2. 长沙学院生物与化学工程学院水产动物营养与品质调控湖南省重点实验室,湖南 长沙 410022
2. Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chiemical Engineering, Changsha University, Changsha 410022, China
MicroRNA (miRNA)是一类短的、内源性非编码的RNA,结合在靶基因的3′UTR (untranslated regions, UTR),抑制mRNA翻译或降解mRNA以调控基因表达[1],其序列在各种动物中都具有很强的保守性[2]。根据miRNA在组织的表达和分布情况,将miRNA分为组织特异性或组织富集表达类型。与其他组织的平均值相比,“组织特异性” miRNA指在特定组织中的表达水平是其他组织平均值的20倍或更高,而“组织富集型” miRNA其表达水平与其他组织的平均值相比低于20倍[3]。在骨骼肌中唯一或优先表达的miRNA被称为MyomiRs[4],目前已发现8种MyomiRs: miR-1、miR-133a、miR-133b、miR-206、miR-208a、miR-208b、miR-486和miR-499。MyomiRs参与骨骼肌生长和发育的各个过程,在肌肉生长发育过程中起到重要的调控作用[5]。Sui等[6]研究发现miR-1a通过抑制山羊(Capra hircus) HDAC4的转录后表达促进肌肉发育。miR-1和miR-133对调控斑马鱼(Danio rerio)胚胎肌肉的基因表达有重要的影响,干扰miR-1和miR-133会导致快速骨骼肌中肌动蛋白的肌体组织被破坏[7]。但MyomiRs在翘嘴鳜中是否具有肌肉特异性以及发育过程中的表达模式尚不明确。
Pax7是卫星细胞中表达的标志性基因,主要存在于肌卫星细胞增殖阶段,促进肌卫星细胞的增殖,并抑制肌卫星细胞的分化,对调节卫星细胞的增殖和分化至关重要[8-9]。利用Cre重组酶腺病毒感染原代成肌细胞致使Pax7缺失后,肌卫星细胞和成肌细胞表现出细胞周期停滞和肌源性调节因子失调[10]。已有研究表明,miR-1a和miR-206在卫星细胞分化过程中急剧上调,限制肌卫星细胞增殖并且抑制Pax7的表达,从而促进肌卫星细胞分化[11-12]。在小鼠中miR-133b、miR-206和Pax7存在调控关系。利用miR-133b或miR-206模拟物转染小鼠(Mus musculus)成肌细胞,导致Pax7 mRNA和蛋白水平下降,miR-133b模拟物和miR-206模拟物抑制了Pax7 mRNA的表达[13]。在翘嘴鳜中miR-1a、miR-133a-3p、miR-206和miR-499是否能够直接调控Pax7的表达进而调控肌肉生长、发育和分化也尚未知。
翘嘴鳜(Siniperca chuatsi)是一种肉食性鱼类,主要捕食小型鱼类及虾类。其具有高蛋白、富含氨基酸且易吸收等特点,具有很高的营养价值[14]。但在自然环境下其生长发育容易受到食物匮乏等自然因素影响,可能导致鱼类肠道功能和肌肉支链氨基酸的显著改变[15-16]。在饥饿期间miRNA对肌肉生长可能有重要的调节作用[17]。根据本实验室已有翘嘴鳜miRNA序列数据库[18],已鉴定出miR-1、miR-133a-3p、miR-133b-3p、miR206和miR-499的序列。miR-133a-3p和miR-133b-3p是miR-133家族的两个成员,并在不同发育阶段miR-133a和miR-133b具有相似的表达模式[19],故本研究对翘嘴鳜胚后miR-1a、miR-133a-3p、miR-206和miR-499在不同发育阶段的白肌和各组织中的表达模式及其在短期饥饿胁迫下的表达特征进行了分析。并通过靶基因在线预测网站RNAhybrid,初步预测4种MyomiRs与Pax7之间的调控关系,为后续研究MyomiRs对翘嘴鳜胚后肌肉发育、饥饿胁迫对MyomiRs的影响以及MyomiRs可能调控的靶基因奠定基础。
1 材料与方法 1.1 实验材料实验所用翘嘴鳜来自湖南省水产科学研究所鳜鱼原种场。
1.2 实验方法 1.2.1 翘嘴鳜胚后不同阶段白肌样品采集翘嘴鳜胚后不同发育时间点记为Dn (出膜后第n天),翘嘴鳜出膜1周后,分别转入水泥池中培育,培育水温为(24±1) ℃,溶解氧为(8.0±0.2) mg/L, pH 7.4~7.7。自开口摄食起,投喂相同的足量适口活饵料鱼。分别在D20、D30、D45、D60、D100和D150随机选取5尾规格大小一致的翘嘴鳜,使用100 mg/L MS-222对翘嘴鳜进行麻醉并于冰上解剖,快速取背鳍起点下背侧的白肌保存于装有1 mL Trizol的离心管中,并用液氮快速冷冻,保存在−80 ℃超低温冰箱内。
1.2.2 翘嘴鳜短期饥饿实验及组织样品收集挑选健康且体重相近的翘嘴鳜(145±12) g 15尾,随机挑选5尾鱼,使用100 mg/L MS-222对翘嘴鳜进行麻醉,在冰上分别取其心、肝、脾、肠、肾、红肌、白肌,并保存于−80 ℃超低温冰箱备用。剩余的10尾鱼均分为两组,对照组分早晚两次给予充足的饵料,实验组不进行饲喂,饥饿胁迫5 d后,使用相同方法麻醉后于冰上取其白肌,并保存于−80 ℃超低温冰箱备用。
