中国水产科学  2024, Vol. 31 Issue (12): 1441-1452  DOI: 10.12264/JFSC2024-0220
0

引用本文 

刘志飞, 汪峰, 陈帅钰, 陈夏添, 贾玉东. 低氧胁迫对绿鳍马面鲀血液生理生化、鳃组织结构和肝脏抗氧化能力的影响[J]. 中国水产科学, 2024, 31(12): 1441-1452. DOI: 10.12264/JFSC2024-0220.
LIU Zhifei, WANG Feng, CHEN Shuaiyu, CHEN Xiatian, JIA Yudong. Effects of hypoxia stress on hematological physiology and biochemistry, gill histiology and hepatic antioxidant capacity of black scraper Thamnaconus septentrionalis[J]. Journal of Fishery Sciences of China, 2024, 31(12): 1441-1452. DOI: 10.12264/JFSC2024-0220.

基金项目

中央支持地方科技成果转化项目(YDZX2022120);中国水产科学研究院基本科研业务费项目(2023TD81,20603022023018).

作者简介

刘志飞(1997‒),男,硕士研究生,研究方向为海水鱼类繁育与养殖. E-mail:lzf559900@163.com

通信作者

通信作者:贾玉东,研究员,研究方向为海水鱼类繁育与深远海养殖. E-mail:jiayd@ysfri.ac.cn

文章历史

收稿日期:2024-07-07
修改日期:2024-09-07
低氧胁迫对绿鳍马面鲀血液生理生化、鳃组织结构和肝脏抗氧化能力的影响
刘志飞1,2,汪峰1,陈帅钰1,陈夏添1,贾玉东1,2,3,     
1. 中国水产科学研究院黄海水产研究所,山东 青岛 266071
2. 浙江海洋大学国家海洋设施养殖工程技术研究中心,浙江 舟山 316022
3. 青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室,山东 青岛 266237
摘要:为探究绿鳍马面鲀(Thamnaconus modestus)的低氧耐受能力和低氧胁迫过程中血液生理生化指标、鳃组织结构和肝脏抗氧化能力的变化情况。本研究使用封闭静水法,分析了绿鳍马面鲀临界氧分压(critical oxygen tension,Pcrit)和失去平衡点(loss of equilibrium,LOE)时的水体溶解氧浓度,随后分别在Pcrit、LOE、恢复正常溶解氧3 h(R3)和6 h(R6)时,检测绿鳍马面鲀血液生理生化指标、鳃组织结构和肝脏抗氧化酶活力的变化。结果显示,绿鳍马面鲀[(101.23±14.28)g]在Pcrit和LOE时的水体溶解氧浓度分别为(4.0±0.2)mg/L和(2.2±0.2)mg/L。低氧胁迫下,血液葡萄糖和皮质醇浓度显著升高,白细胞数目和红细胞数目在LOE时显著升高(P<0.05),血红蛋白浓度和红细胞压积在LOE时呈上升趋势,但变化不显著(P>0.05)。鳃小片的长度、宽度、基质厚度和周长伴随着低氧胁迫进程显著增加,鳃小片间距显著减小,气体交换率显著降低(P<0.05);鳃小片呈现末端杵状、融合和基质增生。肝脏组织中的超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶活性以及丙二醛含量在低氧胁迫后均显著升高(P<0.05),在LOE时达到最大值。恢复正常溶解氧后,血液生理生化指标、鳃组织结构和肝脏抗氧化酶活力逐渐恢复或接近正常水平,在恢复6 h后上述大部分指标与对照组无显著差异。结果表明,低氧应激导致绿鳍马面鲀血液生理生化相关指标、鳃小片组织形态和肝脏抗氧化能力发生显著改变,恢复正常溶解氧6 h后低氧胁迫诱导的生理改变和潜在的应激损伤显著缓解。相关结果为研究绿鳍马面鲀低氧耐受生理调控机制和高效健康养殖提供了基础理论依据和数据支撑。
关键词绿鳍马面鲀    低氧胁迫    血液生理生化    鳃组织结构    肝脏抗氧化能力    
Effects of hypoxia stress on hematological physiology and biochemistry, gill histiology and hepatic antioxidant capacity of black scraper Thamnaconus septentrionalis
LIU Zhifei1,2,WANG Feng1,CHEN Shuaiyu1,CHEN Xiatian1,JIA Yudong,1,2,3    
1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
2. National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
3. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Abstract:In the present study, the hypoxia tolerance and alternation of hematological, physiological, and biochemical parameters, gill histology, and hepatic antioxidant capacity subjected to hypoxia stress were investigated in black scraper Thamnaconus modestus. The closed static water method was used to analyze the dissolved oxygen (DO) levels at critical oxygen tension (Pcrit) and loss of equilibrium (LOE) in black scraper. Subsequently, changes in hematological, physiological, and biochemical parameters, gill histology, and hepatic antioxidant enzyme activity were detected at Pcrit, LOE, reoxygenation 3 hours (R3) and 6 hours (R6). The results showed that the DO concentrations of the black scraper [(101.23±14.28) g] at Pcrit and LOE were (4.0±0.2) mg/L and (2.2±0.2) mg/L, respectively. Hypoxia significantly increased glucose and cortisol levels. White and red blood cell numbers also increased with the highest value observed at LOE (P<0.05). The hemoglobin concentration and hematocrit showed an upward trend at LOE, but the difference was not significant (P>0.05). Meanwhile, hypoxia significantly increased the length, width, basal epithelial thickness, and perimeter of the secondary lamellae, and decreased interlamellar distance and the proportion of available gas exchange (P<0.05). Hypoxia stress also induced branchial clubbing, fusion, and matrix hyperplasia of the secondary lamellae. Hepatic superoxide dismutase, catalase, glutathione peroxidase activity, and malondialdehyde levels significantly increased under hypoxia (P<0.05), peaking at LOE. Reoxygenation treatment for 6 hours alleviated the stress mentioned above effects. These results indicated that hypoxia stress lead to significantly alterations in the black scraper's hematological, physiological and biochemical profiles, gill morphology, and hepatic antioxidant capacity, which are substantially alleviated after 6 hours re-oxygenation. These findings provide valuable insights into the physiological mechanisms underlying hypoxia tolerance and support the development of efficient and healthy breeding practices for black scraper.
Key words Thamnaconus modestus     hypoxia stress    blood physiology and biochemistry    gill tissue structure    liver antioxidant capacity    

