2. 中国水产科学研究院长江水产研究所,农业农村部淡水生物多样性保护重点实验室,湖北 武汉 430223
3. 湖北省长吻鮠良种场,湖北 石首 434400
2. Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
3. Hubei Product Farm of Leiocassis longirostris, Shishou 434400, China
鱼类性别异形包括个体大小异形、形态异形、颜色异形、生理和行为差异异形[1]。性别大小二态性(sexual size dimorphism, SSD)表型明显,已在多种鱼类发现这种现象[2]。蓝鳃太阳鱼(Lepomis macrochirus)[3]、黄颡鱼(Tachysurus fulvidraco)[4]、罗非鱼(Oreochromis mossambicus)[5]、河川沙塘鳢(Odontobutis potamophilus)[6]等经济鱼类,雄性个体生长速度明显快于雌性。与之相反,鲤(Cyprinus carpio)[7]、半滑舌鳎(Cynoglossus semilaevis)[8]、金钱鱼(Scatophagus argus)[9]、军曹鱼(Rachycentron canadum)[10]等,雌性生长速度显著快于雄性。在具有性别大小二态性的鱼类中,控制鱼类种群性别比例乃至产生单性种群可以提高水产养殖的产量和经济效益。
长吻鮠属鲇形目(Siluriformes),鲿科(Bagridae),广泛分布于长江、淮河、辽河、闽江、珠江等地[11]。长吻鮠无鳞和肌间刺、肉质鲜美、营养丰富,深受人们喜爱[12]。《中国渔业统计年鉴》显示,近年来长吻鮠养殖总重维持在2万t左右[13]。长吻鮠生长存在明显的两性异形,雄性比雌性生长快,培育全雄苗种可以提高养殖总产量,降低养殖成本,提高养殖效益。近年,通过2b-RAD测序和基因组重测序分别鉴定得到长吻鮠性别特异的DNA片段及潜在的连锁基因[11,13]。然而,目前有关长吻鮠性别分化、性腺发育及相关调控机制的研究较少,阻碍了长吻鮠全雄苗种培育的进程。
转录组测序是发现功能基因和遗传标记强大、有效的方法之一,能够全面快速地获得特定组织或器官在某一状态下的几乎所有转录本序列信息。性腺是不可缺少的生殖器官,其发育通常受多种性别相关基因和途径的控制。通过雌雄性腺转录组分析,筛选出大量雌雄差异表达基因(differentially expressed genes, DEGs),并从中探索出多种鱼类性别关键基因及相关信号通路,为鱼类生殖发育及相关机制的阐明奠定基础。Tao等[14]利用转录组测序分析罗非鱼不同时期性腺基因表达水平,初步将基因表达及性别分化与性腺发育联系起来,形成一个发育时期及基因表达的动态网络。根据性腺发育后期基因表达量筛选多个参与性腺分化和配子发生的DEGs,进行加权基因相关网络分析(WGCNA)。挖掘出与已知性别分化基因(foxl2、cyp19a1、gsdf、dmrt1、amh)表达相关的多个基因,包括borealin、gtsf1、tesk1、zar1、cdn15、rpl。对胡子鲇(Clarias fuscus)[15]性腺转录组进行比较分析,挖掘5750个精巢高表达DEGs和6991个卵巢高表达DEGs,这些DEGs富集在卵母细胞成熟、雄激素分泌、性腺发育和类固醇生物合成等性别相关途径。Guan等[16]通过比较大口黑鲈(Micropterus salmoides)体组织、卵巢组织、精巢组织三者DEGs,鉴定出22个性别关键基因,其中精巢特异性基因dmrt1与精巢高表达量DEGs (cyp11b1、spata4)和卵巢高表达量DEGs (foxl2、gdf9、zp3、sox3、cyp19a和bmp15)建立互作关系,与斑马鱼相同基因互作关系对比,表明dmrt1基因在性别发育存在保守性和物种差异性。
本研究通过高通量测序分析长吻鮠卵巢和精巢的转录组表达特征,筛选与其性别决定和分化相关差异表达基因,揭示参与长吻鮠雌雄个体性腺发育的信号通路,为今后其性别决定和分化机制的研究积累重要数据,从而为长吻鮠全雄苗种的培育提供理论支撑。
1 材料与方法 1.1 实验材料取样本实验所用实验鱼均来自湖北长吻鮠良种场(湖北,石首)。实验鱼采用MS-222 (Sigma-aldrich,美国)麻醉,取精巢和卵巢组织分别置于Bouin’s固定液(Phygene,中国)和RNAlater (VivaCell,中国)保存,用于后续性腺组织学特征分析、总RNA提取及测序。4尾雄鱼平均全长为(13.23±0.93) cm,平均体重为(20.19±3.69) g, 4尾雌鱼平均全长为(12.1±0.22) cm,平均体重为(13.33±0.51) g。采样过程遵守了中国水产科学研究院长江水产研究所实验动物福利和相关制度。
1.2 石蜡切片将性腺组织保存于Bouin’s溶液,按性腺大小固定2~6 h,转移至70%乙醇长期保存。石蜡切片样品需经过Bouin’s固定、乙醇梯度脱水、二甲苯透化、石蜡浸蜡、包埋等步骤处理。对石蜡样品连续切片,切片厚度为4.5 μm,苏木精-伊红(HE)染色(Biosharp,中国),中性树脂(Biosharp,中国)封片,正置显微镜(Leica,德国)下观察性腺形态结构并拍照。
1.3 总RNA提取和检测按照RNeasy Plus Mini Kit试剂盒说明书(Qiagen,德国)提取长吻鮠精巢和卵巢组织总RNA,采用Nano Drop™ Lite超微量分光光度计(Thermo,美国)检验样品浓度和纯度,利用琼脂糖凝胶电泳检测RNA完整性,选取A260/A280比值于1.8~2.0,琼脂糖凝胶电泳条带28S∶18S rRNA比值接近2∶1的RNA样品,置于−80 ℃保存备用。
1.4 转录组文库构建以及测序确保RNA质量合格后,使用Oligo (dT)珠粒富集真核mRNA,然后用片段缓冲液将富集的mRNA片段化为大小约200 bp短片段,并使用NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs,美国)反向转录成cDNA。使用AMPure XP Beads (1.8X)磁珠纯化双链cDNA,末端修复、添加poly(A)、拼接测序接头,并连接到Illumina测序适配器上。通过琼脂糖凝胶电泳选择连接产物的大小,PCR扩增,并由广州基迪奥生物科技有限公司使用Illumina Novaseq6000测序。
1.5 转录组的组装和注释为了确保后续信息分析的数据质量,对从测序机获得的含有适配器或低质量碱基的原始reads进一步过滤,获得高质量clean reads。首先使用fastp (版本0.18.0)对reads进行筛选,移除包含接头(adapters)的reads、含N比例超过10%的reads、含有50%以上低质量(Q值≤20) reads、全部都是A碱基的reads以及被污染的reads。然后用Bowtie2 (version 2.2.8)将得到reads与Ribosome RNA (rRNA)数据库进行比对去除映射读取,最后利用HISAT2[17]技术将配对的末端clean reads与参考长吻鮠基因建立参考基因组索引,进行后续注释。
1.6 基因表达水平和差异富集分析利用StringTie v1.3.1软件和RSEM软件组装每个样本的映射读数并计算FPKM (fragments per kilobase of exon model per million mapped fragments),量化基因表达丰度。利用表达量信息开展样,品间主成分分析(principal component analysis, PCA)和相关性分析(Pearson correlation analysis),使用DEseq2[18]软件进行标准化及差异表达基因检测,设置差异倍数|log2 fold change|≥1且FDR (false discovery rate)≤0.05为差异基因筛选阈值,筛选出雌雄性腺组间差异表达基因(卵巢组:O1、O2、O3、O4;精巢组:T1、T2、T3、T4),并对差异表达基因进行GO功能注释和KEGG通路富集。