1.2.3 翘嘴鳜昼夜节律实验及组织样品收集挑选健康无病且体重相近的翘嘴鳜45尾,体重(145±12) g。采用12 L : 12D的光周期进行30 d的驯养实验。在驯养期间给予充足的饵料。采样时间在一昼夜的9个时间点,每隔3 h采样1次,具体的取样时间和对应区时与朱鑫等[20]实验设计一致。每个时间点随机挑选5尾鱼,分别取适量背鳍起点下背侧白肌组织,用液氮快速冷冻,并保存于−80 ℃超低温冰箱内备用。
1.2.4 RNA提取及cDNA合成所有组织样品的总RNA使用Trizol法提取(RNAiso Plus,宝日医生物,中国),通过超微量分光光度计(NanoPhotometer- NP80, implen,德国)和2%的琼脂糖凝胶电泳检测提取RNA的浓度和质量。取1 μg的总RNA采用TaKaRa公司的PrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real Time)试剂盒合成cDNA第1链。合成的单链cDNA收集保存至−80 ℃。用于miRNA定量的cDNA采用TaKaRa公司的Mir-X™ miRNA First-Strand Synthesis方法。反应条件为37 ℃, 60 min [Poly (A)加尾和反转录反应], 85 ℃, 5 min (酶失活)。模板均稀释50倍用于qRT-PCR反应。
1.2.5 引物设计与合成根据本实验室已有翘嘴鳜miRNA序列数据库[18]设计miR-1a、miR-133a-3p、miR-206、miR-499荧光定量PCR的上游引物,Pax7的cDNA序列(XM_044171555)在NCBI数据库(https://www.ncbi.nlm.nih.gov)查询获得。引物利用Primer 5.0软件进行设计,引物序列见表1,设计的引物由擎科生物有限公司合成。miRNA定量的下游引物和内参基因引物为试剂盒提供。
![]() |
表1 荧光定量引物 Tab. 1 The Primers for RT-qPCR |
荧光定量反应总体系为25 μL,包括SYBR Premix Ex TaqTM II 12.5 μL,反转录合成的cDNA模板1 μL,无酶水9.5 μL,上游引物和下游引物各1 μL。反应按94 ℃预变性3 min, 94 ℃变性5 s, 60 ℃退火,20 s延伸,反应39个循环。
1.2.7 数据处理使用SPSS 19.0软件进行数据统计分析,miRNA和基因的相对表达量采用2−ΔΔCt法计算[21]。采用单因素方差分析(one-way ANOVA)差异性统计检验,所有数据进行Shapiro- Wilk分析以检验数据正态分布性,Levene分析以检验方差齐性,多重比较选择Tukey法,miRNA和基因的相对表达量表示为平均值±标准差($\bar x \pm {\rm{SD}}$),当显著性P<0.05认为两组数据之间差异显著。翘嘴鳜白肌中miR-206和Pax7的一昼夜表达数值在进行显著性分析后,采用MATLAB软件对定量数据进行余弦函数方程式为ƒ(t)=M+ Acos(t/π/12−φ)的拟合。方程字母分别代表:给定时间内基因表达水平f(t);平均值M;时间t;振荡振幅A;峰值相位φ, φ为余弦曲线中基因或miRNA表达量最高点所对应的弧度,通过公式φ×12/π换算成基因或miRNA表达量最高点所对应的时间点。当每个时间点数值差异显著(P<0.05), MATLAB输出P<0.3时,则表示该基因具有昼夜节律性。
2 结果与分析 2.1 miR-1a、miR-133a-3p、miR-206、miR-499在翘嘴鳜不同组织中的表达分析miR-1a、miR-133a-3p、miR-206、miR-499在翘嘴鳜不同组织中的表达如图1所示,miR-1a和 miR-133a-3p在心肌、红肌和白肌的表达为其他组织的20倍以上,在其他组织中的表达极低且之间无显著性差异(P>0.05),表明miR-1a和miR-133a-3p表达具有肌肉特异性。miR-206在红肌中的表达最高,在白肌中的表达次之,并且显著高于其他组织(P<0.05)。miR-499在心肌中表达较高,红肌和白肌中的表达次之,在其他组织中表达较低且之间无显著性差异(P>0.05),表明miR-206和miR-499在肌源性组织中富集性表达。
2.2 miR-1a、miR-133a-3p、miR-206、miR-499在翘嘴鳜胚后不同发育阶段的表达据图2所示,miR-1a、miR-133a-3p和 miR-206 在翘嘴鳜胚后不同发育阶段均有表达,在翘嘴鳜幼鱼发育早期表达水平相对较低,表达丰度随着幼鱼的发育逐渐增加,在D60的表达量相对较高。miR-499在幼鱼发育前期的表达较低,在D100和D150中表达较高。
2.3 miR-1a、miR-133a-3p、miR-206、miR-499在正常投喂和饥饿5 d后翘嘴鳜白肌中的表达分析翘嘴鳜白肌组织的miR-1a、miR-133a-3p、miR-206和miR-499在正常饲喂和饥饿5 d表达见图3。经饥饿5 d处理,实验组miR-1a、miR-133a-3p、miR-206、miR-499的表达均显著上升(P<0.05)。
