个转换和82018037个颠换,转换/颠换比为1.19 (表2)。

表1  SNP分布区域、影响程度和功能类别 Tab. 1  SNP annotation by genomic region, impact and function class
2.2 遗传多态性和连锁规律解析

图1所示,SNP在基因组中呈现不均匀分布,红色部分为SNP热点区域(图1a)。图1b分别展示了K=2, 3, 4时的群体遗传结构,其中南部亚种所有个体具有相同的遗传组分,而北部亚种存在一定的杂交特征。基于最大似然法的系统发生分析发现,30个样本明显分成了两簇(支持度为100)(图1c),与其样本来源相对应。主成分分析(PCA)结果与系统发生分析相一致,在PC1方向上显著分离(PC1解释的变异度为14.7%, PC2解释的变异度为4.30%)(图1d)。可见海湾扇贝南北亚种基因组存在显著的遗传差异。

表2  核苷酸替换类型统计 Tab. 2  Summary of nucleotide substitutions

利用相邻SNPs的基因型频率相关性系数r2,本研究进一步分析了两个亚种的连锁不平衡(LD)衰减规律(图2a)。在距离小于300 kb时,南部亚种的连锁不平衡程度明显高于北部亚种。南部亚种的r2在300 kb衰减至0.197,北部亚种的r2衰减至0.055。全基因组连续纯合片段(ROH)分析表明南部亚种比北部亚种保留更多ROH片段,近交水平更高(图2b)。

本研究对两个亚种的杂合度统计分析结果显示(表3),南部亚种的亚种内F统计值(Fis)为0.037,北部亚种为0.085。南部亚种平均杂合度为0.230,北部亚种为0.256。

2.3 海湾扇贝亚种间遗传分化和选择特征

海湾扇贝基因组上的大部分区域没有表现出亚种间差异,但在特定区域呈现出显著的遗传分化和多态性差异(图3a)。通过选择清除分析,本研究从南部亚种基因组的79003个区域中共鉴定到349个选择候选基因。筛选出了在生长、抗逆性和免疫中起重要作用的基因,包括与生长相关的GHSR、与耐热性相关的HSF1以及与免疫相关的HABP2DnaJ等。功能富集分析显示,这些位于强选择清除区域内的基因主要与细胞信号传导、维持细胞形态以及调节代谢过程等有关(图3b)。

图1  海湾扇贝群体结构和遗传分化分析a. 基因组内SNP分布;b. 基于祖先成分的遗传结构推断;c. 基于全基因组SNPs的最大似然系统发育树;d. 基于全基因组SNPs的主成分分析. Fig. 1  Population structure and genetic differentiation analysis of Argopecten irradiansa. Genome-wide SNP distribution; b. Genetic structure inferred by ancestral components; c. Maximum likelihood phylogenetic tree based on whole genomic SNPs. d. Principal component analysis based on genome-wide SNPs.
图2  连锁不平衡衰减程度和近交水平a. 0–300 kb长度内的连锁不平衡衰减;b. 在每个亚种中检测到的连续性纯合片段总和的箱式图. Fig. 2  Selection signatures of southern subspecies of Argopecten irradians.a. Linkage disequilibrium decay at distance of 0–300 kb. b. Boxplot of sum of runs of homozygosity detected in each population.
表3  两个海湾扇贝亚种的杂合度统计 Tab. 3  Heterozygosity statistics for two Argopecten irradians subspecies
图3  海湾扇贝南部亚种的选择性清除和正选择基因的功能富集分析a. θπ比值(北部亚种/南部亚种)和FST值的分布;红色区域(对应于θπ比值经验分布的5%右尾部和FST经验分布的1%右尾部)为海湾扇贝南部亚种的选择性清除区域;b. 南部亚种中正选择基因的功能富集. Fig. 3  Selective sweep and GO enrichment analysis of Argopecten irradians concentricusa. Distribution of θπ ratios (Argopecten irradians irradians/Argopecten irradians concentricus) and FST values. Data points in red (corresponding to the 5% right tails of the empirical θπ distribution, and the 1% right tail of the empirical FST distribution) represented regions under selective sweep in Argopecten irradians concentricus. b. Functional enrichment of genes under positive selection in Argopecten irradians concentricus.
3 讨论