1.7 性别关键差异表达基因的蛋白质互作网络(PPI)分析利用STRING数据库和Cytoscape软件进行性别关键差异表达基因的蛋白质互作网络分析(protein-protein interaction networks, PPI)[19]。将目标基因集中的序列应用blastx比对到STRING数据库(www.string-db.org)包含的参考物种蛋白质序列,并利用比对上的该参考物种的蛋白质互作关系构建互作网络。PPI网络图中的点为基因,线表示蛋白(基因)和蛋白(基因)之间存在相互作用关系。
1.8 实时荧光定量PCR利用Primer Premier 5软件(Premier,加拿大)设计性腺发育相关差异表达基因特异引物(表1),由武汉天一华煜基因科技有限公司合成。8个测序性腺各取1 μg RNA作为模板,参照PrimeScript RT reagent Kit with gDNA Eraser (Takara,日本)试剂盒说明书逆转录为cDNA。β-actin作为内参基因,采用RT-qPCR对21个性别相关基因进行验证。RT-qPCR根据PowerUpTM SYBRTM Green Master Mix试剂盒(Applied Biosystems,美国)说明书操作步骤,在ABI QuantStudio6 FLEX Q6实时荧光定量PCR仪(Applied Biosystems,美国)上进行RT-qPCR反应。荧光定量反应程序为:预变性50 ℃ 2 min, 95 ℃ 10 min;三步法扩增40个循环,95 ℃ 15 s, 58 ℃反应15 s,熔解曲线:95 ℃ 15 s, 60 ℃ 60 s, 95 ℃ 15 s。样品设立3个技术重复。采用2−ΔΔCt方法分析基因相对表达水平[20]。实验数据采用SPSS 21.0 (IBM,美国)统计分析,数据以平均值±标准差($\bar x \pm {\rm{SD}}$)表示,采用t检验方法,差异显著性水平为P<0.05。
![]() |
表1 实时荧光定量PCR所用引物序列 Tab. 1 Primers of the genes used for real-time RT-PCR |
通过石蜡切片分析长吻鮠性腺的组织学特征,明确样品性腺发育时期。组织学研究发现,全长为12 cm左右长吻鮠已完成性别分化,精巢组、卵巢组性腺样品发育时期一致。卵巢样品(O1、O2、O3、O4)发育至II期,该时期为单层滤泡期,生殖细胞主要为初级卵母细胞,处于小生长期,呈现不规则圆形(图1a);精巢样品(T1、T2、T3、T4)只含有大量的精原细胞,未出现初级精母细胞等其他的精巢生殖细胞(图1b)。
![]() |
图1 长吻鮠性腺组织学特征a. 卵巢;b. 精巢;POC. 初级卵母细胞;SG. 精原细胞. 标尺:20 μm. Fig. 1 Histological characterization of Leiocassis longirostris gonadsa. ovary; b. testis; POC. primary oocyte; SG. spermatogonia. Scale bars are 20 μm. |
高通量测序共获得358048456个raw data,其中clean reads序列数目为356168472, clean reads比率达99.47%。测序结果显示,过滤后Q20碱基比例均超过97%, Q30碱基比例超过93%, GC含量占比47.1%~49.01%,数据完整性较高,质检合格可进行后续分析(表2)。将8个样本的clean reads分别比对到参考基因组序列,卵巢和精巢样品的平均有效测序数据reads总条数分别为39647876和49256062,样品总对比率分别为96.45%和92.01%。同组样品间比对率较稳定,组间比对率相差不超过0.45%和0.72%。采取层级比对策略,进一步将不同长度的reads和spliced reads比对到参考基因组,样品基因组reads中,平均有76.32%定位到外显子区域,共检测出24661个基因,其中有92.18%与参考基因组对应,基因注释和参考基因组较完善(表3)。
![]() |
表2 转录组测序数据信息 Tab. 2 Information of transcriptomic reads |
![]() |
表3 有效测序数据与参考基因组对比表 Tab. 3 Comparison of valid sequencing data with reference genome |
主成分分析和相关性分析结果显示,长吻鮠卵巢和精巢组内样品组成相似且相关性高,而组间样品组成相似度低且相关性系数极低。说明长吻鮠性腺雌雄分组,组间基因表达存在较大差异,组内差异则较小。同时,根据基因表达量信息对所有样品进行层次聚类分析,结果显示卵巢和精巢样品各聚为一支,与主成分分析及相关性分析结果一致(图2)。
![]() |
图2 长吻鮠性腺样品主成分和相关性分析a. 主成分分析;b. 相关性分析. 卵巢组包括O1、O2、O3、O4;精巢组包括T1、T2、T3、T4 Fig. 2 Principal component analysis and correlation analysis between gonads samples of Leiocassis longirostrisa. Principal component analysis; b. Correlation analysis. The ovary group includes O1, O2, O3 and O4. The testis group includes T1, T2, T3 and T4. |
长吻鮠性腺转录组测序共注释24461个基因,17243个基因丰度大于1。其中10701个基因在卵巢表达,16858个基因在精巢表达,10316个基因在卵巢和精巢共表达。设置差异阈值:|log2 fold change|≥1且FDR≤0.05,对全部基因进行筛选。长吻鮠性腺差异表达基因统计结果显示(图3),精巢和卵巢差异表达基因共有10872个,与卵巢相比,精巢上调基因有9375个(86%),下调基因有1497个(14%)。
![]() |
图3 长吻鮠性腺差异表达基因分析 Fig. 3 Differential expressed gene analysis of Leiocassis longirostris gonadas |
将差异表达基因在Nr、GO、KEGG数据库比对分析。GO分析将10872个DEGs富集到分子功能(molecular function, MF)、细胞组分(cellular component, CC)和生物过程(biological process, BP)的58个二级条目上(图4)。在生物过程大类的25个二级条目中,富集差异表达基因最多的条目依次为生物学过程(cellular process)、单组织过程(single-organism process)、代谢过程(metabolic process)等;分子功能的12个二级条目中,富集差异表达基因最多的条目依次为结合(binding)、催化活性(catalytic activity)、分子转导活性(molecular transducer activity)等;细胞组分的21个二级条目中,富集差异表达基因最多的条目依次为细胞(cell)、细胞组分(cell part)、细胞器(organelle)等。利用KEGG数据库进行KO富集分析,DEGs富集到5大类共338条KEGG通路(图5)。从中筛选出16个雌雄性腺间存在显著差异(P<0.05)的性别相关通路,共1400个DEGs注释到这些通路。富集到显著差异表达基因最多的通路是MAPK信号通路(MAPK signaling pathway) (432个基因位于该通路,其中有222个基因在雌雄性腺的表达水平存在显著差异);富集比例最高的通路是Hippo信号通路(Hippo signaling pathway-multiple species),其中71%基因表达量存在性别二态性。
![]() |
图4 长吻鮠性腺差异表达基因GO富集分析横轴为基因数目,纵轴为条目名称. Fig. 4 Gene ontology enrichment of differentially expressed genes in the gonads of Leiocassis longirostrisThe horizontal axis indicates numbers of genes, and the vertical axis indicates gene names in each term. |
