2. 中国水产科学研究院东海水产研究所,农业农村部东海渔业资源开发利用重点实验室,上海 200090
2. Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
日本鳗鲡(Anguilla japonica)也称鳗鲡,是典型的长距离降海洄游型鱼类,在淡水中生长,海水中繁殖[1]。通常,每年10—12月,鳗鲡亲本开始进行降海生殖洄游,性腺在洄游期间逐步发育成熟,于次年3—4月在西北太平洋地区的马里亚纳群岛西部附近水域进行产卵活动[2-3]。有学者通过耳石推算法估算出鳗鲡性腺发育需要150~180 d[4]。作为东亚地区最有价值的物种之一,鳗鲡的市场需求较高。但由于对早期鳗苗资源的过度捕捞和不断恶化的环境条件,鳗鲡现处于极度濒危的状态[5]。尽管日本在2010年初步实现了鳗鲡的全人工繁殖,但在人工条件下实现亲鳗性腺的良好发育尤为困难。有报道指出,长江靖江河段的野生降海鳗鲡的性腺能发育到初级卵黄球阶段[6]。然而,在人工养殖条件下,若始终在淡水中养殖,鳗鲡的性腺不能发育[7]。在不同梯度的恒定盐度中驯养2个月,雌鳗的卵母细胞能发育到脂肪泡时期[8]。同时,有研究发现,雌性欧洲鳗鲡(Anguilla anguilla)在一定的流速中游动数周后,其眼径、性腺重和卵母细胞直径均显著增加,且卵母细胞进入脂肪泡时期[9-11]。鳗鲡的性腺发育受到促性腺激素(gonadotrophic hormone, GtH)的调节,GtH主要包括卵泡刺激素(follicle-stimulating hormone, FSH)和黄体生成素(luteinizing hormone, LH)。其中,FSH主要通过刺激性类固醇激素的合成,在鳗鲡性腺发育的早期阶段发挥重要的促进作用[2,12]; LH通过刺激17α-20β-双羟孕酮(DHP)的合成,在性腺发育后期促进卵巢的最终成熟[13-14]。
目前,日本鳗鲡的降海洄游路线存在3种假说[15]: (1) 鳗鲡在从日本迁徙的初始阶段沿着北部黑潮向东移动,然后向南迁移到产卵区[16]; (2) 鳗鲡穿过黑潮,从它们的物种范围内地区直接迁移到它们的产卵区[17]; (3) 鳗鲡通过向黑潮和北赤道洋流的上游方向游泳到达产卵区[18]。从以上3种假说中不难发现,无论自然条件下经历的是哪条迁移路线,在淡水中生长的鳗鲡在降海生殖洄游的过程中,都会经过从淡水到河口半咸水再到海水区的盐度变化过程。我国长江流域生长的鳗鲡在生殖洄游过程中离开河口后,在东海大陆架会经历水体盐度从25到盐度35的转变[19]。离开东海大陆架进入西太平洋后,鳗鲡亲体所经历的水体盐度稳定在35左右[20],该盐度与远洋调查中马里亚纳海沟西部产卵场的盐度接近[21]。在生殖洄游期间,鳗鲡除经历不同水体盐度外,还经历着流水刺激。通过分离式卫星标志研究发现,鳗鲡在黑潮中的游泳速度为17.48 cm/s[22]。
本研究通过模拟鳗鲡生殖洄游过程中的盐度变化,同时设置同步盐度驯化的流水组,研究盐度驯化中静水和流水对鳗鲡形态特征、性腺发育及促性腺激素的影响,为鳗鲡繁殖生物学研究提供基础资料和参考。
1 材料与方法 1.1 材料实验用鱼为购自清流县龙源生态水产养殖场人工池塘养殖的5龄雌性鳗鲡,全长(74.24±6.37) cm、体重(709.03±141.08) g。雌鳗从养殖场运回实验室后,放入曝气淡水中暂养7 d。
1.2 实验设计实验开始前,雌鳗使用曝气淡水养殖150 d后,其形态特征和性腺发育与初始对照组均无显著性差异,在此基础上开展盐度驯化的正式实验。为了解流水对雌鳗性腺发育的影响,本实验除设置不同盐度驯化的静水组外,还设置了同步盐度驯化的流水组。96尾雌鳗随机分为静水组和流水组,放入直径1.8 m、高1.2 m、容积2000 L的圆形玻璃钢桶中。静水组和流水组各设3个平行组,每桶16尾鱼。实验开始前,每组从平行组中随机取6尾雌鳗,作为该组的对照组(盐度0)。随后流水组中开启恒定功率的直流泵,使流速保持在(27.5± 7.50) cm/s。在第1、30、60天将流水组和静水组的盐度同步直接调整为15、25、35,使静水组和流水组雌鳗均在盐度15、25、35中依次驯化30、30、90 d,每30 d在盐度调整前对各组随机采样6尾。实验期间,不投喂饵料,在玻璃钢桶的上方均用黑色遮阳网进行遮光处理,水温控制在(20±0.5) ℃,溶解氧≥6.5mg/L, pH7.3~7.4。
1.3 生物学数据采集和组织学观察每次采样后,用0.05%的丁香酚麻醉雌鳗。从雌鳗尾静脉抽取血液,凝固离心,吸取上层血清,保存于−80 ℃冰箱内待用试剂盒(江苏科特生物科技有限公司)检测促性腺激素含量。测量全长、体重、胸鳍长、垂直眼径和水平眼径、胸围(PC)等形态学数据;解剖测量性腺重、消化道重(消化道包括胃和肠)以及肝脏重。依据公式计算雌鳗的形态学和性腺发育的相关指数[23-24]: (1) 胸鳍指数(PI)=胸鳍长(cm)/全长(cm); (2) 眼径指数(EI)= {[(垂直眼径+水平眼径)/4×π/全长(cm)}×100%; (3) 性体指数(GSI)=性腺重(g)/体重(g)×100%; (4) 消化道指数(DTI)=消化道重(g)/体重(g)×100%; (5) 肝脏指数(LI)=肝脏重(g)/体重(g)×100%。
取部分性腺组织用4%多聚甲醛固定24 h以上,采用石蜡切片法,将固定好的性腺用石蜡包埋,以厚度5 μm进行连续切片,HE染色,在光学显微镜下观察和拍照。使用TUSEM软件测量雌鳗的卵母细胞直径(OD),平均卵母细胞直径(OD)的计算参考Mikawa等[25]的方法。雌鳗卵母细胞发育分期参考林鼎等[26]和Yamamoto等[27]的方法,以切片中相应时相卵母细胞占比超过60%作为划分标准。