本研究利用全基因组重测序的方法,获取了海湾扇贝全基因组尺度的SNP标记集合并对其进行注释,探究了南北亚种的群体分化和全基因组尺度的选择特征,对海湾扇贝种质资源的遗传改良具有潜在的重要意义[29]。在本研究中,群体结构、PCA以及进化树分析结果都一致证明海湾扇贝南北亚种已经出现了明显的遗传分化。本研究对当前中国养殖的海湾扇贝南北亚种进行连锁不平衡分析,结果显示,南部亚种保留了更高水平的LD,与Yang等[30]发现南北亚种在耐热性状相关基因HSP90启动子区的连锁不平衡状态存在显著差异的结果相一致。

群体遗传多样性分析显示,在基因组特定区域,南北亚种之间存在明显分化,且南部亚种遗传多样性有所降低。Wang等[10]利用微卫星标记计算杂合度和Fis指数后发现,相比于美国大西洋沿岸自然群体(杂合度:0.447; Fis指数:0.117),引种后的中国养殖群体(杂合度:0.364; Fis指数:0.182)发生等位基因多态性丢失。本研究基于全基因组SNP数据进行基因组杂合度分析后发现,与Wang等[10]2007年前后收集的美洲自然群体以及国内南部亚种养殖群体相比,现有国内南部亚种养殖群体表现出最低的杂合度0.230和Fis指数0.037。同时,本研究南北亚种遗传分化指数(FST)为0.08,相比于2007年前后采集的南北亚种遗传分化指数(0.06),发生进一步遗传分化[10]。因此本研究认为我国南部亚种现有养殖群体遗传多样性丢失可能与海湾扇贝的耐热性、生长速度等持续人工选育相关[31-32]。陈静等[33]对海湾扇贝南部亚种进行连续5代闭锁选育后与对照组普通群体的遗传分化指数为0.046,选育群体显示出明显的生长及高成活率优势的同时,遗传型也出现了一定的分化,并且选育群体的平均杂合度有所下降。在动物育种中,为了子代育种值的提高,亲缘关系较近的个体可能会被留种,从而导致近交的产生,进而影响动物的生长、存活和繁殖能力等性状。因此,监测和管理种群近交水平在遗传改良中至关重要,在未来的扇贝育种中,应该注重保护种质资源,避免对扇贝品种的过度近交,以维持其遗传多样性[34-35]。此外,本研究缺少美洲自然群体基因数据、海湾扇贝引种产生奠基者效应(founder effect)以及本研究中所包含的南部亚种有限的样本数量也是连锁不平衡程度较高和遗传多样性偏低的因素[8-9,36-37]

本研究在海湾扇贝南部亚种中鉴定到349个正选择基因,其中GHSRHSF1HABP2DnaJ基因与生长、耐热以及免疫相关。有研究表明GHSR基因是调节生长激素的重要途径,可以促进生长发育,有利于马氏珠母贝(Pinctada fucata martensii)形成生长杂种优势[38]。Liu等[39]研究表明,在热胁迫下太平洋牡蛎(Crassostrea gigas)的HSP70基因可能受到HSF1的调节。因此可推测,海湾扇贝南部亚种的耐热性也与HSF1和热休克蛋白之间的调控有关。Yoshida等[40]在红鲷(Lutjanus erythopterus)中确定了HABP2的核苷酸序列,该基因编码循环丝氨酸蛋白酶,在调节凝血和纤溶过程中发挥重要作用。有研究结果表明DnaJ可能参与介导菲律宾蛤蜊(Venerupis philippinarum)的免疫反应和环境胁迫[41]。基因组选择育种与基于系谱和其他分子标记辅助选择的方法相比,在选择准确性方面有实质提升,已成为动物育种的热点技术,但基因组选择的成本仍然较高,全基因组遗传标记数据集的生成可推动全基因组选择的应用[42]

4 结论

本研究对两个海湾扇贝亚种进行了全基因组重测序,获得了15059961个高质量的单核苷酸多态性位点。本研究中群体结构分析、主成分分析以及系统发生分析结果均显示海湾扇贝南北亚种基因组存在显著的遗传差异。南部亚种的连锁不平衡和近交程度均高于北部亚种。选择性清除分析显示,南部亚种的349个基因处于选择清除区域内,这些基因可能与生长、耐热及免疫等性状和环境适应特征相关。本研究获得的高密度单核苷酸多态性是扇贝基因组资源的重要补充,将有助于扇贝育种计划的实际应用。