![]() |
图5 长吻鮠性腺发育调控相关的KEGG通路横轴为基因比例,纵轴为条目名称. Fig. 5 KEGG pathways relevant to sex regulation enriched in gonads of Leiocassis longirostrisThe horizontal axis indicates ratio of genes, and the vertical axis indicates gene names in each term. |
通过GO、KEGG富集分析及相关研究,筛选出71个性别关键DEGs,其中包括经典的性别调控基因家族,如DMRT基因家族(dmrt1、dmrta1、dmrt2、dmrt3a)、SOX基因家族(sox4、sox5、sox6、sox8、sox9、sox9-b、sox18)、卵透明带蛋白家族(zp1、zp2、zp3、zp4)、TGF-β超家族(gdf9、gdf10、inhbb、inha、bmp15)、细胞色素P450基因家族(cyp1a1、cyp1b1、cyp11a1、cyp17a1、cyp26a1)、17β-雌二醇脱氢酶家族(hsd3b、hsd3b7、hsd17b4、hsd17b7、hsd17b10)。此外,还包括与生殖及调控相关的基因:性激素受体(pgr、esr1、esr2、fshr、lhcgr、pgrmc1、prl)、激素调节因子(figla、fem1b、piwil1、sarg、wt1、fgf7、igfbp5、igfbp3)、Rspo1/Wnt/β连环蛋白信号通路(wnt6、rspo1、rspo3)、DEAD-box家族(vasa、p68)、精子形成及发育相关基因(spata2、spata14、spata17、spata2l、spaca9、shoc2)、TKL家族(tesk1、tesk2)、转录因子(gata4、foxl2、foxn5)等。对筛选性别关键DEGs进行基因表达分析,有50个精巢高表达基因和21个卵巢高表达基因(图6)。
![]() |
图6 长吻鮠性腺中性别相关DEGs的聚类分析热图图中每一行对应一个基因;红色到蓝色表示由高到低的表达水平. 卵巢组包括O1、O2、O3、O4;精巢组包括T1、T2、T3、T4. Fig. 6 Cluster analysis heat map of sex-related DEGs in the gonads of Leiocassis longirostrisEach row in the graph represents a gene, and different colors represent different gene expression levels; the color from red to blue indicates high to low expression levels, respectively. The ovary group includes O1, O2, O3 and O4. The testis group includes T1, T2, T3 and T4. |
利用STRING数据库和Cytoscape软件对71个性别相关DEGs进行蛋白互作网络分析,构建出一个包含67个节点、478个蛋白作用关系对的互作关系网络图(图7)。对STRING数据库中蛋白(基因)-蛋白(基因)相互作用可靠性总得分(combined score)排序,并选择前200对互作关系进行下一步分析(combined score>340)。前两百对相互作用涉及56个基因节点,包括Dmrt1、Foxl2、Cyp17a1、Sox9、Zp3、Smad6、Cdc20、Figla、Bmp15等。值得注意的是,Foxl2、Cyp17a1和Sox9、Esr1与18个以上性别关键DEGs对应蛋白之间存在相互作用,产生的互作关系居首位。Dmrt1蛋白与卵巢高表达DEGs蛋白(Foxl2、Figla、Bmp1等)以及精巢高表达DEGs蛋白(Sox9、Wt1、Cyp17a1、Rspo1、Gata4、Hsd3b等)均存在相互作用,与Foxl2相互作用关系可靠性总得分高达909,说明Foxl2与Dmrt1存在强互作关系。另外,存在Zp1与Zp3、Cyp17a1与Hsd3b、Sox9与Wt1、Sox9与Foxl2、Foxl2与Rspo1、Cyp1b1与Hsd17b7、Cyp11a1与Hsd3b等40个强相互关系(combined score>900),为后续研究长吻鮠性别相关基因及作用机制提供思路。
![]() |
图7 长吻鮠性别相关DEGs推断蛋白的PPI网络黄色方块和红色圆形代表互作网络节点;黄色方块代表与Dmrt1互作蛋白;红色圆形代表不与Dmrt1互作蛋白;线条代表蛋白-蛋白间互作关系;红色到蓝色表示互作水平由高到低. Fig. 7 PPI networks of the deduced proteins of sex-related DEGs in Leiocassis longirostrisYellow squares and red circles represent interacting network nodes; yellow squares represent proteins that interact with Dmrt1; red circles represent proteins that not interact with Dmrt1; lines represent protein-protein interaction; the color from red to blue indicates high to low level of interactions. |
本研究从上述差异表达基因中,选取了19个性别差异表达基因和2个无显著差异性别有关基因进行RT-qPCR验证,分别是zp1 (zona pellucida sperm-binding protein 4-like)、zp3 (zona pellucida sperm-binding protein 3-like)、zar1 (zygote arrest protein 1-like isoform X1)、slbp2 (oocyte-specific histone RNA stem-loop-binding protein 2-like)、cdc20 (cell division cycle 20)、spata6 (spermatogenesis- associated protein 6)、figla (factor in the germline alpha)、foxl2 (homo sapiens forkhead box L2)、nanos1 (nanos homolog 1-like)、dmrt1 (doublesex and mab-3 related transcription factor 1)、cyp11a1 (cytochrome P450 family 11 subfamily Amember 1)、cyp17a1 (cytochrome P450 family 17 subfamily A member 1)、gata4 (transcription factor GATA-4)、shoc2 (leucine-rich repeat protein SHOC-2)、tesk2 (dual specificity testis-specific protein kinase 2)、smad7 (mothers against decapentaplegic homolog 7)、wnt6 (wingless-type MMTV integration site family, member 6)、piwil1 (piwi-like protein 1 isoform X1)、pnpla7 (patatin-like phospholipase domain- containing protein 7)、meioc (meiosis-specific coiled- coil domain-containing protein MEIOC isoform X1)和ddx4 (probable ATP-dependent RNA hel-icase DDX4 isoform X1)。经验证,选取基因的RT-qPCR结果与转录组分析结果一致,转录组测序结果可靠(图8)。