1.4 数据统计用SPSS 26.0软件对实验数据进行分析,使用单因素方差分析(one-way ANOVA)分别对静水组和流水组在不同盐度驯化阶段下的形态特征、性腺发育及促性腺激素含量进行显著性差异分析,采用LSD和Duncan’s进行多重比较,P<0.05认为差异显著;同时使用独立样本T检验对流水组与静水组在同一驯化盐度下的形态特征、性腺发育及促性腺激素含量进行显著性差异分析,P<0.05认为差异显著。分析结果用平均值±标准差($\bar x \pm {\rm{SD}}$)表示。
2 结果与分析 2.1 盐度驯化下静水组和流水组中雌鳗的生长情况整个实验期间,静水组和流水组的雌鳗存活率均为100%。盐度驯化对静水组和流水组雌鳗的体长(TL)、体重(BW)和体长/体重(TL/BW)均无显著性影响(P>0.05)(表1)。静水组中雌鳗的TL、BW和TL/BW在同一盐度下均与流水组也无显著性差异(P>0.05)。
![]() |
表1 盐度驯化下静水组与流水组中雌鳗的生长情况 Tab. 1 Growth conditions of female Anguilla japonica in still water group and flowing water group under salinity acclimation |
盐度驯化对静水组和流水组中雌鳗的胸围(PC)和胸鳍指数(PI)均有显著影响(P<0.05)(表2)。从盐度0~35依次驯化至90 d时,静水组和流水组雌鳗的PC和PI均随盐度的升高而显著增加;在盐度35中继续驯化至150 d时,静水组和流水组雌鳗的PC和PI虽均小幅上升,在第150天均达最大,但两组在盐度35中雌鳗的PC和PI均不存在显著性差异(P>0.05)。盐度驯化虽对静水组和流水组雌鳗的眼径指数(EI)均无显著影响(P>0.05),但两组雌鳗的EI均随盐度的升高呈递增趋势。盐度驯化过程中,静水组雌鳗的PC、PI和EI在同一盐度下与流水组均无显著性差异(P>0.05)。
![]() |
表2 盐度驯化下静水组与流水组中雌鳗的形态学指标 Tab. 2 Morphological indices of female Anguilla japonica in still water group and flowing water group under salinity acclimation |
盐度驯化对静水组和流水组中雌鳗的消化道指数(DTI)均无显著性影响(P>0.05),但对两组雌鳗的性体指数(GSI)和肝脏指数(LI)均有显著性影响(P<0.05)(表3)。从盐度0~35依次驯化至90 d时,静水组和流水组雌鳗的GSI和LI均随盐度的升高而显著增加(P<0.05)。在盐度35中继续驯化至150 d时,静水组和流水组雌鳗的GSI和LI虽小幅上升,在第150天均达到最大,但两组在盐度35中雌鳗的GSI和LI均不存在显著性差异(P>0.05)。盐度驯化过程中,静水组雌鳗的GSI、DTI和LI与同一盐度下的流水组均无显著性差异(P>0.05)。
![]() |
表3 盐度驯化下静水组与流水组中雌鳗的性腺发育相关指数 Tab. 3 Gonadal development-related indices of female Anguilla japonica in still water group and flowing water group under salinity acclimation |
盐度驯化对静水组和流水组中雌鳗的卵母细胞发育均有显著性影响(P<0.05)(表4,图1)。从盐度0~35依次驯化至90 d时,静水组和流水组雌鳗的卵母细胞直径(OD)均随盐度的升高而显著增加。期间,静水组中雌鳗的卵母细胞虽始终处于脂肪泡时期,但随着直径逐渐变大,细胞核中大核仁逐渐裂解(图1a-c);小核仁的数目逐渐增加,体积变小并紧贴核膜内侧分布(图1d-f);脂肪泡随着卵母细胞发育逐渐由细胞核向外呈环状延伸,数量增加(图1b-d)。流水组中雌鳗的卵母细胞在驯化期间的发育趋势与静水组基本一致。不同的是,流水组雌鳗的OD显著高于同一盐度下的静水组(P<0.05);并在盐度35驯化30 d后,卵母细胞由前期的脂肪泡时期进入到初级卵黄球时期,其最明显的特征是在细胞膜的周边开始出现卵黄球,并在细胞膜内侧呈环状分布,此时的脂肪泡充满整个细胞质(图1j)。
![]() |
表4 盐度驯化下静水组与流水组中雌鳗卵母细胞直径与发育时相变化 Tab. 4 Changes in the diameter and developmental phases of female Anguilla japonica oocytes in still water group and flowing water group under salinity acclimation. |
![]() |
图1 盐度驯化下静水组与流水组中雌鳗的卵巢组织切片图a–f为静水组在不同盐度驯化阶段下的卵母细胞光学显微镜图片;g–l为流水组在不同盐度驯化阶段下的卵母细胞光学显微镜图片. a、g:示盐度0下的卵母细胞(对照组); b、h:示盐度15驯化后的卵母细胞(第30天取样); c、i:示盐度25驯化后的卵母细胞(第60天取样); d、j:示盐度35驯化后的卵母细胞(第90天取样); e、k:盐度35驯化后的卵母细胞(第120天取样); f、l:盐度35驯化后的卵母细胞(第150天取样). NC:细胞核;LN:大核仁;SN:小核仁;OD:脂肪泡;YG:卵黄球. Fig. 1 Photomicrographs of histological sections for female Anguilla japonica ovary in still water group and flowing water group under salinity