参考文献
[1]
Béné C, Barange M, Subasinghe R, et al. Feeding 9 billion by 2050–Putting fish back on the menu[J]. Food Security, 2015, 7(2): 261-274..》Google Scholar
[2]
Fiorella K J, Okronipa H, Baker K, et al. Contemporary aquaculture: Implications for human nutrition[J]. Current Opinion in Biotechnology, 2021, 70: 83-90..》Google Scholar
[3]
Song L S, Wang L L, Zhang H, et al. The immune system and its modulation mechanism in scallop[J]. Fish & Shellfish Immunology, 2015, 46(1): 65-78..》Google Scholar
[4]
Li C L, Song A H, Hu W, et al. Current situation analysis and development countermeasures of scallop culture industry in Shandong Province[J]. Marine Sciences, 2011, 35(3): 92-98. [李成林,宋爱环,胡炜,等. 山东省扇贝养殖产业现状分析与发展对策[J]. 海洋科学,2011, 35(3): 92-98.].》Google Scholar
[5]
Dong X, Kim Y S, Kim E K, et al. Scallop extracts inhibited LPS-induced inflammation by suppressing MAPK and NF-κB activation in RAW264.7 macrophages[C]//Hu J, Piao F, Schaffer S, et al. Taurine 11. Singapore: Springer, 2019: 1069-1081..》Google Scholar
[6]
Li C Y, Ding J, Chang Y Q, et al. Isolation of microsatellite markers in Japanese scallop and its application in genetic structure analysis[J]. Journal of Fishery Sciences of China, 2009, 16(1): 39-46. [李春艳,丁君,常亚青,等. 虾夷扇贝微卫星标记的分离及其养殖群体的遗传结构分析[J]. 中国水产科学,2009, 16(1): 39-46.].》Google Scholar
[7]
Guo X M, Luo Y S. Scallops and scallop aquaculture in China[M]. Scallops-Biology, Ecology, Aquaculture, and Fisheries. Amsterdam: Elsevier, 2016: 937-952..》Google Scholar
[8]
Zhang F S, He Y C, Liu X S, et al. A report on the introduction, spat-rearing and experimental culture of bay scallop, Argopecten irradians Lamarck[J]. Oceanologia Et Limnologia Sinica, 1986, 17(5): 367-374. [张福绥,何义朝,刘祥生,等. 海湾扇贝(Argopecten irradians)引种、育苗及试养[J]. 海洋与湖沼,1986, 17(5): 367-374.].》Google Scholar
[9]
Zhang F S, He Y C, Qi L X, et al. Introduction and spat- rearing of F1 generation of Argopecten irradians concentricus Say[张福绥,何义朝,亓铃欣,等. 墨西哥湾扇贝的引种和子一代苗种培育[J]. 海洋与湖沼,1994, 25(4): 372-377.].》Google Scholar
[10]
Wang L L, Zhang H, Song L S, et al. Loss of allele diversity in introduced populations of the hermaphroditic bay scallop Argopecten irradians[J]. Aquaculture, 2007, 271(1-4): 252- 259..》Google Scholar
[11]
Zheng H P, Zhang G F, Liu X, et al. Establishment of different shell color lines of bay scallop Argopecten irradians irradians (Lamarck 1819) and their development[J]. Oceanologia Et Limnologia Sinica, 34(6): 632-639. [郑怀平,张国范,刘晓,等. 不同贝壳颜色海湾扇贝(Argopecten irradians)家系的建立及生长发育研究[J]. 海洋与湖沼,2003, 34(6): 632-639.].》Google Scholar
[12]
Liu X, Li C, Chen M, et al. Draft genomes of two Atlantic Bay scallop subspecies Argopecten irradians irradians and A. i. concentricus[J]. Scientific Data, 2020, 7: 99..》Google Scholar
[13]
Sambrook J, Russell D W. Molecular cloning: a laboratory manual[M]. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.》Google Scholar
[14]
Bolger A M, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120..》Google Scholar
[15]
Langmead B, Salzberg S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359..》Google Scholar
[16]
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079..》Google Scholar
[17]
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303..》Google Scholar
[18]
Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156- 2158..》Google Scholar
[19]
Cingolani P, Platts A, Wang L L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly, 2012, 6(2): 80-92..》Google Scholar
[20]
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664..》Google Scholar
[21]
Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274..》Google Scholar
[22]
Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses[J]. The American Journal of Human Genetics, 2007, 81(3): 559-575..》Google Scholar
[23]