![]() |
图8 长吻鮠差异表达基因的RT-qPCR验证 Fig. 8 Validation of differentially expressed genes in Leiocassis longirostris by RT-qPCR |
在长吻鮠雌雄性腺DEGs中进一步筛选出dmrt1、foxl2、sox9、zp1、figla等71个性别关键基因,作为长吻鮠性别决定候选研究基因,以此为中心展开进一步分析。性别决定基因(sex determining gene, SD)是控制性别分化的重要调控因子,是广泛关注的焦点。脊椎动物中,性别决定基因呈现出多样性,不同物种甚至同一物种不同群体可能呈现不同的性别决定基因。迄今,多个生物类群的研究发现多种性别决定基因,包括哺乳动物的sry[21]、鸟类和爬行动物的dmrt1、两栖动物的dmw[22],以及鱼类的dmy/dmrt1by[23]、amhy[24-25]、amhr2[26]、gsdfy[27]、sox3[28]、sdy[29]、gdf6y[30]、bmpr1ba[31]、bmpr1bby[32]和hsd17b1[33]。目前为止,发现的鱼类性别决定基因主要归为3类:转录因子、TGF-β家族相关基因和类固醇激素合成相关基因,为其他鱼类性别决定基因的研究提供了线索。
dmrt1转录因子最早在无脊椎动物中被发现,已证实其在鱼类性别决定及分化过程发挥重要作用[34]。通过TALEN敲除尼罗罗非鱼foxl2和dmrt1基因[35],发现dmrt1缺失个体雄性精巢退化,精原细胞退化,甚至生殖细胞完全缺失。Webster等[36]研究发现斑马鱼(Danio rerio) dmrt1突变体发育为可育雌性及不育雄性个体,缺失dmrt1基因对雌雄个体产生不同影响:雌性发育正常;雄性个体性腺分化异常,无法正常分化出精巢结构及产生精子。以上结果暗示dmrt1在斑马鱼幼鱼卵巢向精巢转化过渡时期以及雄性生殖细胞发育过程起重要作用。类似的结果还在其他研究中被发现,半滑舌鳎[37]和青鳉(Oryzias latipes)[38]的dmrt1突变体同样出现精巢发育受阻现象。除此,迄今已对多种鱼类性腺dmrt1基因表达量进行研究,大多鱼类性腺中dmrt1基因在精巢高表达或特异表达,如牙鲆(Paralichthys olivaceus)[39]、湖栖鳍虾虎鱼(Gobiopterus lacustris)[40]和红鳍东方鲀(Takifugu rubripes)[41]精巢组织dmrt1表达量显著高于卵巢组织,表明dmrt1基因在精巢发育过程中必不可少。本研究长吻鮠性腺转录组测序共注释到6个DM结构域基因,均在精巢高表达,其中dmrt1、dmrt2、dmrt3a、dmrta1和dmrtb1在精巢和卵巢的表达量存在显著差异(P<0.05)。蛋白互作PPI网络分析显示,dmrt1与精巢高表达DEGs (sox9、wt1、cyp17a1、rspo1、gata4、hsd3b)和卵巢高表达DEGs (foxl2、figla、bmp15)存在直接相互作用,表明dmrt1在精巢发育过程中可能通过诱导精巢相关基因高表达,同时抑制卵巢相关基因表达而发挥作用。
叉头框L2 (foxl2)转录因子被认为鱼类卵巢分化的标志基因,通过抑制精巢特异基因表达促进卵巢分化与发育[42-43]。本研究中,foxl2主要在长吻鮠卵巢高表达,意味其与长吻鮠雌性性腺分化及发育相关。同时,foxl2是芳香化酶cyp19a1a的上游调控基因。之前的研究表明,foxl2不仅可以直接结合cyp19a1a的启动子区,而且可以与ad4bp/sf-1形成异二聚体[44],通过激活转录、调节雌激素合成发挥功能。cyp19a1a1a基因在脊椎动物中表达高度保守,通常高表达于卵巢组织,可编码性腺芳香化酶,将雄激素转化为雌激素。长吻鮠cyp19a1a在卵巢表达量显著高于精巢,与金钱鱼[45]、叉尾斗鱼(Macropodus opercularis)[46]、红鳍东方鲀[47]中的研究结果相一致,表明cyp19a1a在卵巢中发挥重要作用,是卵巢分化及发育的关键因素。除了cyp19a1a, CYP家族还有多个基因在性别分化及性腺发育上发挥重要作用。cyp17a1参与睾酮和17α-羟孕酮合成,为雌二醇(E2)和17α, 20β-双羟孕酮(17α, 20β-DHP)合成提供前体物质;参与孕激素合成,在精子成熟中起重要作用。斑点叉尾鮰(Ictalurus punctatus)[48]不同发育时期cyp17a1基因表达水平存在明显差异,卵巢发育后期cyp17a1基因表达量达到峰值。cyp11a1参与胆固醇转化为孕烯醇酮过程,是唯一将胆固醇转化为孕烯醇酮的酶,是进入类固醇生成全过程的唯一途径[49]。Zhu等[50]使用17α-甲基睾丸酮诱导雌性(XX)未分化鳜(Siniperca chuatsi)雄性化,诱导过程中cyp11a1和cyp11b基因在精巢表达上调,cyp19a1等雌性发育相关基因表达量下调。表明发育早期雌激素合成相关基因的表达可能对鳜鱼性别分化的方向起决定性作用。本研究发现长吻鮠cyp19a1a和cyp26a1基因在卵巢高表达,而cyp17a1、cyp11a1和cyp1a1基因在精巢高表达,预示着芳香化酶P450家族多个基因可能参与长吻鮠性腺发育及调节类固醇激素合成。
SOX家族成员氨基酸序列在HMG-box区高度保守,在精巢及其他组织分化中起重要作用。本研究共注释了16个SOX基因家族成员,其中sox9、sox4、sox8、sox5、sox10、sox6、sox11、sox18、sox7和sox17a-a在精巢高表达,sox19和sox13主要在卵巢表达,而sox1a、sox2、sox14、sox21b和sox3在精巢和卵巢的表达水平无显著差异,暗示SOX家族成员在长吻鮠性别分化及发育过程中起到复杂作用。值得注意的是,sox9基因主要在性腺分化时期精巢表达,可促进精巢支持细胞和间质细胞分化、精巢发育等,它被认为是哺乳动物性别决定与性腺发育的关键基因[51]。张梦等[52]克隆大黄鱼(Larimichthys crocea) sox9a、sox9b氨基酸序列,并进行不同组织各发育时期基因表达量分析。结果显示sox9a、sox9b基因在精巢表达量最高,显著高于卵巢等组织,且性腺发育前期sox9a/b基因表达量低于发育后期。表明sox9基因表达水平具有性别二态性,在性腺发育过程中可能起重要作用。Klüver等[53]研究发现sox9a基因在青鳉卵巢组织高表达,Sox9b在精巢表达量高。与之相反,sox9a、sox9b基因分别在斑马鱼精巢、卵巢高表达。说明sox9的两个拷贝基因在不同鱼类中表达模式存在差异,研究sox9基因表达模式是有必要的。除了sox9基因,还有一些SOX家族成员被证明与性别分化及性腺发育有关。比如,sox3是青鳉的性别决定基因[28]; sox4、sox5、sox6和sox8基因在精子发生过程中起作用;sox2和sox3分别参与精巢、卵巢发育[54-56]。总之,SOX基因家族在性别决定、性腺分化与发育过程发挥着重要作用
除此以外,研究还发现许多性别关键基因,可能也在长吻鮠性别调控及性腺发育起到重要作用(图4)。透明带蛋白家族(ZP)是组成硬骨鱼卵母细胞周围透明包膜的主要成分。已有研究证实ZP蛋白在精卵识别、诱发顶体反应、卵母细胞成熟、防止多精、受精等方面有重要作用[57]。之前的研究表明,鱼卵包膜通常包含2~4种ZP家族基因,与哺乳动物zp1、zp3、zp4同源[58]; zp2在卵母细胞包膜早期形成中起重要作用;zp3参与顶体反应等生殖活动,是鱼类卵壳主要构成蛋白[59];鱼类zp4基因研究较少,人类zp4可诱导顶体反应并抑制精子与透明带结合。本研究中,4种ZP家族基因(zp1、zp2、zp3和zp4)在长吻鮠卵巢的表达水平高于精巢,表明它们在卵泡发生过程中发挥重要作用。figla与dmrt1在雌性鱼类的内分泌系统调节过程存在相互作用。在大鳞海猪鱼(Halichoeres Poecilopterus)性别分化后,figla表达量持续降低,而dmrt1表达量随之增加[60]。rspo1可激活参与哺乳动物雌性性别分化的Wnt/β-连环蛋白信号通路;尼罗罗非鱼中,rspo1过表达导致wnt4b和β-catenin表达量上调以及dmy、gsdf、dmrt1表达量下降[61]。这些DEGs可能构成了一个调控性腺发育、配子形成的级联网络。