acclimationa-f show histological micrograph of oocytes in still water group at different salinity acclimation stages. g-l show histological micrograph of oocytes in flowing water group at different salinity acclimation stages. a、g: oocytes at salinity 0 (control group); b、h: salinity 15 acclimated oocytes (Sampled on day 30); c、i: salinity 25 acclimated oocytes (Sampled on day 60); d、j: salinity 35 acclimated oocytes (Sampled on day 90); e、k: salinity 35 acclimated oocytes (Sampled on day 120); f、l: salinity 35 acclimated oocytes (Sampled on day 150). NC: nucleus; LN: large nucleoli; SN:small nucleoli; OD: oil drop; YG: yolk globule. |
在盐度35中继续驯化至150 d时,静水组和流水组雌鳗的OD虽均小幅增加,在第150天均达到最大,分别为(143.64±9.56) μm和(164.75± 9.35) μm,但两组在盐度35中雌鳗的OD均不存在显著性差异(P>0.05),且卵母细胞所处发育阶段均未发生变化,分别在脂肪泡时期与初级卵黄球时期(表4,图1d-f、图1j-l)。
2.5 盐度驯化下静水组与流水组中雌鳗血清促性腺激素含量的变化盐度驯化对静水组和流水组中雌鳗血清的黄体生成素(LH)含量均无显著影响(P>0.05)(表5)。整个盐度驯化期间,静水组雌鳗的LH含量与同一盐度下的流水组也无显著差异(P>0.05)。盐度驯化对静水组和流水组中雌鳗的卵泡刺激素(FSH)含量均有显著影响(P<0.05)。经盐度15驯化30 d后,静水组中雌鳗的FSH含量与初始淡水组相比呈显著升高,达(36.79±3.09) U/L (P<0.05),但与静水组后续各驯化盐度下均不存在显著差异(P>0.05)。从盐度0~25依次驯化至60 d时,流水组各盐度下的FSH无显著差异(P>0.05)。驯化盐度调整为35后,流水组的FSH含量比盐度25显著增加(P<0.05),达(39.66±1.78) U/L,但驯化盐度35各流水组的FSH含量均无显著性差异(P>0.05)。整个盐度驯化过程中,流水组雌鳗的FSH含量与同一盐度下的静水组均呈显著差异(P<0.05)。经盐度35驯化后,流水组雌鳗的FSH含量均显著高于同一驯化时期的静水组(P<0.05)。
![]() |
表5 盐度驯化下静水组与流水组中雌鳗促性腺激素含量的变化情况 Tab. 5 Changes in the gonadotropin levels of female Anguilla japonica serum in still water group and flowing water group under salinity acclimation |
作为降海产卵型鱼类,鳗鲡在生殖洄游过程中会经历各种环境因子的变化,形态上也会随之发生相应变化。如鳗鲡从淡水进入到半咸水的河口水域后,体色加深,眼径变大以及胸鳍变长,以适应后续海水中黑暗及高渗透压的环境[28]。大量研究表明,鳗鲡的胸围、胸鳍长和眼径的变化与其性腺发育有着密切的关系[29-31]。郭弘艺等[32]通过对长江口鳗鲡降海繁殖群体进行研究发现,鳗鲡性腺发育过程中的眼径和胸鳍长呈递增趋势。
本研究中,整个驯化期间,静水组与流水组中雌鳗的存活率为100%。静水组和流水组的体长(TL)、体重(BW)和体长/体重(TL/BW)在各驯化阶段均无显著性差异,静水组的上述3个指标与同一盐度下的流水组也无显著性差异。这表明本研究中鳗鲡的存活和生长不受驯化盐度和水流刺激的影响。从盐度0~35依次驯化至90 d时,静水组和流水组雌鳗的胸围(PC)、胸鳍指数(PI)和眼径指数(EI)均随盐度的升高呈递增趋势,而预实验中经过150 d淡水养殖的雌鳗在这些形态指标上无显著性差异,这表明一定范围内盐度的升高能够促进鳗鲡的形态发育。整个盐度驯化过程中,同一盐度下静水组与流水组雌鳗的PC、PI和EI均无显著性差异,表明鳗鲡的形态学变化主要受盐度而非流水的影响。
3.2 盐度驯化对鳗鲡性腺发育及促性腺激素的影响盐度对海水鱼类的性腺发育具有重要影响[33]。翟毅[34]采用不同盐度处理性成熟(IV期和V期)的雌性金钱鱼(Scatophagus argus) 20 d后,在盐度25时其卵巢的发育时期无变化,但在盐度5和盐度35中处理一段时间后,卵巢均退化至II期和III期。鲻(Mugil cephalus)一直在淡水中养殖,性腺不能成熟,但经过一段时间的海水养殖后,性腺可以成熟并排卵[32]。Chino等[35]通过耳石微化学分析,发现鳗鲡的性体指数与平均Sr∶Ca比呈显著负相关关系,表明在鳗鲡的生活史中,其性腺发育与栖息水体环境的盐度有关。