Catchen J, Hohenlohe P A, Bassham S, et al. Stacks: An analysis tool set for population genomics[J]. Molecular Ecology, 2013, 22(11): 3124-3140..》Google Scholar
[24]
Zhang C, Dong S S, Xu J Y, et al. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2019, 35(10): 1786-1788..》Google Scholar
[25]
Lei Z H, Sun W B, Guo T T, et al. Genome-wide selective signatures reveal candidate genes associated with hair follicle development and wool shedding in sheep[J]. Genes, 2021, 12(12): 1924..》Google Scholar
[26]
Li Y D, Liu X, Li Z W, et al. A combination of genome-wide association study and selection signature analysis dissects the genetic architecture underlying bone traits in chickens[J]. Animal, 2021, 15(8): 100322..》Google Scholar
[27]
Wang H, Lv J, Zeng Q F, et al. Genetic differentiation and selection signatures in two bay scallop (Argopecten irradians) breeds revealed by whole-genome resequencing analysis[J]. Aquaculture, 2021, 543: 736944..》Google Scholar
[28]
Huang D W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Research, 2009, 37(1): 1-13..》Google Scholar
[29]
Hosomi R, Yoshida M, Fukunaga K. Seafood consumption and components for health[J]. Global Journal of Health Science, 2012, 4(3): 72-86..》Google Scholar
[30]
Yang C Y, Wang L L, Liu C H, et al. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop[J]. Cell Stress and Chaperones, 2015, 20(2): 297-308..》Google Scholar
[31]
Xiao J, Ford S E, Yang H S, et al. Studies on mass summer mortality of cultured Zhikong scallops (Chlamys farreri Jones et Preston) in China[J]. Aquaculture, 2005, 250(3-4): 602-615..》Google Scholar
[32]
Zhu X H, Liu P P, Hou X J, et al. Genome-wide association study reveals PC4 as the candidate gene for thermal tolerance in Bay scallop (Argopecten irradians irradians)[J]. Frontiers in Genetics, 2021, 12: 650045..》Google Scholar
[33]
Chen J, Liu Z G, Wu S R, et al. Growth and microsatellite analysis of f5 selected line of Argopecten irradians concentricus[J]. Oceanologia et Limnologia Sinica, 2012, 43(4): 783-788. [陈静,刘志刚,邬思荣,等. 海湾扇贝南部亚种(Argopecten irradians concentricus)选育系F5的生长及SSR分析[J]. 海洋与湖沼,2012, 43(4): 783-788.].》Google Scholar
[34]
Slatkin M. Linkage disequilibrium—Understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics, 2008, 9(6): 477-485..》Google Scholar
[35]
Meuwissen T H E, Sonesson A K. Maximizing the response of selection with a predefined rate of inbreeding: Overlapping generations[J]. Journal of Animal Science, 1998, 76(10): 2575-2583..》Google Scholar
[36]
Qin Y J, Liu X, Zhang H B, et al. Effect of parental stock size on F1 genetic structure in the bay scallop, Argopecten irradians (Lamarck, 1819)[J]. Aquaculture Research, 2007: 070116074017003..》Google Scholar
[37]
Watterson G A. Allele frequencies after a bottleneck[J]. Theoretical Population Biology, 1984, 26(3): 387-407..》Google Scholar
[38]
Yang J M, Luo S J, Li J H, et al. Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii[J]. FEBS Open Bio, 2018, 8(11): 1794-1803..》Google Scholar
[39]
Liu Y L, Li L, Huang B Y, et al. RNAi based transcriptome suggests genes potentially regulated by HSF1 in the Pacific oyster Crassostrea gigas under thermal stress[J]. BMC Genomics, 2019, 20(1): 1-15..》Google Scholar
[40]
Yoshida A, Wang Y J, Bae I, et al. Molecular cloning and tissue distribution of hyaluronan binding protein 2 (HABP2) in red sea bream Pagrus major[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2013, 165(4): 271-276..》Google Scholar
[41]
Li C H, Li L Y, Liu F, et al. Alternation of Venerupis philippinarum Hsp40 gene expression in response to pathogen challenge and heavy metal exposure[J]. Fish & Shellfish Immunology, 2011, 30(1): 447-450..》Google Scholar
[42]
Houston R D. Future directions in breeding for disease resistance in aquaculture species[J]. Revista Brasileira De Zootecnia, 2017, 46(6): 545-551..》Google Scholar