3.2 长吻鮠性腺生殖调控相关的信号通路根据功能预测和分类,笔者发现了16条雌雄间差异显著KEGG通路,包括卵巢类固醇生成、Wnt信号通路、MAPK信号通路、TGF-β信号通路等(图5)。众所周知,鱼类通过下丘脑-垂体-性腺轴(HPG轴)参与生殖控制过程。GnRH信号通路能够调控性腺的发育和成熟,对促性腺激素生成、性类固醇激素激活起调控作用[62]。类固醇激素主要由性腺合成和分泌,通过与核受体(如雌激素受体和雄激素受体)结合。本研究中,该通路上多种类固醇激素合成酶表达量存在显著差异,cyp17a1、cyp11a1、cyp1a1、hsd3b与hsd17b7基因均在精巢中高度表达,体现了它对雌雄个体正常繁殖的重要调控作用。卵巢类固醇则是雌性生物体卵巢内的重要性激素,如孕酮、17β-雌二醇等。在卵巢类固醇生成通路中发现了许多发育相关差异表达基因,3β-羟基类固醇脱氢酶(hsd3b),骨形态发生蛋白15 (bmp15), 17β-羟基类固醇脱氢酶7型(hsd17b7),促卵泡激素受体(fshr)等。这些基因通过调节卵巢类固醇的产生和神经分布,参与性成熟、性腺发育和生殖的调控[63]。MAPK通路在调节促性腺激素相关基因表达等方面也起重要作用[64]。
4 结论本研究首次对长吻鮠雌雄性腺进行转录组测序,共检测出24661个基因,其中23708个基因与参考基因组对应。比较分析雌雄转录组基因表达水平,获得10872个DEGs,进行GO富集分析、KEGG通路分析。差异表达基因显著富集在Wnt信号通路、TGF-β信号通路、MAPK信号通路、卵巢类固醇通路、GnRH信号通路等16条与性别决定与分化以及性腺发育相关的信号通路。进一步并筛选71个性别决定候选的关键基因(51个精巢高表达量基因:dmrt1、cyp17a1、sox9、rspo1、wnt6等;20个卵巢高表达量基因:foxl2、zp1、zp3、zar1、figla等)进行PPI分析,揭示基因间存在多种互作关系。这些结果将为长吻鮠性别决定和分化机制的研究积累重要数据,从而为其全雄苗种的培育提供理论支撑。
[1] |
Mei J, Gui J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish[J]. Science China Life Sciences, 2015, 58(2): 124-136..》Google Scholar
|
[2] |
Wang H P, Gao Z X, Rapp D, et al. Effects of temperature and genotype on sex determination and sexual size dimorphism of bluegill sunfish Lepomis macrochirus[J]. Aquaculture, 2014, 420-421(S1): 64-71..》Google Scholar
|
[3] |
Zhang J, Ma W G, He Y, et al. Sex biased expression of ghrelin and GHSR associated with sexual size dimorphism in yellow catfish[J]. Gene, 2016, 578(2): 169-176..》Google Scholar
|
[4] |
Tao W J, Zhu X, Cao J M, et al. Screening and characterization of sex-linked DNA markers in Mozambique tilapia (Oreochromis mossambicus)[J]. Aquaculture, 2022, 557: 738331..》Google Scholar
|
[5] |
Zhu W X, Wang T, Zhao C, et al. Evolutionary conservation and divergence of Vasa, Dazl and Nanos1 during embryogenesis and gametogenesis in dark sleeper (Odontobutis potamophila)[J]. Gene, 2018, 672: 21-33..》Google Scholar
|
[6] |
Zhai G, Shu T T, Chen K X, et al. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp[J]. Engineering, 2022, 8(1): 181-189..》Google Scholar
|
[7] |
Wang N, Wang R K, Wang R Q, et al. Transcriptomics analysis revealing candidate networks and genes for the body size sexual dimorphism of Chinese tongue sole (Cynoglossus semilaevis)[J]. Functional & Integrative Genomics, 2018, 18(3): 327-339..》Google Scholar
|
[8] |
Molina W F, Benetti D D, Fiorentino J N, et al. Early sex shape dimorphism (SShD) in Rachycentron canadum (Linnaeus, 1766) and its applications for monosex culture[J]. Aquaculture, 2018, 495: 320-327..》Google Scholar
|
[9] |
Mustapha U F, Peng Y X, Huang Y Q, et al. Comparative transcriptome analysis of the differentiating gonads in Scatophagus argus[J]. Frontiers in Marine Science, 2022, 9: 962534..》Google Scholar
|
[10] |
Zhao W, Zhou J, Li Z, et al. Characterization of 55 SNP markers in Chinese longsnout catfish Leriocassis Longirostris[J]. Conservation Genetics Resources, 2020, 12(3): 427-432..》Google Scholar
|
[11] |
Dai S M, Zhou Y L, Guo X F, et al. Sex-specific markers developed by genome-wide 2b-RAD sequencing confirm an XX/XY sex determination system in Chinese longsnout catfish (Leiocassis longirostris)[J]. Aquaculture, 2022, 549: 737730..》Google Scholar
|
[12] |
Fisheries and Fisheries Adiministration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2023 China fisheries statistcal yearbook[M]. Beijing: China Agriculture Press, 2023: 45-45. [农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会. 2023中国渔业统计年鉴[M]. 北京:中国农业出版社,2023: 45-45.].》Google Scholar