随着性腺的发育,鳗鲡的肝脏会对营养物质进行累积,合成卵母细胞发育所需的卵黄蛋白原[36];同时消化道会发生退化以给性腺足够的空间进行增长[37]。大量研究表明,鳗鲡的性体指数(GSI)、肝脏指数(LI)和卵母细胞直径(OD)随着性腺的发育均显著增加,消化道指数(DTI)随着性腺的发育显著降低[8,38]。本研究发现,从盐度0~35依次驯化至90 d时,静水组雌鳗的GSI、LI和OD均随盐度的升高显著增加,表明一定范围内盐度的升高能促进鳗鲡的性腺发育。整个盐度驯化过程中,静水组雌鳗的DTI较淡水对照组无显著变化,表明消化道未发生显著退化。分析认为,尽管雌鳗的GSI在盐度驯化过程中显著升高,但幅度较小,初始为(1.07±0.22)%,最高达(1.65±0.14)%,而在产卵场鳗鲡的性体指数最高可达47.8%[39-40]。分析认为,为了给性腺的发育提供更大的空间,消化道的显著退化可能发生在性腺呈极显著增长的时期。
张洁明等[41]研究发现,在鳗鲡降海洄游初期,鳗鲡性腺大多处于单层滤泡期和脂肪泡出现期。这与本研究中雌鳗在淡水对照组(盐度0)时的性腺发育时期一致(图1a)。张森[8]使用恒定的淡水、1/4海水、1/2海水和全海水(盐度约28)对鳗鲡养殖9周,发现雌鳗在盐度14和28最多能发育到脂肪泡时期。本研究中,尽管静水组雌鳗的卵母细胞直径在盐度驯化中随盐度增加呈上升趋势,但卵母细胞的发育时相一直停留在脂肪泡时期(图1d-f)。同时,尽管在盐度15驯化30 d 后,日本鳗鲡性腺早期发育所需的卵泡刺激素(FSH)含量比初始淡水组显著升高,但与后续各盐度驯化下的FSH含量均无显著性差异;促进雌鳗性腺晚期发育的黄体生成素(LH)在各盐度驯化阶段也均无显著性变化。据此分析,盐度作为单一因子不足以使雌鳗的卵母细胞进一步发育至后续时期。
3.3 水流对雌性鳗鲡性腺发育及促性腺激素的影响长距离洄游的鱼类通常以最适的速度运动[42],受洄游时间的影响,需尽早到达产卵场以提高繁殖成功率[43-44]。研究发现,欧洲鳗鲡(Anguilla anguilla)在产卵洄游过程中游泳速度为5~89 cm/s,平均速度为15.97 cm/s[45]。自然状态下的欧洲鳗鲡经过2~6周的流水刺激,卵母细胞大多由卵原细胞期进入脂肪泡期。若无流水刺激,其卵母细胞基本都处于卵原细胞期,这一结果表明,一定的流速能促进欧洲鳗鲡的性腺发育[10]。吴盟[37]也发现流水有利于星康吉鳗(Conger myriaster)的性腺发育并能提高鱼体的免疫能力。
鳗鲡作为长距离降海洄游鱼类,其洄游过程中同样经历环境中的流水刺激。Higuchi等[46]采用弹出式卫星标记测得鳗鲡在日本东部、小笠原群岛南部和产卵区的游泳速度为7.29~50.13 cm/s。本研究发现,流水组中雌鳗的性体指数(GSI)、肝脏指数(LI)和消化道指数(DTI)在整个盐度驯化过程中的变化趋势与静水组一致,且与在同一驯化盐度下的静水组均无显著性差异。不同的是,流水组的卵母细胞直径(OD)显著高于同一驯化盐度下的静水组,且在盐度35驯化30 d后,流水组雌鳗的卵母细胞由前期的脂肪泡时期进入了初级卵黄球时期(图1j)。这表明流水刺激能够起到加速卵母细胞发育的作用。同时,在盐度35驯化30 d后,流水组中的卵泡刺激素(FSH)相较于前期的各盐度驯化阶段呈显著上升,且显著高于同一盐度驯化下的静水组。进一步说明水流可以通过刺激雌鳗FSH的分泌从而促进卵母细胞卵黄球的累积。这与以往研究中FSH刺激性类固醇激素的合成,从而促进肝脏合成卵黄生成素(VTG),使卵黄在卵母细胞中大量累积的结果一致[47-48]。柳凌等[49]研究发现,鳗鲡的游动能促进肌肉中的脂肪酸转为性腺发育所需要的脂肪酸,但流水促进鳗鲡性腺发育的机制是通过其运动消耗骨骼肌的脂肪或是刺激其他器官所导致还有待进一步研究。
4 结论对淡水养殖的雌鳗进行盐度驯化后,雌鳗的形态学及性腺发育相关指标大多数发生了显著变化,表明盐度是雌性鳗鲡性腺发育的重要启动因子。在同一驯化盐度下,流水组中雌鳗的卵母细胞发育比静水组更快,卵母细胞直径也更大,在盐度35中驯化后卵泡刺激素合成更多,表明流水刺激能加速卵母细胞的早期发育。研究结果为后续开展日本鳗鲡繁殖生物学研究提供了基础资料和参考。
[1] |
Dufour S, Rousseau K, Kapoor B G. Metamorphosis in fish[M]. Enfield: Science Publishers, 2012..》Google Scholar
|
[2] |
Kamei H, Kaneko T, Aida K. Steroidogenic activities of follicle-stimulating hormone in the ovary of Japanese eel, Anguilla japonica[J]. General & Comparative Endocrinology, 2006, 146(2): 83-90..》Google Scholar
|
[3] |
Tsukamoto K. Discovery of the spawning area for Japanese eel[J]. Nature, 1992, 356(6372): 789-791..》Google Scholar
|
[4] |
Tzeng W N, Tsai Y C. Otolith microstructure and daily age of Anguilla japonica, Temminck & Schlegel elvers from the estuaries of Taiwan with reference to unit stock and larval migration[J]. Journal of Fish Biology, 1992, 40(6): 845-857..》Google Scholar
|
[5] |