溶解氧是影响鱼类在水环境中生长和生存的重要环境因子,溶解在水体中的氧气被鱼类利用,用以进行呼吸代谢,维持其正常生命活动[1-2]。水温、水流、养殖密度、水体中有机物负荷、大气气压等因素的变化都会引起水体中溶解氧浓度的改变[3]。水体中的溶解氧浓度下降到一定程度后会导致鱼类应激,引起行为运动、组织形态、生理代谢和免疫功能等方面的改变,影响鱼类的生长、发育和繁殖过程,严重时造成鱼类的大面积死亡[4-6]。因此,探究鱼类的低氧耐受能力以及低氧胁迫下鱼类机体的适应性调控机制,对水产养殖有着重要意义。

鱼类作为高等水生生物,通过建立一系列的生理应答模式,应对水体中溶解氧波动对自身的影响[7]。随着水体中溶解氧浓度的下降,鱼类的低氧耐受能力可以用临界氧分压(critical oxygen tension, Pcrit)和失去平衡点(loss of equilibrium, LOE)的指标来进行评价[8-9]。有研究表明,不同的鱼类应对低氧耐受的能力存在显著差异[8,10-11],鱼类的Pcrit和LOE越低,表明其低氧耐受能力越强,反之则越弱[12]。低氧胁迫下,鱼类会降低自身代谢率,应对低氧胁迫,但这会影响鱼类的摄食和消化能力,导致其生长缓慢[13,14]。齐明等[7]对青田田鱼(Cyprinus carpio var qingtianensis)的研究发现,急性低氧胁迫导致能量代谢发生变化,肝脏的血糖和乳酸显著升高。低氧胁迫会对鳃组织造成影响,鳃是鱼重要的呼吸器官,鲫(Carassius auratus L.)在低氧胁迫下鳃小片间的空隙被细胞团填充,鳃与水接触的表面积增加,以此增加摄氧能力[15],此现象在鲂鲌杂交种F3 (Megalobrama amblycephala♀×Culter alburnus♂)的低氧研究中同样被发现[16]。此外,低氧作为应激源,导致鱼类发生氧化应激,张倩等[17]对鲫鱼的低氧胁迫研究发现,超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)等抗氧化酶活力升高,抵御低氧胁迫对肝脏造成的氧化损伤。

绿鳍马面鲀(Thamnaconus modestus)俗称面包鱼、马面鱼等,主要分布于日本、朝鲜半岛沿海及中国的东海、南海、黄海、渤海,是暖温性底层鱼类[18]。其经济价值高,肉质鲜美,是我国北方重要的海水养殖经济鱼类之一。绿鳍马面鲀的养殖方式以工厂化养殖和网箱养殖为主[19],目前对绿鳍马面鲀的研究多集中于人工育苗[20-21]、胚胎发育[22]、游泳能力和能量代谢[23-24]等方面。党保成等[25]报道了绿鳍马面鲀幼鱼在水体溶解氧含量逐渐下降过程中的耗氧和活动变化规律,测定了幼鱼的耗氧率和窒息点,但对绿鳍马面鲀的Pcrit尚未探明,且低氧胁迫过程中绿鳍马面鲀生理学变化未有详细描述。基于此,本研究以绿鳍马面鲀为研究对象开展低氧胁迫相关实验,查明绿鳍马面鲀的低氧耐受阈值,分析低氧胁迫中血液生理生化指标、鳃组织形态和肝脏抗氧化酶活力的变化情况,探讨其应对低氧胁迫的生理反应机制,以期为绿鳍马面鲀的健康养殖提供理论依据和数据支撑。

1 材料与方法 1.1 实验材料

本实验所用绿鳍马面鲀来自烟台开发区天源水产有限公司。鱼体健康且有活力,平均体长(21.10±0.87) cm,平均体重(101.23±14.28) g。绿鳍马面鲀在实验桶(6尾/100 L)内暂养2周,使其适应实验环境。暂养期间保持正常流水(水流量大于1000 mL/min),通过水质检测仪,检测低氧实验时养殖车间的海水水温为(16.0±0.5) ℃,盐度为29.0±1.0, pH为7.8±0.5,溶解氧浓度>7 mg/L,氨氮浓度<0.1 mg/L。每天分别在9:00和16:00按照体重2%投喂商品化颗粒饲料(海童,中国潍坊三通生物工程有限公司),实验前禁食24 h。

1.2 实验设计 1.2.1 绿鳍马面鲀低氧耐受实验

低氧耐受能力实验采用封闭静水法。实验设置3个平行组,实验开始时关停水流,停止气石增气。用保鲜膜将实验桶密封,隔绝空气,通过绿鳍马面鲀的呼吸作用消耗水中的溶解氧。将溶氧仪(AZ86031型,台湾鑫恒)放入实验桶内,每6 min记录水体中溶解氧浓度,计算绿鳍马面鲀在低氧胁迫下的代谢率M[O2](mg/kg·h):

$M[{{\rm{O}}_2}] = ({[{{\rm{O}}_2}]_{t1}} - {[{{\rm{O}}_2}]_{t2}}) \times \frac{V}{t} \times \frac{1}{{{\rm{BW}}}}$

式中,${[{{\rm{O}}_2}]_{t1}}$ (mg/L)为监测时间点t1时的溶解氧浓度;${[{{\rm{O}}_2}]_{t2}}$ (mg/L)为t2时溶解氧浓度;V(L)为实验桶的总体积减去鱼的体积;t(h)为时间点t1t2的时间间隔;BW(kg)为绿鳍马面鲀的体重。

P crit:将代谢率和溶解氧浓度做图,采用双线法找到M[O2]随溶解氧浓度下降而出现显著下降的拐点,即为Pcrit。LOE:半数绿鳍马面鲀发生侧翻或腹部朝上时水中的溶解氧浓度。

实验期间,监测记录水体溶解氧浓度变化情况,并随机抽取3尾记录绿鳍马面鲀每分钟鳃盖闭合次数,统计呼吸频率(次/分)。

1.2.2 绿鳍马面鲀低氧胁迫和恢复实验

通过绿鳍马面鲀低氧耐受能力实验发现,Pcrit时的溶解氧浓度为(4.0±0.2) mg/L,出现在密封后1 h 40 min, LOE时的溶解氧浓度为(2.2±0.2) mg/L,出现在密封后2.5 h,待达LOE时,立即揭开保鲜膜。在此实验结果基础上进行低氧胁迫和恢复实验。实验以正常溶解氧浓度(9.83±0.48) mg/L为对照组,分别设置为Pcrit、LOE、恢复正常溶解氧3 h (R3)和6 h (R6)处理组并在其对应时间取样,每组3个平行,共计15个实验桶(6尾/100 L)。对照组正常流水,处理组关停水流,并用保鲜膜封口处理,使用溶氧仪监测水中溶解氧浓度变化。恢复组则是当半数绿鳍马面鲀发生失衡现象后(即达LOE时),揭开保鲜膜,恢复流水,放入气石增气,使水体溶解氧浓度恢复至正常水平,并在持续恢复3 h和6 h时进行取样。