2.4 miR-1a、miR-133a-3p、miR-206、miR-499与Pax7靶向位点预测通过靶基因在线预测网站RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/)分析,经翘嘴鳜基因组获取Pax7的3′UTR序列,根据miRNA种子序列的靶向互补原则进行配对比较。结果显示,翘嘴鳜Pax7 mRNA的3′UTR序列与miR-1a、miR-133a-3p、miR-206存在结合靶位点(图4)。最小折叠自由能(MFE)分别为−19.8 kcal/mol、−21.3 kcal/mol、−23.5 kcal/mol,结合稳定性高。
![]() |
图1 miR-1a、miR-133a-3p、miR-206、miR-499在翘嘴鳜不同组织中的相对表达丰度不同字母表示不同组织之间存在显著性差异(P<0.05). Fig. 1 Relative expression of miR-1a, miR-133a-3p, miR-206 and miR-499 in different tissues of Siniperca chuatsiDifferent letters indicate significant differences among different tissues (P<0.05). |
![]() |
图2 miR-1a、miR-133a-3p、miR-206和miR-499在翘嘴鳜白肌不同发育阶段的相对表达丰度不同字母表示不同发育阶段之间存在显著性差异(P<0.05). Fig. 2 Relative expression of miR-1a, miR-133a-3p, miR-206 and miR-499 in different developmental stages of Siniperca chuatsi white muscleDifferent letters indicate significant differences among different developmental stages (P<0.05). |
![]() |
图3 正常投喂和饥饿5 d后翘嘴鳜白肌中miR-1a、miR-133a-3p、miR-206、miR-499的表达*表示正常组与饥饿胁迫组表达的显著差异(P<0.05). Fig. 3 Expression of miR-1a, miR-133a-3p, miR-206 and miR-499 in Siniperca chuatsi white muscle with normal feeding and fasting for 5 d* indicates the significant difference in expression between the normal group and the starvation group (P<0.05). |
![]() |
图4 miR-1a、miR-133a-3p、miR-206靶向Pax7 mRNA 3′UTR位点预测 Fig. 4 Prediction of 3′UTR site of Pax7 mRNA targeted by miR-1a, miR-133a-3p and miR-206 |
进一步利用荧光定量PCR检测Pax7在D20、D30、D45、D60、D100和D150的表达,结果表明Pax7在D20的表达量较高,在其他时期表达量较低且无明显差异(图5)。同时检测miR-1a、miR-133a-3p、miR-206以及Pax7在翘嘴鳜白肌的昼夜节律性。结果发现Pax7在D20的表达量较高,在其他时期表达量较低且无明显差异(图5)。miR-1a、miR-133a-3p、miR-206和Pax7的表达均具有昼夜节律性(P<0.05, p<0.3),其中miR-206表达模式呈现光周期降低,暗周期升高,峰值相位位于ZT 0.42 h (zeitgeber time, ZT)。Pax7的表达模式为光周期升高,暗周期降低。峰值相位位于ZT 11.73 h。miR-206的昼夜节律与Pax7的昼夜节律趋势相反。miR-1a和miR-133a-3p呈现昼高夜低的表达模式,峰值相位位于ZT 3~5 h之间(表2,图6)。
![]() |
图5 Pax7在翘嘴鳜胚后不同发育阶段中的相对表达丰度不同字母表示不同发育阶段之间存在显著性差异(P<0.05). Fig. 5 Relative expression of Pax7 in different developmental stages of Siniperca chuatsiDifferent letters indicate significant differences between different development stages (P<0.05). |
![]() |
表2 翘嘴鳜miR-1a, miR-13aa-3p, miR-206和Pax7表达的节律性参数 Tab. 2 Rhythmic parameters of miR-1a, miR-13aa-3p, miR-206 miR-206 and Pax7 expression in Siniperca chuatsi |
根据皮尔曼等级相关系数,将miR-1a、miR- 133a-3p、miR-206和Pax7进行两两相关性分析。miR-206和Pax7在翘嘴鳜昼夜节律(r=−0.749<−0.5)以及胚后不同发育阶段(r=−0.534<−0.5)均呈中度负相关(表3)。推测在翘嘴鳜miR-206可能通过靶向调控Pax7基因的表达,从而影响翘嘴鳜幼鱼肌肉的生长发育。
![]() |