Tsukamoto K. Advances in aquaculture for the production of artificial glass eel to help conserve Anguillid eel populations worldwide[C]//The University of Tokyo, Japan: Presented at the World Fisheries Congress, Edinburgh. 2013..》Google Scholar
|
[6] |
Gong X L, Wang D H, Bao B L, et al. Gonadal development and silvering of the Japanese eel (Anguilla japonica) in the Yangtze River during downstream migration[J]. Aquaculture and Fisheries, 2017, 2(4): 173-178..》Google Scholar
|
[7] |
Huang D M, Chen S Q. Exploring on the life cycle and artificial breeding of eel (Anguilla)[J]. China Biotechnology, 1997, 17(2): 2-11. [黄大明,陈世群. 鳗鲡的生活史和人工育苗技术探讨[J]. 中国生物工程杂志,1997, 17(2): 2-11.].》Google Scholar
|
[8] |
Zhang S. Study on mechanisms of effect of salinity on gonadal development of cultured Anguilla japonica[J]. Xiamen: Jimei University, 2012. [张森. 盐度影响人工养殖日本鳗鲡性腺发育的机理研究[D]. 厦门:集美大学,2012.].》Google Scholar
|
[9] |
van den Thillart G, Palstra A, van Ginneken V. Simulated migration of European silver eel; swim capacity and cost of transport[J]. Journal of Marine Science and Technology, 2007, 15(5): Article No.1..》Google Scholar
|
[10] |
Palstra A, Curiel D, Fekkes M, et al. Swimming stimulates oocyte development in European eel[J]. Aquaculture, 2007, 270(1-4): 321-332..》Google Scholar
|
[11] |
van Ginneken V, Dufour S, Sbaihi M, et al. Does a 5500-km swim trial stimulate early sexual maturation in the European eel (Anguilla anguilla L.)?[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2007, 147(4): 1095-1103..》Google Scholar
|
[12] |
Ozaki Y, Ishida K, Saito K, et al. Immunohistochemical changes in production of pituitary hormones during artificial maturation of female Japanese eel Anguilla japonica[J]. Fisheries Science, 2007, 73(3): 574-584..》Google Scholar
|
[13] |
Senthilkumaran B, Yoshikuni M, Nagahama Y. A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation[J]. Molecular and Cellular Endocrinology, 2004, 215(1-2): 11-18..》Google Scholar
|
[14] |
Lin H R. The interactions of neuroendocrine regulation on reproduction and growth in fish[J]. Zoological Research, 2000, 21(1): 12-17. [林浩然. 神经内分泌因子调控鱼类生殖和生长的相互作用[J]. 动物学研究,2000, 21(1): 12-17.].》Google Scholar
|
[15] |
Tsukamoto K. Oceanic migration and spawning of anguillid eels[J]. Journal of Fish Biology, 2009, 74(9): 1833-1852..》Google Scholar
|
[16] |
Tsukamoto K. Freshwater fishes migrating between river and the sea[M]. Tokyo: Tokai University Press, 1994..》Google Scholar
|
[17] |
Matsui I. Eel Biology[M]. Tokyo: Kouseisha-Kouseikaku, 1972..》Google Scholar
|
[18] |