|
[13] |
Luo H, Li Y, Zheng S Q, et al. Identification of male sex- specific markers using genome resequencing in the Chinese longsnout catfish Leiocassis longirostris[J]. Aquaculture, 2022, 558: 738392..》Google Scholar
|
[14] |
Tao W J, Chen J L, Tan D J, et al. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis[J]. BMC Genomics, 2018, 19(1): 363..》Google Scholar
|
[15] |
Lin X H, Zhou D Y, Zhang X M, et al. A first insight into the gonad transcriptome of Hong Kong catfish (Clarias fuscus)[J]. Animals, 2021, 11(4): 1131..》Google Scholar
|
[16] |
Guan W Z, Jiang K, Lai X L, et al. Comprehensive transcriptome analysis of gonadal and somatic tissues for identification of sex-related genes in the largemouth bass Micropterus salmoides[J]. Marine Biotechnology, 2022, 24(3): 588-598..》Google Scholar
|
[17] |
Pertea M, Kim D, Pertea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9): 1650-1667..》Google Scholar
|
[18] |
Niedziela G, Szabelska-Beręsewicz A, Zyprych-Walczak J, et al. Application of edgeR and DESeq2 methods in plant experiments based on RNA-seq technology[J]. Biometrical Letters, 2022, 59(2): 127-139..》Google Scholar
|
[19] |
Micale G, Continella A, Ferro A, et al. GASOLINE: A Cytoscape app for multiple local alignment of PPI networks[J]. F1000 Research, 2014, 3(2): Article No.140..》Google Scholar
|
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
|
[21] |
Kuroki S, Tachibana M. Epigenetic regulation of mammalian sex determination[J]. Molecular and Cellular Endocrinology, 2018, 468: 31-38..》Google Scholar
|
[22] |
Wright S M, Carroll C, Walters A, et al. Genome sequence of Leuconostoc citreum DmW_111, isolated from wild Drosophila[J]. Genome Announcements, 2017, 5(24): e00507- e00517..》Google Scholar
|
[23] |
Matsuda M, Sato T, Toyazaki Y, et al. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes[J]. Zoological Science, 2003, 20(2): 159-161..》Google Scholar
|
[24] |
Hattori R S, Murai Y, Oura M, et al. A Y-linked anti- Müllerian hormone duplication takes over a critical role in sex determination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2955-2959..》Google Scholar
|
[25] |
Hattori R S, Tashiro S, Zhang Y, et al. Demonstration of viability and fertility and development of a molecular tool to identify YY supermales in a fish with both genotypic and environmental sex determination[J]. Ecology and Evolution, 2018, 8(15): 7522-7528..》Google Scholar
|
[26] |
Kamiya T, Kai W, Tasumi S, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu)[J]. PLoS Genetics, 2012, 8(7): e1002798..》Google Scholar
|
[27] |
Myosho T, Otake H, Masuyama H, et al. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis[J]. Genetics, 2012, 191(1): 163-170..》Google Scholar
|
[28] |
Takehana Y, Matsuda M, Myosho T, et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena[J]. Nature Communications, 2014, 5(1): Article No.4157..》Google Scholar
|
[29] |
Komrakova M, Knorr C, Brenig B, et al. Sex discrimination in rainbow trout (Oncorhynchus mykiss) using various sources of DNA and different genetic markers[J]. Aquaculture, 2018, 497: 373-379..》Google Scholar
|
[30] |
Reichwald K, Petzold A, Koch P, et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish[J]. Cell, 2015, 163(6): 1527-1538..》Google Scholar
|
[31] |
Jasonowicz A J, Simeon A, Zahm M, et al. Generation of a chromosome-level genome assembly for Pacific halibut (Hippoglossus stenolepis) and characterization of its sex- determining genomic region[J]. Molecular Ecology Resources, 2022, 22(7): 2685-2700..》Google Scholar