图6 miR-1a (a)、miR-133a-3p (b)、miR-206 (c)和Pax7 (d)在翘嘴鳜白肌中的表达不同字母表示两组数据之间存在显著差异性(P<0.05), X轴中0~12为光照阶段,12~24为黑暗阶段. Fig. 6 Expression of miR-1a (a), miR-133a-3p (b), miR-206 (c) and Pax7 (d) in Siniperca chuatsi white muscleDifferent letters indicate significant differences between each time point (P<0.05). In the X axis, 0–12 is the illumination stage, and 12–24 is the dark stage. |
![]() |
表3 翘嘴鳜白肌中miR-1a、miR-133a-3p、miR-206和Pax7的相关性分析 Tab. 3 Correlation analysis of miR-1a, miR-133a-3p, miR-206 and Pax7 in Siniperca chuatsi white muscle |
MyomiRs是一类在肌源性组织中特异性高表达的miRNA。研究表明,成熟的miR-1仅在人类心肌中表达,而在脑、肾、肝、肺等其他组织中不表达。Sempere等[22]通过Northern印迹分析了在小鼠和人类成年器官中特异性表达的119种miRNA。研究发现,30种miRNA在特定的器官中特异性表达或大量富集。其中miR-1、miR-133a和miR-206属于骨骼肌富集型。miR-499在斑马鱼心肌和骨骼肌中特异性表达[23]。在本研究中,翘嘴鳜miR-1a、miR-133a- 3p、miR-206和miR-499在肌源性组织中的表达显著高于其他组织,其表达特征与其他物种的表达模式类似。但MyomiRs并非只在肌源性组织中表达。研究表明miR-1、miR-133a和miR-206在棕色预脂肪细胞和成熟脂肪细胞中高表达[24]。miR-499在猪(Susscrofa domestica)睾丸组织中高表达,并通过靶向PTEN基因的PI3K/AKT途径促进未成熟支持细胞的增殖[25]。miR-1a、miR- 133a-3p、miR-206和miR-499在翘嘴鳜其他组织中存在一定量的表达,其在翘嘴鳜其他组织中是否发挥调控作用有待进一步研究。骨骼肌是鱼类身体的重要组成部分,骨骼肌约占鱼类体重的40%~60%[26],骨骼肌的发育情况对鱼类的生长发育起到关键作用。而骨骼肌的发育受到内源性的MyomiRs以及饥饿等环境因素的影响。研究表明,miRNA对骨骼肌的生长发育以及组织再生等都发挥重要作用,肌肉特异性和组织富集表达的miRNA参与骨骼肌发育的各个阶段[27-28]。Sui等[6]研究发现从新生山羊到7个月的山羊,miR-1的表达呈现出增加的趋势,并在进一步成熟时降低。miR-1对新生山羊骨骼肌的生长和发育具有重要的调节作用。Zhou等[29]发现在产后第120天的猪背腰最长肌中,miR-1a和miR-133a的表达水平达到最高。在胚后肌纤维生长中发挥重要作用。饥饿是影响器官发育、机体代谢以及后代发育重要的环境因素之一。研究表明,雌性斑马鱼经饥饿胁迫后,出现卵巢发育迟缓、产卵减少以及卵子增大等异常现象。此外,母体饥饿会导致胚胎孵化延迟、发育抑制和幼鱼的运动障碍[30]。饥饿可通过介导代谢从而影响人体的miRNA水平,在禁食10 d后,7种代谢相关miRNA的表达水平显著变化[31]。本研究检测miR-1a、miR-133a-3p、miR-206和miR-499在翘嘴鳜胚后不同发育阶段以及饥饿5 d后的表达。结果表明,miR-1a、miR-133a-3p和miR-206在不同发育阶段翘嘴鳜的白肌中,在D20表达相对较低,随着翘嘴鳜的生长在D60表达含量相对最高,翘嘴鳜白肌中呈现出先上升后下降再上升的表达趋势,与miR-1a、miR-133a-3p、miR-206在猪和山羊等动物中的表达趋势相同,可能在翘嘴鳜中发挥类似的调控作用。MyomiRs可能在翘嘴鳜发育D60发挥重要作用。但其具体的调控作用有待进一步研究。鳜在短期饥饿复投喂1 h后 miR-133a-3p和miR-206的表达量都上升,可能参与鱼类骨骼肌的快速反应信号系统,以调控鱼类骨骼肌的生长[32]。而在短期饥饿胁迫后,miR-1a、miR-133a-3p、miR-206和miR-499的表达均显著上升。与短期饥饿复投喂后miR-133a-3p和miR-206的变化趋势相同。表明骨骼肌可能对饥饿胁迫做出应激反应,通过上调4种MyomiRs的表达来调节代谢等生理过程。
研究表明,静息态肌卫星细胞在多种刺激因素作用下,开始进入激活态,激活后的肌卫星细胞分化产生单核成肌细胞[33]。Pax7是已明确的静息期肌卫星细胞标记物,能够抑制肌卫星细胞的表达,而在肌卫星细胞激活期其表达量明显下调,小鼠肌卫星细胞中的miR-206通过抑制Pax7的表达,促进肌卫星细胞的分化[10-11]。miR-206的敲除会导致Pax3和Pax7蛋白水平的上调,肌卫星细胞的增殖能力增强,肌源性分化受损。miR-206对肌卫星细胞从增殖到分化过程中具有重要的调控作用[5]。本研究通过RNAhybrid 预测miR-1a、miR-133a-3p、miR-206和miR-499作用靶基因,发现Pax7的3′UTR与miR-206具有结合位点。进一步检测Pax7在翘嘴鳜胚后不同发育阶段的表达以及昼夜节律性,发现Pax7与miR-206表达趋势相反,miR-206可能直接调控Pax7的表达,并通过抑制Pax7的表达促进肌肉细胞的分化。