1.3 样本采集与处理

提前配好浓度为200 mg/L的间氨基苯甲酸乙酯甲磺酸盐(MS-222),取样时每组随机抽取3尾鱼,将实验鱼捞出立即放入盛有麻醉剂的桶内使其麻醉,15 s后,若触碰其无反应,则进行后续样品采集。鱼体擦干后,使用1%肝素钠溶液浸润的注射器从尾静脉采血,注入抗凝管中。其中一份4 ℃保存,用于检测血液生理指标,另一份在4 ℃、3000 r/min条件下,离心10 min制备血浆,−80 ℃保存。取鳃组织(右侧第二片鳃组织)和肝组织,用生理盐水清洗后,放入4%多聚甲醛保存液(塞维尔生物科技有限公司,中国)中固定24 h。剩余鳃组织和肝组织放入冻存管中,用液氮速冻,然后−80 ℃保存。

1.4 血液生理生化指标分析

采用迈瑞全自动血液细胞分析仪(BC-2800vet)检测白细胞数目(white blood cell, WBC)、红细胞数目(red blood cell, RBC)、血红蛋白浓度(hemoglobin, Hb)和红细胞压积(packed cell volume, HCT)。血浆皮质醇(cortisol, COR)采用放射免疫分析法(碘[125I]皮质醇放射免疫分析药盒)进行检测。葡萄糖(glucose, GLU)检测采用葡萄糖测定试剂盒(南京建成生物工程研究所,F006-1-1),操作方法参照试剂盒说明书。

1.5 鳃组织石蜡切片与HE染色

固定的鳃组织修剪后,经过酒精梯度脱水、二甲苯透明、石蜡包埋(阔海医疗,KH-BL),然后用切片机(阔海医疗,KH-Q330)连续切片,切片厚度为5 μm。烘干的切片脱蜡后用苏木精-伊红(索莱宝,G1120)进行染色,中性树脂胶封片,使用数字切片扫描工作站(3DHIETCH Pannormic MIDI,匈牙利)扫描成像。使用Image J软件测量鳃小片长度(SLL)、鳃小片宽度(SLW)、鳃小片间距(ID)、鳃小片基质厚度(BET)和鳃小片周长(perimeter),结果用平均值±标准差($\bar x \pm {\rm{SD}}$)表示,通过测量数据计算出鳃小片气体交换率(proportion available gas exchange, PAGE):

${\rm{PAGE}} = \frac{{({\rm{SLL}})}}{{({\rm{SLL}} + {\rm{BET}})}} \times 100{\rm{\% }}$
1.6 肝组织抗氧化能力检测

保存在−80 ℃的肝组织解冻后,准确称取肝组织0.1 g,加入9倍体积的0.9%生理盐水,按重量(g)∶体积(mL)=1∶9的比例,使用组织研磨仪(上海净信,中国)制备10%匀浆,4 ℃条件下以2500 r/min离心10 min,取上清液检测。丙二醛(malondialdehyde, MDA)、SOD、GSH-Px和CAT的指标使用试剂盒(南京建成生物工程研究所,中国)检测,使用Multiskan SkyHigh全波长酶标仪(Thermo, USA)分别在532 nm、450 nm、412 nm、405 nm测量MDA、SOD、GSH-Px和CAT的吸光度。SOD、GSH-Px和CAT活性以U/mg pro表示。MDA含量以mmol/mg pro表示。

1.7 数据分析

实验数据以平均值±标准差($\bar x \pm {\rm{SD}}$)表示,用SPSS 25软件对实验数据进行正态性检验和方差齐性检验,然后进行单因素方差分析(one-way ANOVA)并使用Duncan多重比较各处理组之间的差异显著性。用GraphPad prism 8.0软件绘制图表。P<0.05表示差异显著。

2 结果与分析 2.1 绿鳍马面鲀的低氧耐受能力和低氧胁迫下的行为反应

在低氧耐受实验中,根据绿鳍马面鲀消耗水中溶解氧的情况,计算出代谢率,发现在(4.0± 0.2) mg/L时,代谢率发生突然下降情况,此拐点时的溶解氧浓度即为Pcrit (图1a)。随着溶解氧浓度的下降,绿鳍马面鲀在溶解氧浓度为(2.2±0.2) mg/L时,开始出现侧翻情况,此时即为LOE (图1b)。

图1  低氧胁迫下绿鳍马面鲀临界氧分压(a)和溶解氧浓度与呼吸频率的变化(b) Fig. 1  Critical oxygen partial pressure (a), and dissolved oxygen concentration and respiratory rate (b) in black scraper throughout hypoxia stress

正常溶解氧浓度下,绿鳍马面鲀在水中保持静止或规律性游动。实验桶密封后,溶解氧浓度随着时间延长而逐渐降低,绿鳍马面鲀的呼吸频率从正常的95次/min,随溶解氧浓度降低而逐渐加快,在Pcrit时呼吸频率为121次/min达到峰值,而后随着溶解氧浓度的降低,其呼吸频率开始下降,游动行为减少,半数个体在2.5 h后发生游泳失衡,出现头下尾上的失衡现象(图1b)。

2.2 低氧胁迫对绿鳍马面鲀血液生理指标的影响

在低氧胁迫和复氧后,绿鳍马面鲀血液生理指标的变化情况如表1所示,WBC和RBC在LOE时显著升高(P<0.05),在Pcrit、R3和R6时,与对照组相比变化不显著(P>0.05)。Hb和HCT在LOE时存在升高趋势,但在低氧胁迫和复氧过程中变化不显著(P>0.05)。

表1  低氧胁迫及恢复溶解氧对绿鳍马面鲀血液生理指标影响 Tab. 1  Effects of hypoxia stress and restored dissolved oxygen on blood physiological indexes of black scraper n=3; $\bar x \pm {\rm{SE}}$
2.3 低氧胁迫对绿鳍马面鲀血浆葡萄糖和皮质醇的影响

在低氧胁迫下,绿鳍马面鲀血浆GLU和COR浓度在Pcrit和LOE时显著上升(P<0.05),在LOE时达到最大值,R3时二者的浓度开始显著下降,R6时与对照组相比无显著差异(P>0.05,图2a, b)。