|
[32] |
Rafati N, Chen J F, Herpin A, et al. Reconstruction of the birth of a male sex chromosome present in Atlantic herring[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24359-24368..》Google Scholar
|
[33] |
Koyama T, Nakamoto M, Morishima K, et al. A SNP in a steroidogenic enzyme is associated with phenotypic sex in Seriola fishes[J]. Current Biology, 2019, 29(11): 1901-1909..》Google Scholar
|
[34] |
Matson C K, Zarkower D. Sex and the singular DM domain: Insights into sexual regulation, evolution and plasticity[J]. Nature Reviews Genetics, 2012, 13(3): 163-174..》Google Scholar
|
[35] |
Li M H, Yang H H, Li M R, et al. Antagonistic roles of dmrt1 and foxl2 in sex differentiation via estrogen production in Tilapia as demonstrated by TALENs[J]. Endocrinology, 2013, 154(12): 4814-4825..》Google Scholar
|
[36] |
Webster K A, Schach U, Ordaz A, et al. Dmrt1 is necessary for male sexual development in zebrafish[J]. Developmental Biology, 2017, 422(1): 33-46..》Google Scholar
|
[37] |
Cui Z K, Liu Y, Wang W W, et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis)[J]. Scientific Reports, 2017, 7(3): Article No.42213..》Google Scholar
|
[38] |
Masuyama H, Yamada M, Kamei Y, et al. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by dmy in the medaka[J]. Chromosome Research, 2012, 20(1): 163-176..》Google Scholar
|
[39] |
Wen A Y, You F, Sun P, et al. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus[J]. Journal of Fish Biology, 2014, 84(1): 193-205..》Google Scholar
|
[40] |
Dong Z D, Li X Y, Huang C Q, et al. Comparative transcriptome analysis of the gonad of the lacustrine goby (Gobiopterus lacustris)[J]. Journal of Fisheries of China, 2021, 45(3): 365-380. [董忠典,黎学友,黄承勤,等. 湖栖鳍虾虎鱼性腺转录组比较分析[J]. 水产学报,2021, 45(3): 365-380.].》Google Scholar
|
[41] |
Zhou H, Zhuang Z X, Sun Y Q, et al. Changes in DNA methylation during epigenetic-associated sex reversal under low temperature in Takifugu rubripes[J]. PLoS One, 2019, 14(8): e0221641..》Google Scholar
|
[42] |
Uhlenhaut N H, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation[J]. Cell, 2009, 139(6): 1130-1142..》Google Scholar
|
[43] |
Georges A, Auguste A, Bessière L, et al. FOXL2: A central transcription factor of the ovary[J]. Journal of Molecular Endocrinology, 2013, 52(1): R17-R33..》Google Scholar
|
[44] |
Wang H, Li X, Zhang Y H. Advances in research on regulation factors of CYP19 gene expression and aromatase activity[J]. Chinese Journal of Histochemistry and Cytochemistry, 2010, 19(3): 304-308. [王慧,李霞,张育辉. CYP19基因表达与芳香化酶活性调控因子的研究进展[J]. 中国组织化学与细胞化学杂志,2010, 19(3): 304-308.].》Google Scholar
|
[45] |
He F X, Jiang D N, Huang Y Q, et al. Comparative transcriptome analysis of male and female gonads reveals sex- biased genes in spotted scat (Scatophagus argus)[J]. Fish Physiology and Biochemistry, 2019, 45(6): 1963-1980..》Google Scholar
|
[46] |
Liu F, Zhang X L, Wei X K, et al. Gonadal transcriptome analysis of paradise fish Macropodus opercularis to reveal sex-related genes[J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2023, 48: 101125..》Google Scholar
|
[47] |
Yan H W, Shen X F, Cui X, et al. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in Takifugu rubripes gonad at the early stage of sex differentiation[J]. Fish Physiology and Biochemistry, 2018, 44(5): 1275-1290..》Google Scholar
|
[48] |
Kumar R S, Ijiri S, Trant J M. Changes in the expression of genes encoding steroidogenic enzymes in the channel catfish (Ictalurus punctatus) ovary throughout a reproductive cycle[J]. Biology of Reproduction, 2000, 63(6): 1676-1682..》Google Scholar
