中国水产科学  2024, Vol. 31 Issue (02): 155-164  DOI: 10.12264/JFSC2023-0334
0

引用本文 

薛文博, 姚晓丽, 谢金洋, 高锦华, 赵金良. 鳜味觉受体I型(T1R)家族基因基因组鉴定与表达分析[J]. 中国水产科学, 2024, 31(2): 155-164. DOI: 10.12264/JFSC2023-0334.
XUE Wenbo, YAO Xiaoli, XIE Jinyang, GAO Jinhua, ZHAO Jinliang. Genomic identification and expression analysis of mandarin fish (Siniperca chuatsi) taste receptor type I (T1R) family genes[J]. Journal of Fishery Sciences of China, 2024, 31(2): 155-164. DOI: 10.12264/JFSC2023-0334.

基金项目

现代农业产业技术体系专项(CARS-46).

作者简介

薛文博(1999‒),男,硕士研究生,研究方向为鱼类遗传育种. E-mail:2657846916@qq.com

通信作者

通信作者:赵金良,教授,研究方向为水产种质资源与遗传育种. E-mail:jlzhao@shou.edu.cn

文章历史

收稿日期:2023-12-04
修改日期:2024-01-12
鳜味觉受体I型(T1R)家族基因基因组鉴定与表达分析
薛文博1,2,3,姚晓丽1,2,3,谢金洋1,2,3,高锦华1,2,3,赵金良1,2,3,     
1. 上海海洋大学,农业农村部淡水水产种质资源重点实验室,上海 201306
2. 上海海洋大学,水产动物遗传育种中心上海市协同创新中心,上海 201306
3. 上海海洋大学,水产科学国家级实验教学中心,上海 201306
摘要:味觉受体I型(taste receptor type I,T1R)家族在对环境营养物质的识别中发挥关键作用。为理解鳜(Siniperca chuatsi)味觉受体I型家族成员数目、表达特征与其肉食性之间的关联,利用基因家族分析从鳜基因组数据中鉴定了T1R家族成员基因,荧光定量PCR测定了孵化后0~30 d(0~30 dph,days post hatching)、驯食饲料后T1R家族成员基因表达水平变化。结果显示,鳜T1R家族包括4个基因:t1r1t1r2a1t1r2a2t1r3,4个基因序列、结构域完整;t1r2基因出现了复制(t1r2a1t1r2a2),t1r2a1t1r2a2外显子结构一致,结构域相同,仅第3、4、5内含子和5ʹ端UTR长度不同。选择压力(dN/dS)分析表明,鳜t1r1正向选择,t1r2st1r3负选择,鲜味受体基因t1r1进化压力可能与其独特食性(终生以活饵为食)有关。4个味觉受体I型基因t1r1t1r2a1t1r2a2t1r3自开口前开始表达,20 d后表达增加,其中鲜味受体基因t1r1表达水平显著高于甜味受体基因t1r2s;饲料驯食养殖后,4个t1r基因表达量下调,其中鲜味受体基因t1r1表达下调最为显著。研究结果为鳜味觉受体基因对其肉食性形成与适应研究提供了基础资料。
关键词    味觉受体I型(T1R)家族    基因组鉴定    发育表达    
Genomic identification and expression analysis of mandarin fish (Siniperca chuatsi) taste receptor type I (T1R) family genes
XUE Wenbo1,2,3,YAO Xiaoli1,2,3,XIE Jinyang1,2,3,GAO Jinhua1,2,3,ZHAO Jinliang,1,2,3    
1. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs; Shanghai Ocean University, Shanghai 201306, China
2. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:Taste serves as the foundation for choosing food and is one of the most vital senses of animals. Numerous taste cells, specialized structures that can sense taste, form taste buds. Taste receptors are present in the membranes of these cells. Taste receptors include type I and type II receptors, which are responsible for identifying distinct flavors in food. The taste receptor type I (T1R) family plays a crucial role in the identification of nutrients in the environment. TIR family genes rely on different heterodimers for flavor recognition and can recognize fresh (T1R1+T1R3) and sweet (T1R2+T1R3) flavors. Animal feeding habits are frequently associated with the number and replication of T1R family genes. Mandarin fish (Siniperca chuatsi) have a unique carnivorous lifestyle and eat live bait throughout their lifetimes. To understand the correlation between the quantity and expression patterns of T1R family members in mandarin fish and their carnivorous nature, gene family analysis was conducted to identify T1R family member genes in mandarin fish genomic data. Changes in the T1R family member gene expression levels were then determined using Quantitative Real-time PCR (qPCR) from to 0-30 days post hatching (0-30 dph) and after the domestication of their diet. This study found that the T1R family in mandarin fish comprises four genes, t1r1, t1r2a1, t1r2a2, and t1r3, each of which possesses complete sequences and structural domains. The t1r2 gene was duplicated as t1r2a1 and t1r2a2, and the exons of both displayed identical structural domains. However, the length of the 3rd, 4th, and 5th introns and 5' UTR varied among them. Selection pressure (dN/dS) analysis indicated positive selection for t1r1 in mandarin fish, whereas t1r2s and t1r3 showed negative selection. The possible cause of evolutionary pressure on the umami receptor gene t1r1 might be related to the uncommon diet of this fish species. The expression of four taste receptor type I genes, t1r1, t1r2a1, t1r2a2, and t1r3, began before the oropharyngeal cavity of mandarin fish was completely formed, and increased after 20 d. The umami receptor gene (t1r1) was found to have a much higher expression among these genes than that of the sweet taste receptor gene (t1r2s). All four t1r genes showed lower expression levels after domestication, with t1r1, the umami receptor gene, showed the most significant downregulation. These findings provide fundamental data for investigating the effects of taste receptor genes on the development and adaptation of mandarin fish to carnivores.
Key words Siniperca chuatsi     taste receptor type I (T1R) family    genomic identification    gene expression    