图2  低氧胁迫及恢复溶解氧对绿鳍马面鲀血浆葡萄糖(a)和皮质醇(b)的影响control:对照组;Pcrit:临界氧分压;LOE:失去平衡点;R3:恢复溶解氧3 h; R6:恢复溶解氧6 h. 柱图上不同小写字母表示组间差异显著(P<0.05). Fig. 2  Effects of hypoxia stress and restored dissolved oxygen on plasma glucose (a) and cortisol (b) of black scrapercontrol: control group; Pcrit: critical oxygen partial pressure; LOE: loss of equilibrium; R3: restore dissolved oxygen for 3 h; R6: restore dissolved oxygen for 6 h. Different lowercase letters on the bar chart indicate significant differences between groups(P<0.05).
2.4 低氧胁迫对绿鳍马面鲀鳃组织形态的影响

正常状态下绿鳍马面鲀鳃小片排列紧密,完整对称得向两侧伸展(图3a)。低氧胁迫下SLL、SLW和BET在Pcrit和LOE时显著增大(P<0.05),并在LOE时达到最大值,SLL从对照组的166.2 μm增加到LOE组的256.5 μm,增加了54.3%, SLW增加了114.7%, BET增加了126.7%;复氧后在R3时三者的大小开始显著恢复,但是在R6时仍显著高于对照组水平(P<0.05,图3b, c, e)。ID在Pcrit和LOE时显著减小(P<0.05),在LOE时达到最小值,对照组的ID相较于LOE组减小77.0%;复氧后在R3时ID开始显著恢复,但是R6时依然显著低于对照组水平(P<0.05,图3d)。在Pcrit和LOE时perimeter因为SLL和SLW的增大而显著增大,对照组的perimeter相较于LOE组增加37.0%, R6时周长开始显著下降,但依然显著高于对照组水平(P<0.05,图3f)。在Pcrit和LOE时PAGE显著下降,在R3时开始显著恢复,但R6时依然显著低于对照组水平(P<0.05,图3g)。

图3  低氧胁迫及恢复溶解氧对绿鳍马面鲀鳃组织形态的影响control:对照组;Pcrit:临界氧分压;LOE:失去平衡点;R3:恢复溶解氧3 h; R6:恢复溶解氧6 h; a. 正常条件下绿鳍马面鲀鳃小片组织形态;b-g: SLL:鳃小片长度;SLW:鳃小片宽度;ID:鳃小片间距;BET:鳃小片基质厚度;perimeter:周长;PAGE:气体交换率. 柱形图上不同小写字母表示组间差异显著(P<0.05). Fig. 3  Effects of hypoxia stress and restored dissolved oxygen on gill morphology of black scraperontrol: control group; Pcrit: critical oxygen partial pressure; LOE: loss of equilibrium; R3: restore dissolved oxygen for 3 h; R6: restore dissolved oxygen for 6 h. a. the morphology of branchial lamella of black scraper under normal conditions; b-g: SLL: secondary lamellar length; SLW: secondary lamellar width; ID: interlamellar distance; BET: basal epithelial thickness; PAGE: proportion available gas exchange. Different lowercase letters on the bar chart indicate significant differences between groups(P<0.05).

此外,低氧胁迫下鳃组织形态发生了不同程度的病变,包括鳃小片末端杵状、基质增厚和鳃小片融合等变化(图4a)。正常状态下,鳃小片无基质增厚和融合的情况,末端膨大占6.9%,随着水中溶解氧浓度下降到Pcrit和LOE时,鳃小片末端杵状、融合和基质增厚的比例显著增加,在LOE时病变比例最严重,末端膨大占31.7%,基质增厚占28.3%,鳃小片融合占13.3%。随着溶解氧浓度恢复,鳃组织病变比例下降,但是在R6时的病变比例仍然显著高于对照组水平(P< 0.05,图4b)。

图4  低氧胁迫及恢复溶解氧对绿鳍马面鲀鳃组织形态比例的影响control:对照组;Pcrit:临界氧分压;LOE:失去平衡点;R3:恢复溶解氧3 h; R6:恢复溶解氧6 h; a. 低氧胁迫下鳃组织出现鳃小片杵状、融合和增生;b. 低氧胁迫下鳃组织形态比例的变化. *表示鳃组织形态比例组间差异显著(P<0.05). Fig. 4  Effects of hypoxia stress and dissolved oxygen restoration on the proportion of gill tissue morphology of black scrapercontrol: control group; Pcrit: critical oxygen partial pressure; LOE: loss of equilibrium; R3: restore dissolved oxygen for 3 h; R6: restore dissolved oxygen for 6 h; a. The gill tissue exhibiting clubbing, fusion, and hypcrplasis of branchial lamella under hypoxic stress; b. changes in the proportion of gill tissue morphology under hypoxic stress. * denotes significant difference in the proportion of gill histomorphology between groups (P<0.05).
2.5 低氧胁迫对绿鳍马面鲀肝脏抗氧化指标的影响

低氧胁迫下,在Pcrit和LOE时绿鳍马面鲀肝脏中MDA含量和SOD、CAT与GSH-Px活力显著升高,在LOE时达到最大值,在R3和R6时,4个指标均显著下降(P<0.05),并在R6时与对照组相比无显著差异(图5a~d)。

图5  低氧胁迫及恢复溶解氧对绿鳍马面鲀肝脏MDA含量(a)和SOD(b)、CAT(c)、GSH-Px(d)活力的影响control:对照组;Pcrit:临界氧分压;LOE:失去平衡点;R3:恢复溶解氧3 h; R6:恢复溶解氧6 h. 柱形图上不同小写字母表示组间差异显著(P<0.05). Fig. 5  Effects of hypoxia stress and recovery of dissolved oxygen on MDA content (a) and activities of SOD (b), CAT (c) and GSH-Px (d) in liver of black scrapercontrol: control group; Pcrit: critical oxygen partial pressure; LOE: loss of equilibrium; R3: restore dissolved oxygen for 3 h; R6: restore dissolved oxygen for 6 h. Different lowercase letters on the bar chart indicate significant differences between groups (P<0.05).
3 讨论 3.1 低氧胁迫下绿鳍马面鲀的耐受阈值和行为反应

溶解氧是影响鱼类生长、发育和生存的重要非生物环境因子。研究表明溶解氧浓度在5 mg/L可以满足大多数鱼类的正常生长和生命活动,在4.5 mg/L即会阻碍其生长发育,当水中溶解氧浓度降低到2 mg/L时,大多数鱼类难以生存[12]。党保成等[25]对绿鳍马面鲀幼鱼[体重(15.34±0.15) g]低氧耐受研究中观察到,在16 ℃下绿鳍马面鲀的窒息点为(0.97±0.04) mg/L。本研究中绿鳍马面鲀[体重(101.23±14.28) g]在Pcrit的溶解氧浓度为(4.0±0.2) mg/L,在溶解氧浓度下降到(2.2±0.2) mg/L时,绿鳍马面鲀发生侧翻。对比发现本实验中绿鳍马面鲀的LOE比绿鳍马面鲀幼鱼的窒息点时的溶解氧浓度高,推测大规格绿鳍马面鲀比幼鱼的能量代谢水平强,因此对氧气的需求量随之增强[26]。低氧胁迫下,绿鳍马面鲀的呼吸频率出现逐渐增加,最大呼吸频率达到121次/min,在Pcrit之后随着溶解氧浓度的继续降低,呼吸频率开始减少,直至出现失衡现象。结果表明绿鳍马面鲀通过增加呼吸频率维持其在低氧胁迫下的代谢率,当溶解氧浓度低于Pcrit后,其呼吸频率降低,游泳行为减少,代谢率随之下降,保证了绿鳍马面鲀的机体代谢进行,这在大菱鲆低氧胁迫中,同样出现呼吸频率和代谢率的变化情况[27]