|
[49] |
Tokarz J, Möller G, de Angelis M H, et al. Steroids in teleost fishes: A functional point of view[J]. Steroids, 2015, 103: 123-144..》Google Scholar
|
[50] |
Zhu Q Y, Han C, Liu S Y, et al. Development and gene expression analysis of gonad during 17α-methyltestosterone- induced sex reversal in mandarin fish (Siniperca chuatsi)[J]. Aquaculture Reports, 2022, 23: 101049..》Google Scholar
|
[51] |
Zheng Y, Wang Z Z, Chen J C. Progresses on the study of sex differentiation genes in fish[J]. Acta Hydrobiologica Sinica, 2015, 39(4): 798-810. [郑尧,王在照,陈家长. 调控鱼类性腺分化基因的研究进展[J]. 水生生物学报,2015, 39(4): 798-810.].》Google Scholar
|
[52] |
Zhang M, Zhu Y Y, Li W B, et al. Cloning and expression of sox9a/b gene in the large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2019, 43(8): 1691-1705. [张梦,朱阳阳,李完波,等. 大黄鱼sox9a/b基因的克隆与表达分析[J]. 水产学报,2019, 43(8): 1691-1705.].》Google Scholar
|
[53] |
Klüver N, Kondo M, Herpin A, et al. Divergent expression patterns of sox9 duplicates in teleosts indicate a lineage specific subfunctionalization[J]. Development Genes and Evolution, 2005, 215(6): 297-305..》Google Scholar
|
[54] |
Xu Y, Zhong Z W, Feng Y, et al. Expression pattern analysis of anti-Mullerian hormonein testis development of pearlscale angelfish (Centropyge vrolikii)[J]. Journal of Fish Biology, 2023, 102(5): 1067-1078..》Google Scholar
|
[55] |
Yu H Y, Wang Y J, Li X J, et al. The evolution and possible role of two sox8 genes during sex differentiation in Japanese flounder (Paralichthys olivaceus)[J]. Molecular Reproduction and Development, 2019, 86(5): 592-607..》Google Scholar
|
[56] |
Hu Y C, Wang B Z, Du H J. A review on sox genes in fish[J]. Reviews in Aquaculture, 2021, 13(4): 1986-2003..》Google Scholar
|
[57] |
Lü C, Huang H L, Yi D J, et al. Mutant zp1 impedes incorporation of zp3 and zp4 in the zona pellucida, resulting in zona absence and female infertility in rats[J]. Biology of Reproduction, 2021, 104(6): 1262-1270..》Google Scholar
|
[58] |
Litscher E S, Wassarman P M. The fish egg's zona Pellucida[J]. Current Topics in Developmental Biology, 2018, 130: 275-305..》Google Scholar
|
[59] |
Sasaki K, Takaoka S, Obata Y. Oocyte-specific gene knockdown by intronic artificial microRNAs driven by zp3 transcription in mice[J]. The Journal of Reproduction and Development, 2021, 67(3): 229-234..》Google Scholar
|
[60] |
Miyake Y, Sakai Y, Kuniyoshi H. Molecular cloning and expression profile of sex-specific genes, figla and dmrt1, in the protogynous hermaphroditic fish, Halichoeres poecilopterus[J]. Zoological Science, 2012, 29(10): 690-710..》Google Scholar
|
[61] |
Wu F R, Wu L M, Wu Q Q, et al. Duplication and gene expression patterns of β-catenin in Nile tilapia[J]. Fish Physiology and Biochemistry, 2018, 44(2): 651-659..》Google Scholar
|
[62] |
Sower S A. Landmark discoveries in elucidating the origins of the hypothalamic-pituitary system from the perspective of a basal vertebrate, sea lamprey[J]. General and Comparative Endocrinology, 2018, 264: 3-15..》Google Scholar
|
[63] |
Thitiphuree T, Nagasawa K, Osada M. Molecular identification of steroidogenesis-related genes in scallops and their potential roles in gametogenesis[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2019, 186: 22-33..》Google Scholar
|
[64] |
Li S D, Wang Q M, Yu H, et al. Polystyrene microplastics induce blood-testis barrier disruption regulated by the MAPK- Nrf2 signaling pathway in rats[J]. Environmental Science and Pollution Research, 2021, 28(35): 47921-47931..》Google Scholar
|