Yokose H. Geological approach to the spawning sites of the Japanese eel[J]. Kaiyo Monthly Special, 2008, 48: 45-58..》Google Scholar
|
[19] |
Xu F. Spatio-temporal variation of salinity field in the East China Sea and adjacent Northwest Pacific Ocean from 1871 to 2010[D]. Shanghai: Shanghai Normal University, 2019. [徐芬. 1871——2010年东海及毗邻的西北太平洋海域盐度场的时空变化分异[D]. 上海:上海师范大学,2019.].》Google Scholar
|
[20] |
Nie X W. Water Sources of the Pacific equatorial undercurrent and their main pathways[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2017. [聂珣炜. 太平洋赤道潜流的水团来源及其输运路径[D]. 青岛:中国科学院海洋研究所,2017.].》Google Scholar
|
[21] |
Takeuchi A, Higuchi T, Watanabe S, et al. Several possible spawning sites of the Japanese eel determined from collections of their eggs and preleptocephali[J]. Fisheries Science, 2021, 87(3): 339-352..》Google Scholar
|
[22] |
Manabe R, Aoyama J, Watanabe K, et al. First observations of the oceanic migration of Japanese eel, from pop-up archival transmitting tags[J]. Marine Ecology Progress Series, 2011, 437: 229-240..》Google Scholar
|
[23] |
Han Y S, Tzeng W N, Liao I C. Gonadotropin induced synchronous changes of morphology and gonadal development in the Japanese eel Anguilla japonica[J]. Journal of Fisheries Society of Taiwan, 2007, 33(4): 333-343..》Google Scholar
|
[24] |
Pankhurst N W. Relation of visual changes to the onset of sexual maturation in the European eel Anguilla anguilla (L.)[J]. Journal of Fish Biology, 1982, 21(2): 127-140..》Google Scholar
|
[25] |
Mikawa N, Yamada Y, Horie N, et al. A preliminary experiment regarding the natural induction of gonadal development in female Japanese eels without hormone treatment[J]. Aquaculture Research, 2019, 50(12): 3749-3754..》Google Scholar
|
[26] |
Lin D, Lin H R. Studies on the breeding biology of the eel (Anguilla japonica Temminck & Chlegel) 3. Histological and cytological studies on the gonadal development of eel[J]. Acta Hydrobiologica Sinica, 1984, 8(2): 157-170. [林鼎,林浩然. 鳗鲡繁殖生物学研究III. 鳗鲡性腺发育组织学和细胞学研究[J]. 水生生物学集刊,1984, 8(2): 157-170.].》Google Scholar
|
[27] |
Yamamoto K, Omori M, Yamauchi K. Oogenesis of the Japanese eel[J]. Nihon-suisan-gakkai-shi, 1974, 40(1): 9-15..》Google Scholar
|
[28] |
Okamura A, Oka H P, Horie N, et al. Assessing sexual maturity of feminized Japanese eel Anguilla japonica by measuring eye size[J]. Aquaculture International, 2009, 17(1): 91-99..》Google Scholar
|
[29] |