3.2 低氧胁迫对绿鳍马面鲀血液生理指标的影响

在面临低氧胁迫时,血液生理指标反映鱼体因应激而产生的机体变化[28]。其中红细胞负责运输氧气到各个组织和器官,血红蛋白作为红细胞中特殊的载氧蛋白,影响着血氧运输能力[29]。有研究表明[30],鲫在急性低氧胁迫下,红细胞数目和血红蛋白浓度发生了显著升高,从而提高血液载氧和携带氧气的能力。在本研究中观察到,低氧胁迫下红细胞数量出现显著增加,血红蛋白浓度也随之出现上升趋势,这有利于增强绿鳍马面鲀携带和利用氧气的能力,从而提高在低氧胁迫环境下对氧气的摄取和利用。在鲢(Hypophthalmichthys molitrix)的低氧胁迫研究中发现,低氧诱导鳃组织的促红细胞生成素基因表达显著上调[31]。促红细胞生成素的分泌能够促进红细胞生成,以提高血液氧运输的能力。此外,白细胞作为细胞免疫和体液免疫的重要组成部分,能够杀死变异或受损伤的细胞[32]。本研究中在低氧胁迫下白细胞的数量显著升高,表明白细胞的免疫功能在低氧胁迫下被激活,抵御低氧胁迫对机体带来的损伤。李晓辉等[33]在对长丰鲢的低氧胁迫研究中同样发现了红细胞和白细胞数量的增加,这与研究结果相互印证。在对红鳍东方鲀(Takifugu rubripes)肝脏的转录组研究中发现[34],缺氧条件下免疫系统的趋化因子相关基因的显著变化,说明了缺氧应激后机体免疫系统协助抵御外界环境变化带来的影响。

3.3 低氧胁迫对绿鳍马面鲀血浆葡萄糖和皮质醇的影响

葡萄糖和皮质醇是鱼类应激反应的两个重要指标。葡萄糖是主要供能物质,可以分解为三磷酸腺苷提供能量,血液中皮质醇含量的升高,可以促进蛋白的分解、糖原的合成和脂肪的氧化[35],有助于维持鱼体自身能量代谢。对珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)的研究表明[36],低氧胁迫导致血液葡萄糖和皮质醇浓度显著升高。在本研究中,低氧胁迫下绿鳍马面鲀血液葡萄糖和皮质醇浓度显著升高。葡萄糖作为供能物质,在绿鳍马面鲀受到低氧胁迫后,参与机体代谢,以维持鱼体代偿作用机制。此外,血液中皮质醇浓度的上升,一方面指示绿鳍马面鲀在低氧胁迫下产生应激反应,皮质醇的分泌量增加,另一方面,皮质醇分泌量的增加,促进血液中葡萄糖的合成,提供大量能量以满足绿鳍马面鲀对能量的需求。在对虹鳟(Oncorhynchus mykiss)的低氧胁迫的研究中同样发现[37],皮质醇的浓度在缺氧条件下发生显著增加,表明了缺氧作为应激源导致机体发生应激反应,并协助机体能量代谢的调控。

3.4 低氧胁迫对绿鳍马面鲀鳃组织的影响

鳃组织是气体交换的主要场所,对水环境的变化非常敏感。有研究表明,环境应激导致褐牙鲆(Paralichthys olivaceus)的各组织结构形态发生改变,其中鳃的变化最为显著[38]。本研究发现低氧胁迫下绿鳍马面鲀的鳃小片长度、宽度、基质厚度和周长显著增加,这有效地增加鳃小片与水接触的表面积,增强对氧气的吸收能力,这种适应性变化有利于鱼类在贫氧水域中的生存。在对草鱼(Ctenopharyngodon idella)的研究中发现[39],低氧胁迫下草鱼鳃组织重塑,鳃丝表面积增加,有助于进行气体交换。此外,对团头鲂(Megalobrama amblycephala)的研究发现,水环境突变导致鳃组织的病变,出现鳃小片末端膨大、基质增生和鳃动脉瘤等[40]。本研究中绿鳍马面鲀的鳃小片出现末端膨大、基质增厚和鳃小片融合的现象,其所占比例随着低氧胁迫时间的增加而增加,恢复溶解氧6 h后,鳃小片的组织形态逐渐恢复,病变所占比例降低,但与对照组相比仍有显著差异。以上结果表明,低氧胁迫下,鳃组织可以通过鳃重塑改变鳃组织形态,以适应低氧环境,但长时间低氧下不可避免的造成鳃组织损伤,随着低氧时间的增加,鳃组织的损伤程度加剧,严重时出现死亡。随着水中溶解氧浓度的恢复,处于充足溶解氧条件下重塑的鳃组织形态可以逐渐恢复,这种鳃组织形态结构的变化情况,有助于增强鱼类在贫氧水域中的生存能力。