本研究探究翘嘴鳜4种MyomiRs (miR-1a、miR-133a-3p、miR-206、miR-499)的时空表达及其在短期饥饿胁迫下的表达特征,研究表明4种MyomiRs在翘嘴鳜肌源性组织中高表达,可能在翘嘴鳜发育D60发挥重要作用。miR-1a、miR- 133a-3p、miR-206和miR-499可能对饥饿胁迫下翘嘴鳜的应激反应具有重要的调控作用。通过对胚后表达特征以及昼夜节律性分析,推测miR-206可能调控Pax7的表达来调节翘嘴鳜肌卫星细胞的分化。本研究揭示了MymoriRs在翘嘴鳜中的表达特征及其在短期饥饿胁迫下的影响,并进一步预测了miR-206与Pax7之间的调控关系,这有助于深入了解MymoiRs在肌肉发育中的作用机制。
[1] |
Anna C A, Lídia C, Jamileh M, et al. Procyanidins modulate microRNA expression in pancreatic islets[J]. Journal of Agricultural Food Chemistry, 2013, 61(2): 355-363..》Google Scholar
|
[2] |
Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs[J]. Nature Genetics, 2005, 37(7): 766-770..》Google Scholar
|
[3] |
Lee E J, Baek M, Gusev Y, et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors[J]. RNA, 2008, 14(1): 35-42..》Google Scholar
|
[4] |
Taulli R, Bersani F, Foglizzo V, et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation[J]. The Journal of Clinical Investigation, 2009, 119(8): 2366-2378..》Google Scholar
|
[5] |
Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development[J]. Developmental Biology, 2016, 410(1): 1-13..》Google Scholar
|
[6] |
Sui M, Zheng Q, Wu H, et al. The expression and regulation of miR-1 in goat skeletal muscle and satellite cell during muscle growth and development[J]. Animal Biotechnology, 2020, 31(5): 455-462..》Google Scholar
|
[7] |
Mishima Y, Abreu-Goodger C, Staton A A, et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization[J]. Genes Development, 2009, 23(5): 619-632..》Google Scholar
|
[8] |
Zammit P S, Relaix F, Nagata Y, et al. Pax7 and myogenic progression in skeletal muscle satellite cells[J]. Journal of Cell Science, 2006, 119(9): 1824-1832..》Google Scholar
|
[9] |
Zammit P S, Golding J P, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?[J]. Journal of Cell Biology, 2004, 166(3): 347-357..》Google Scholar
|
[10] |
Von M J, Jones A E, Parks R J, et al. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle[J]. Proceedings of the National Academy of Sciences, 2013, 110(41): 16474-16479..》Google Scholar
|
[11] |
Chen J F, Tao Y, Li J, et al. MicroRNA-1 and microRNA- 206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7[J]. Journal of Cell Biology, 2010, 190(5): 867-879..》Google Scholar