Sudo R, Suetake H, Suzuki Y, et al. Dynamics of reproductive hormones during downstream migration in females of the Japanese eel, Anguilla japonica[J]. Zoological Science, 2011, 28(3): 180-188..》Google Scholar
|
[30] |
Noriaki M, Seishi H, Toshihiro W, et al. Morphological and physiological characteristics of an oceanic-migrating Japanese eel Anguilla japonica off Fukushima, Japan[J]. Coastal Marine Science, 2015, 38(1): 8-11..》Google Scholar
|
[31] |
Shimizu A, Ijiri S, Izumi H, et al. Histological evidence of multiple spawning in wild female Japanese eel Anguilla japonica[J]. Zoological Studies, 2021, 60: e61..》Google Scholar
|
[32] |
Guo H Y, Zheng L, Ye Y M, et al. Silvering indexes for spawning migratory population of the Japanese eel Anguilla japonica in the Yangtze River estuary, China[J]. Acta Hydrobiologica Sinica, 2019, 43(1): 133-141. [郭弘艺,郑丽,叶亚蒙,等. 长江口日本鳗鲡降海产卵洄游群体的银化指标研究[J]. 水生生物学报,2019, 43(1): 133-141.].》Google Scholar
|
[33] |
You H Z, Zheng Y K, You G C. The research progress on the effects of different salinities on the biology of fish aquaculture[J]. Hebei Fisheries, 2013(3): 47-52. [尤宏争,郑艳坤,尤广超. 不同盐度对鱼类养殖生物学的影响研究进展[J]. 河北渔业,2013(3): 47-52.].》Google Scholar
|
[34] |
Zhai Y. The molecular mechanism of ovarian development influence by salinity in spotted scat (Scatophagus argus)[D]. Zhanjiang: Guangdong Ocean University, 2021. [翟毅. 盐度影响金钱鱼卵巢发育分子机制的初步研究[D]. 湛江:广东海洋大学,2021.].》Google Scholar
|
[35] |
Chino N, Imai C, Sakai H, et al. Differences in the maturation level among life histories of the Japanese eel Anguilla japonica in the Nagata River, Japan[J]. Oceanological and Hydrobiological Studies, 2017, 46(4): 472-477..》Google Scholar
|
[36] |
Wang Y S, Lou S W. Structural and expression analysis of hepatic vitellogenin gene during ovarian maturation in Anguilla japonica[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2006, 100(4-5): 193-201..》Google Scholar
|
[37] |
Wu M. The impact of flowing water and starvation on gonad development during artificial ripening of the conger eel (Conger Myriaster)[D]. Shanghai: Shanghai Ocean University, 2020. [吴盟. 星康吉鳗的人工促熟及饥饿、流水因素对性腺发育影响的研究[D]. 上海:上海海洋大学,2020.].》Google Scholar
|
[38] |
Lai X J, Chen S X, Lai G Y, et al. Chinese herbs Epimedium brevicornum Maxim. and Cuscuta chinensis Lam. induced ovary development in Japanese eel Anguilla japonica[J]. Journal of Fishery Sciences of China, 2019, 26(2): 314-321. [赖晓健,陈仕玺,赖国银,等. 中草药淫羊藿和菟丝子对日本鳗鲡卵巢发育的影响[J]. 中国水产科学,2019, 26(2): 314-321.].》Google Scholar
|
[39] |