3.5 低氧胁迫对绿鳍马面鲀肝脏抗氧化指标的影响

肝脏作为鱼类重要的代谢器官,具有维持能量代谢和清除有害物质的功能,在调控机体内环境稳态过程中发挥重要作用[41]。当鱼类处于低氧环境,环境胁迫诱导体内产生过多的氧自由基,进而导致氧化应激的发生,对机体组织和细胞造成显著损伤。MDA作为氧自由基与多不饱和脂肪酸反应后的脂质过氧化产物,会导致脂质代谢紊乱和细胞膜的损伤,是衡量氧化损伤程度的重要指标[42]。本研究发现,低氧胁迫过程中肝脏MDA含量显著升高,同时SOD、CAT和GSH-Px的活力也显著上升,并在LOE时MDA含量和3种抗氧化酶活力达到最大值,恢复正常溶解氧后,MDA含量和3种抗氧化酶活力逐渐下降,6 h后恢复至正常水平。余欣欣等[43]在团头鲂研究中发现,低氧胁迫下肝脏MDA含量显著升高;在褐牙鲆[44]、黄颡鱼(Pelteobagrus fulvidraco)[45]和虹鳟[46]的低氧胁迫研究中,也发现MDA含量的升高。肝脏MDA含量显著升高表明,低氧胁迫可能导致绿鳍马面鲀肝脏发生氧化损伤,进而影响其正常生理功能。SOD、CAT和GSH-Px作为肝脏重要的抗氧化酶,在抵御和缓解机体氧化损伤过程中,发挥着重要生理性反馈调节作用。SOD负责清除超氧阴离子自由基,催化超氧阴离子自由基转化为过氧化氢[47], CAT负责分解过氧化氢,将其转化为氧和水,GSH-Px负责将过氧化物转化为无毒的氢基化合物,同时促进过氧化氢的分解[48], SOD、CAT和GSH-Px协同作用以减少机体的氧化损伤。在低氧胁迫大黄鱼(Larimichthys crocea)的研究中同样发现[49], SOD、CAT和GSH-Px的活力在低氧胁迫下显著上升。在石斑鱼(Epinephelus fuscoguttatus♀xE. lanceolatus♂)[50]和小黄鱼(Larimichthys polyactis)[51]的低氧胁迫研究中,也均发现MDA含量和3种抗氧化酶活力的显著升高。此外,同样有研究发现,虹鳟[52]和黄颡鱼(Pelteobagrus fulvidraco×P. vachelli)[53]在热应激下体内抗氧化酶活力升高。表明抗氧化酶活力的提高有助于抵御环境应激对机体造成的氧化损伤。伴随着溶解氧浓度的恢复,绿鳍马面鲀MDA含量降低,说明体内积累的过氧化产物在抗氧化酶的作用下被逐渐清除,鱼体的氧化损伤得到缓解。以上结果表明,低氧胁迫下MDA含量显著升高,导致了绿鳍马面鲀肝脏的氧化应激,此时SOD、CAT和GSH-Px的活性升高,协助抵御和缓解低氧胁迫导致的氧化损伤,发挥生理代偿作用,而恢复正常溶解氧6 h后,因环境应激源的消除,低氧胁迫导致的氧化损伤得到显著缓解。

综上所述,低氧胁迫下绿鳍马面鲀在Pcrit和LOE时的溶解氧浓度分别为(4.0±0.2) mg/L和(2.2±0.2) mg/L。低氧胁迫导致绿鳍马面鲀发生了应激反应,其呼吸频率、鳃小片表面积、血液葡萄糖和红细胞数量增加,这有效增强了鱼体对氧气的摄取和利用能力。在LOE时,绿鳍马面鲀的机体应激反应最严重,鳃组织病变占比最高,并且MDA含量提示肝脏在此时的氧化损伤程度最严重,抗氧化酶活力增强,以抵御应激造成的氧化损伤。恢复正常溶解氧6 h后,因低氧胁迫终止,绿鳍马面鲀的鳃组织结构变化和肝脏氧化损伤情况得到显著的缓解。以上研究结果为绿鳍马面鲀的高效健康养殖提供有效数据支撑,为后续绿鳍马面鲀的低氧应答调控机制研究奠定基础。