|
[12] |
Dey B K, Gagan J, Dutta A. MiR-206 and -486 induce myoblast differentiation by downregulating Pax7[J]. Molecular and Cellular Biology, 2011, 31(1): 203-214..》Google Scholar
|
[13] |
Cui S, Li L, Mubarokah S N, et al. Wnt/beta-catenin signaling induces the myomiRs miR-133b and miR-206 to suppress Pax7 and induce the myogenic differentiation program[J]. Journal of Cellular Biochemistry, 2019, 120(8): 12740-12751..》Google Scholar
|
[14] |
Zhang J G, Shen Y J, Zhang C F. Advances in Research on Muscle Nutritional Value of Siniperca chuatsi[J]. Food Research And Development, 2019, 40(22): 209-214. [张家国,沈益娟,张长峰. 翘嘴鳜肌肉营养价值研究进展[J]. 食品研究与开发,2019, 40(22): 209-214.].》Google Scholar
|
[15] |
Day R D, Tibbetts I R, Secor S M. Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes[J]. Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology, 2014, 184(4): 497-512..》Google Scholar
|
[16] |
Li L, Chu W Y, Pan Y X, et al. Effects of short-term starvation on KLF15-BCAA signaling pathway in the muscle of Procypris merus[J]. Genomics and Applied Biology, 2021, 40(5-6): 1928-1933. [李莉,褚武英,潘亚雄,等. 短期饥饿对禾花鲤肌肉KLF15-BCAA信号通路影响研究[J]. 基因组学与应用生物学,2021, 40(5-6): 1928-1933.].》Google Scholar
|
[17] |
Lou Z, Zhao Y, Zhang Y, et al. MiR-2014-5p and miR-1231- 5p regulate muscle growth of Larimichthys crocea by targeting MSTN gene[J]. Comparative Biochemistry and Physiology, 2021, 252: 110535..》Google Scholar
|
[18] |
Chu W Y, Liu L S, Li Y L, et al. Systematic identification and differential expression profiling of MicroRNAs from white and red muscles of siniperca chuatsi[J]. Current Molecular Medicine, 2013, 13(8): 1397-1407..》Google Scholar
|
[19] |
Koutsoulidou A, Mastroyiannopoulos N P, Furling D, et al. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle[J]. BMC Developmental Biology, 2011, 11(1): 1-9..》Google Scholar
|
[20] |
Zhu X, Ye S H, Li Y, et al. Temporal and spatial expression characteristics of miR-21 and regulation of adaptive rhythm expression under short-term starvation stress in Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2022, 29(5): 665-672. [朱鑫,叶苏杭,李源,等. 鳜 miR-21 的时空表达特征及短期饥饿胁迫下的适应性节律表达调控[J]. 中国水产科学,2022, 29(5): 665-672.].》Google Scholar
|
[21] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
|