Chow S, Kurogi H, Mochioka N, et al. Discovery of mature freshwater eels in the open ocean[J]. Fisheries Science, 2009, 75(1): 257-259..》Google Scholar
|
[40] |
Tsukamoto K, Chow S, Otake T, et al. Oceanic spawning ecology of freshwater eels in the western North Pacific[J]. Nature Communications, 2011, 2(1): Article No.179..》Google Scholar
|
[41] |
Zhang J M, Liu L, Guo F, et al. Histological study on artificial induction of gonadal development in Japanese eel Anguilla japonica[J]. Journal of Fishery Sciences of China, 2007, 14(4): 593-601. [张洁明,柳凌,郭峰,等. 人工诱导日本鳗鲡性腺发育组织学研究[J]. 中国水产科学,2007, 14(4): 593-601.].》Google Scholar
|
[42] |
Bernatchez L, Dodson J J. Relationship between bioenergetics and behavior in anadromous fish migrations[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44(2): 399-407..》Google Scholar
|
[43] |
Hinch S G, Rand P S. Optimal swimming speeds and forward-assisted propulsion: Energy-conserving behaviours of upriver-migrating adult salmon[J]. Canadian Journal of Fisheries & Aquatic Sciences, 2000, 57(12): 2470-2478..》Google Scholar
|
[44] |
Castro-Santos T, Letcher B H. Modeling migratory energetics of Connecticut River American shad (Alosa sapidissima): Implications for the conservation of an iteroparous anadromous fish[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67(5): 806-830..》Google Scholar
|
[45] |
Aarestrup K, Økland F, Hansen M M, et al. Oceanic spawning migration of the European eel (Anguilla anguilla)[J]. Science, 2009, 325(5948): 1660..》Google Scholar
|
[46] |
Higuchi T, Watanabe S, Manabe R, et al. Horizontal and vertical migration behavior of silver-phase Japanese eels in coastal, pelagic and spawning areas observed by pop-up satellite archival tags[J]. Journal of Experimental Marine Biology and Ecology, 2021, 542-543: 151587..》Google Scholar
|
[47] |
Kumagai A, Hayashi S. Participation of high-density lipoprotein in vitellogenesis in Japanese eel hepatocytes[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 140(4): 543-550..》Google Scholar
|
[48] |
Nagahama Y. Endocrine regulation of gametogenesis in fish[J]. The International Journal of Developmental Biology, 1994, 38(2): 217-229..》Google Scholar
|
[49] |
Liu L, Li R, Zhang J M, et al. Composition and metabolizing of lipids and fatty acids in muscle of female Anguilla japonica during the period of artificial inducing ovarian maturation[J]. Acta Hydrobiologica Sinica, 2009, 33(6): 1011-1019. [柳凌,李荣,张洁明,等. 日本鳗鲡雌鳗卵巢发育期间肌肉脂肪酸的组成及消耗[J]. 水生生物学报,2009, 33(6): 1011-1019.].》Google Scholar
|