参考文献
[1]
Xu H, Chen X M, Wang G Q, et al. Research progress of hypoxia on aquaculture[J]. Feed Industry, 2016, 37(2): 33-37. [徐贺,陈秀梅,王桂芹,等. 低氧胁迫在水产养殖中的研究进展[J]. 饲料工业,2016, 37(2): 33-37.].》Google Scholar
[2]
Zhu C D, Wang Z H, Yan B. Strategies for hypoxia adaptation in fish species: A review[J]. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2013, 183(8): 1005-1013..》Google Scholar
[3]
Park M, Shin S K, Do Y H, et al. Application of open water integrated multi-trophic aquaculture to intensive monoculture: A review of the current status and challenges in Korea[J]. Aquaculture, 2018, 497: 174-183..》Google Scholar
[4]
Abdel-Tawwab M, Monier M N, Hoseinifar S H, et al. Fish response to hypoxia stress: Growth, physiological, and immunological biomarkers[J]. Fish Physiology and Biochemistry, 2019, 45(3): 997-1013..》Google Scholar
[5]
Richards J G. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia[J]. Journal of Experimental Biology, 2011, 214(Pt 2): 191-199..》Google Scholar
[6]
Pollock M S, Clarke L M J, Dubé M G. The effects of hypoxia on fishes: From ecological relevance to physiological effects[J]. Environmental Reviews, 2007, 15: 1-14..》Google Scholar
[7]
Qi M, Hou Y L, Liu T, et al. The effects of acute hypoxia stress and re-oxygenation on oxidative stress and energy metabolism of juvenile Cyprinus carpio var qingtianensis[J]. Freshwater Fisheries, 2020, 50(6): 92-98. [齐明,侯懿玲,刘韬,等. 急性低氧胁迫和复氧恢复对青田田鱼幼鱼氧化应激和能量代谢的影响[J]. 淡水渔业,2020, 50(6): 92-98.].》Google Scholar
[8]
Zhang A J, Cao Z D, Fu S J. Comparison of hypoxia tolerance and locomotor performance in two cyprinids with incompletely overlapped habitat[J]. Acta Ecologica Sinica, 2014, 34(20): 5860-5867. [张安杰,曹振东,付世建. 生境不完全重叠的两种鲤科鱼类耐低氧及运动能力比较[J]. 生态学报,2014, 34(20): 5860-5867.].》Google Scholar
[9]
Mandic M, Lau G Y, Nijjar M M S, et al. Metabolic recovery in goldfish: A comparison of recovery from severe hypoxia exposure and exhaustive exercise[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2008, 148(4): 332-338..》Google Scholar
[10]
Gao Y T, Gao Y H, Li M Y, et al. Hypoxia tolerance and alternation of hematology and gill morphology in black rockfish (Sebastes schlegelii)[J]. Journal of Fisheries of China, 2023, 47(9): 40-51. [高云涛,高云红,李明月,等. 许氏平鲉低氧耐受能力及血液学和鳃组织学变化[J]. 水产学报,2023, 47(9): 40-51.].》Google Scholar
[11]
Gao Y T, Gao Y H, Li M Y, et al. Hypoxia tolerance and alternation of blood physiological and biochemical indexes in spotted knifejaw Oplegnathus punctatus[J]. Progress in Fishery Sciences, 2022, 43(6): 79-88. [高云涛,高云红,李明月,等. 斑石鲷低氧耐受能力及血液生理生化指标变化研究[J]. 渔业科学进展,2022, 43(6): 79-88.].》Google Scholar
[12]
Vaquer-Sunyer R, Duarte C M. Thresholds of hypoxia for marine biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15452-15457..》Google Scholar
[13]
Hu G H, Sun G H, Zhu S C, et al. Effects of hypoxia on the rate of oxygen consumption of respiratory metabolism of northen sheatfish[J]. Chinese Journal of Zoology, 2002, 37(2): 46-48. [胡国宏,孙广华,朱世成,等. 低溶氧量对怀头鲇呼吸代谢耗氧率的影响[J]. 动物学杂志,2002, 37(2): 46-48.].》Google Scholar
[14]
Wei L Z, Zhang X M, Huang G Q, et al. Effects of limited dissolved oxygen supply on the growth and energy allocation of juvenile Chinese shrimp, Fenneropenaeus chinensis[J]. Journal of the World Aquaculture Society, 2009, 40(4): 483-492..》Google Scholar
[15]
Sollid J, De Angelis P, Gundersen K, et al. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills[J]. Journal of Experimental Biology, 2003, 206(Pt 20): 3667-3673..》Google Scholar
[16]
Chen S L, Lin X, Zheng G D, et al. Effects of acute hypoxia stress on gill structure, physiology and biochemistry of hybrid F3 of blunt snout bream Megalobrama amblycephala ♀×Culter culter alburnus ♂[J]. Fisheries Science, 2023, 42(2): 214-221. [陈松林,林欣,郑国栋,等. 低氧对鲂鲌杂交种F3鳃结构及生理生化的影响[J]. 水产科学,2023, 42(2): 214-221.].》Google Scholar
[17]
Zhang Q, Huang J Q, Quan J Q, et al. Effects of acute hypoxia and reoxygenation on oxidative stress in crucian carp Carassius auratus[J]. Fisheries Science, 2020, 39(5): 649-656. [张倩,黄进强,权金强,等. 急性低氧胁迫和复氧对鲫鱼氧化应激的影响[J]. 水产科学,2020, 39(5): 649-656.].》Google Scholar
[18]
Chen H J, Feng C, Yang P R, et al. Current situation and prospect of the research on the culture of Thamnaconus modestus[J]. Journal of Jiangsu Ocean University (Natural Science Edition), 2023, 32(2): 25-29. [陈会娟,冯灿,杨盼蕊,等. 绿鳍马面鲀养殖研究现状及展望[J]. 江苏海洋大学学报(自然科学版), 2023, 32(2): 25-29.].》Google Scholar
[19]
Xu X L, Zheng Y J, Liu S. Estimation of stock size of filefish thamaconus modestus in the East China Sea and Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1992, 23(6): 651-656. [许学龙,郑元甲,刘松. 东、黄海绿鳍马面鲀的资源评估[J]. 海洋与湖沼,1992, 23(6): 651-656.].》Google Scholar
[20]
Zhang J N. Reproductive regulation and fry breeding technology of Thamnaconus septentrionalis Günther [D]. Qingdao: Ocean University of China, 2011. [张家男. 绿鳍马面鲀的生殖调控与苗种繁育技术[D]. 青岛:中国海洋大学,2011.].》Google Scholar
[21]
Li G, Wang Q L, Zhang K Q. Artificial breeding technology of Thamnaconus septentrionalis[J]. China Fisheries, 2021(11): 82-84. [李刚,王庆龙,张凯强. 绿鳍马面鲀的人工繁育技术[J]. 中国水产,2021(11): 82-84.].》Google Scholar
[22]
Guan J, Chen Z X, Zhang J N, et al. Investigation of embryonic development of Thamnaconus modestus in artificial breeding condition[J]. Advances in Marine Science, 2011, 29(4): 498-505. [关健,陈志信,张家男,等. 人工培育条件下绿鳍马面鲀Thamnaconus modestus胚胎发育的研究[J]. 海洋科学进展,2011, 29(4): 498-505.].》Google Scholar
[23]
Zhang P F, Chang Q, Chen S Q, et al. Diet feeding rhythm and analysis of gastric evacuation associated mathematical models in juvenile Thamnaconus septentrionalis[J]. Progress in Fishery Sciences, 2020, 41(1): 104-111. [张鹏飞,常青,陈四清,等. 绿鳍马面鲀幼鱼昼夜摄食节律及胃排空模型研究[J]. 渔业科学进展,2020, 41(1): 104-111.].》Google Scholar
[24]
Dang B C, Chen S Q, Li X M, et al. Preliminary study on swimming exercise and energy metabolism of juvenile Thamnaconus septentrionalis[J]. Fishery Modernization, 2022, 49(6): 57-66. [党保成,陈四清,李雪梅,等. 绿鳍马面鲀幼鱼游泳运动及能量代谢的初步研究[J]. 渔业现代化,2022, 49(6): 57-66.].》Google Scholar
[25]
Dang B C, Bian L, Li X M, et al. Oxygen consumption rate and asphyxiation point of juvenile filefish Thamnaconus septentrionalis exposed to four water temperature[J]. Fisheries Science, 2023, 42(6): 1025-1031. [党保成,边力,李雪梅,等. 4个温度下绿鳍马面鲀幼鱼耗氧率和窒息点的研究[J]. 水产科学,2023, 42(6): 1025-1031.].》Google Scholar
[26]
Millidine K J, Metcalfe N B, Armstrong J D. Presence of a conspecific causes divergent changes in resting metabolism, depending on its relative size[J]. Proceedings Biological Sciences, 2009, 276(1675): 3989-3993..》Google Scholar
[27]