[22] |
Sempere L F, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation[J]. Genome Biology, 2004, 5(3): R13..》Google Scholar
|
[23] |
Kloosterman W P, Steiner F A, Berezikov E, et al. Cloning and expression of new microRNAs from zebrafish[J]. Nucleic Acids Research, 2006, 34(9): 2558-2569..》Google Scholar
|
[24] |
Walden T B, Timmons J A, Keller P, et al. Distinct expression of muscle-specific microRNAs (Myomirs) in brown adipocytes[J]. Journal Of Cellular Physiol, 2009, 218(2): 444-449..》Google Scholar
|
[25] |
Gao H, Chen B, Luo H, et al. miR-499 promotes immature porcine Sertoli cell growth through the PI3K/AKT pathway by targeting the PTEN gene[J]. Reproduction, 2020, 159(2): 145-157..》Google Scholar
|
[26] |
Weatherley A H, Gill H, Casselman J M. Biology of Fish Growth[M]. London: Academic Press, 1987: 139-146..》Google Scholar
|
[27] |
Li F J, Li M S, Fu C P, et al. Research progress of miRNA in aquatic animals[J]. Journal of Fisheries of China, 2016, 6(40): 976-992. [李法君,李明爽,付春鹏,等. microRNA在水产动物中的研究进展[J]. 水产学报,2016, 6(40): 976-992.].》Google Scholar
|
[28] |
Du T N, Liu J M, Shi X E. Effects of competing endogenous RNA on proliferation and differentiation of skeletal muscle cells[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(9): 1131-1137. [杜天宁,刘捷明,史新娥. 竞争性内源RNA在骨骼肌细胞增殖分化中的作用[J]. 中国生物化学与分子生物学报,2021, 37(9): 1131-1137.].》Google Scholar
|
[29] |
Zhou B, Liu H L, Shi F X, et al. MicroRNA expression profiles of porcine skeletal muscle[J]. Animal Genetics, 2010, 41(5): 499-508..》Google Scholar
|
[30] |
Fan X, Hou T, Sun T, et al. Starvation stress affects the maternal development and larval fitness in zebrafish (Danio rerio)[J]. Science of the Total Environment, 2019, 695: 133897..》Google Scholar
|
[31] |
Ravanidis S, Grundler F, de Toledo F W, et al. Fasting- mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans[J]. Food and Chemical Toxicology, 2021, 152: 112187..》Google Scholar
|
[32] |
Zhu X, Chen D, Hu Y, et al. The microRNA signature in response to nutrient restriction and refeeding in skeletal muscle of Chinese perch (Siniperca chuatsi)[J]. Marine Biotechnology, 2015, 17(2): 180-189..》Google Scholar
|
[33] |
Morgan J E, Partridge T A. Muscle satellite cells[J]. International Journal of Biochemistry, 2003, 35(8): 1151- 1156..》Google Scholar
|