Li F X, Gao Y T, Wang J W, et al. Gender differences in the hematology, hepatic antioxidant capacity, and gill histology of turbot (Scophthalmus maximus) under hypoxic stress[J]. Journal of Fishery Sciences of China, 2023, 30(7): 878-890. [李飞霞,高云涛,王嘉伟,等. 低氧胁迫对大菱鲆血液学指标、肝脏抗氧化能力及鳃组织影响的性别差异[J]. 中国水产科学,2023, 30(7): 878-890.].》Google Scholar
[28]
Eldridge W H, Sweeney B W, Mac Law J. Fish growth, physiological stress, and tissue condition in response to rate of temperature change during cool or warm diel thermal cycles[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(10): 1527-1537..》Google Scholar
[29]
Zimmerman R, Tsai A G, Salazar Vázquez B Y, et al. Posttransfusion increase of hematocrit per se does not improve circulatory oxygen delivery due to increased blood viscosity[J]. Anesthesia and Analgesia, 2017, 124(5): 1547-1554..》Google Scholar
[30]
Zhang X, Fu S J, Peng J L, et al. The effect of acute hypoxia on blood parameters of juvenile crucian carp[J]. Journal of Chongqing Normal University (Natural Science), 2011, 28(4): 19-22. [张曦,付世建,彭姜岚,等. 急性低氧对鲫鱼幼鱼血液基础指标的影响[J]. 重庆师范大学学报(自然科学版), 2011, 28(4): 19-22.].》Google Scholar
[31]
Li X H, Ling C, Wang Q X, et al. Hypoxia stress induces tissue damage, immune defense, and oxygen transport change in gill of silver carp (Hypophthalmichthys molitrix): Evaluation on hypoxia by using transcriptomics[J]. Frontiers in Marine Science, 2022, 9: 900200..》Google Scholar
[32]
Fischer U, Utke K, Somamoto T, et al. Cytotoxic activities of fish leucocytes[J]. Fish & Shellfish Immunology, 2006, 20(2): 209-226..》Google Scholar
[33]
Li X H, Zou G W, Liang H W, et al. Effects of continuous hypoxia stress on blood indicators, tissue antioxidant enzymes activity and genes expression in Changfeng silver carp[J]. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(6): 723-729. [李晓晖,邹桂伟,梁宏伟,等. 持续低氧胁迫对长丰鲢血液指标和组织抗氧化酶活性及相关基因表达的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48(6): 723-729.].》Google Scholar
[34]
Shang F Q, Bao M X, Liu F J, et al. Transcriptome profiling of tiger pufferfish (Takifugu rubripes) gills in response to acute hypoxia[J]. Aquaculture, 2022, 557: 738324..》Google Scholar
[35]
Manna S K, Das N, Bera A K, et al. Reference haematology and blood biochemistry profiles of striped catfish (Pangasianodon hypophthalmus) in summer and winter seasons[J]. Aquaculture Reports, 2021, 21: 100836..》Google Scholar
[36]
Lu Z F, Huang H, Huang X M, et al. Effects of hypoxic stress on antioxidant and energy metabolism of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)[J]. Journal of Guangdong Ocean University, 2022, 42(1): 13-19. [陆泽峰,黄和,黄湘湄,等. 低氧胁迫对珍珠龙胆石斑鱼氧化应激及能量代谢的影响[J]. 广东海洋大学学报,2022, 42(1): 13-19.].》Google Scholar
[37]
Ruiz N, García-Meilán I, Khansari A R, et al. Repeated hypoxic episodes allow hematological and physiological habituation in rainbow trout[J]. Frontiers in Physiology, 2024, 15: 1289903..》Google Scholar
[38]
Liu Y F, Ma D Y, Xiao Z Z, et al. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(1): 11-19..》Google Scholar
[39]
Xu X N, Chen S L, Jiang Z X, et al. Gill remodeling increases the respiratory surface area of grass carp (Ctenopharyngodon idella) under hypoxic stress[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2022, 272: 111278..》Google Scholar
[40]
Zhan F B, Liu H, Lai R F, et al. Expression and functional characterization of interferon regulatory factors (irf2, irf7 and irf9) in the blunt snout bream (Megalobrama amblycephala)[J]. Developmental & Comparative Immunology, 2017, 67: 239-248..》Google Scholar
[41]
Kumar N, Chandan N K, Wakchaure G, et al. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2020, 229: 108678..》Google Scholar
[42]
Dagoudo M, Qiang J, Bao J W, et al. Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco×P. vachelli) juveniles[J]. Aquaculture International, 2021, 29(5): 2181-2196..》Google Scholar
[43]
Yu X X, Wu J W, Zheng G D, et al. Effects of acute hypoxia stress on redox homeostasis and apoptosis in gill tissue of blunt snout bream (Megalobrama amblycephala)[J]. Journal of Fishery Sciences of China, 2023, 30(4): 425-432. [余欣欣,武纪文,郑国栋,等. 急性低氧对团头鲂鳃组织氧化还原稳态及细胞凋亡的影响[J]. 中国水产科学,2023, 30(4): 425-432.].》Google Scholar
[44]
Liu B H, Wen H S, Li X H, et al. Acute hypoxia effects on Keap1/Nrf2 (Mafs)-GST pathway related oxidative metabolism in muscle of Japanese flounder (Paralichthys olivaceus)[J]. Science of the Total Environment, 2021, 795: 148646..》Google Scholar
[45]
Wang M, Zhao S S, Wang J, et al. Multi-omics analysis provides insight into liver metabolism in yellow catfish (Pelteobagrus fulvidraco) under hypoxic stress[J]. Aquaculture, 2024, 583: 740531..》Google Scholar
[46]
Nam S E, Haque M N, Shin Y K, et al. Constant and intermittent hypoxia modulates immunity, oxidative status, and blood components of red seabream and increases its susceptibility to the acute toxicity of red tide dinoflagellate[J]. Fish & Shellfish Immunology, 2020, 105: 286-296..》Google Scholar
[47]
Li Y H, Wei L, Cao J R, et al. Oxidative stress, DNA damage and antioxidant enzyme activities in the Pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation[J]. Chemosphere, 2016, 144: 234-240..》Google Scholar
[48]
Sun J L, Zhao L L, Liao L, et al. Interactive effect of thermal and hypoxia on largemouth bass (Micropterus salmoides) gill and liver: Aggravation of oxidative stress, inhibition of immunity and promotion of cell apoptosis[J]. Fish & Shellfish Immunology, 2020, 98: 923-936..》Google Scholar
[49]
Liu Y, Wang J Q, Ding J, et al. Effects of hypoxia stress on oxidative stress, apoptosis and microorganisms in the intestine of large yellow croaker (Larimichthys crocea)[J]. Aquaculture, 2024, 581: 740444..》Google Scholar
[50]
Cao J, Mei J, Xie J. Combined effects of hypoxia and ammonia-N exposure on the immune response, oxidative stress, tissue injury and apoptosis of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂)[J]. Environmental Science and Pollution Research International, 2024, 31(1): 845-856..》Google Scholar
[51]
Wang J Q, Wang L, Liu Y, et al. Change to the transcriptomic profile, oxidative stress, apoptotic and immunity in the liver of small yellow croaker (Larimichthys polyactis) under hypoxic stress[J]. Aquaculture, 2023, 576: 739854..》Google Scholar
[52]
Yousefi M, Hoseini S M, Kulikov E V, et al. Effects of dietary Hyssop, Hyssopus officinalis, extract on physiological and antioxidant responses of rainbow trout, Oncorhynchus mykiss, juveniles to thermal stress[J]. Frontiers in Veterinary Science, 2022, 9: 1042063..》Google Scholar
[53]
Dagoudo M, Mutebi E T, Qiang J, et al. Effects of acute heat stress on haemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco×P. vachelli) juveniles[J]. Veterinary Research Communications, 2023, 47(3): 1217-1229..》Google Scholar