味觉是动物的重要感觉之一,会帮助动物选择食物。味蕾是味觉感受的外周器官,存在于舌上皮及口咽腔[1],味蕾细胞有3种类型(I型味蕾细胞、II型味蕾细胞、III型味蕾细胞),它们兼具化学感受及物理(外形、硬度)识别功能[2]。在味蕾细胞上起化学成分识别作用的是味觉受体(taste receptor)[3-4]。人类具有5种基本味觉:苦、酸、咸、甜和鲜味(典型的刺激是谷氨酸)功能[5-6]。对甜味、鲜味和苦味的感知是由2个不同的G蛋白偶联受体(GCPR)家族介导的,分别为味觉受体I型(taste receptor type 1, T1R)和味觉受体II型(taste receptor type 2, T2R)。

味觉受体I型家族中有3个成员,分别为T1R1 (taste receptor type 1 member 1)、T1R2 (taste receptor type 1 member 2)和T1R3 (taste receptor type 1 member 3)[7]。在哺乳动物中,T1R1和T1R2具有40%的氨基酸同源性,与T1R3具有30%的同源性[8]。T1R1和T1R3结合,在接受L-氨基酸和L-谷氨酸钠反应时产生鲜味感觉,而T1R2和T1R3结合可感受甜味刺激[9]

味觉受体基因以及功能的演化,通常与动物食性的演化密切相关。研究发现,与其近缘物种不同,大熊猫(Ailuropoda melanoleuca)为植食性,以竹为食,鲜味受体基因t1r1出现了假基因化[10];在不同食性的蝙蝠中,食果蝙蝠的鲜味受体基因t1r1出现了结构缺失,而吸血、食虫、食鱼蝙蝠的甜味受体基因t1r2出现了假基因化[11]。对不同食性鱼类t1r1t1r2基因的研究发现,草食性团头鲂(Megalobrama amblycephala)出现鲜味受体基因t1r1缺失,而在杂食性青鳉(Oryzias latipes)和三刺鱼(Gasterosteus aculeatus)、肉食性的大西洋鳕(Gadus morhua)和半滑舌鳎(Cynoglossus semilaevis)中t1r1发生了基因复制,同时,甜味受体基因t1r2在草食性草鱼(Ctenopharyngodon Idella)和杂食性的鱼类斑马鱼(Danio rerio)中发生了复制,却在肉食性大口黑鲈(Micropterus salmoides)中出现丢失[12]

鳜(Siniperca chuatsi)是我国重要的淡水名贵经济鱼类。为典型的肉食性鱼类,自开口期起,终生以活饵为食[13]。为探明其食性形成机制,郝月月[14]利用RACE技术获得了鳜2个甜味受体基因(t1r2a1, t1r2a2) cDNA序列,序列结构分析表明t1r2a1有1个功能区域,t1r2a2没有完整的结构域,推测t1r2a1功能发生退化,而t1r2a2为假基因。Ding等[15]在鳜全基因数据中鉴定了3个味觉受体I型基因(t1r1t1r2t1r3)。鳜I型味觉受体基因是否出现复制或假基因化,是否与鳜特殊食性形成与维持有关尚不清楚。因此,本研究利用本实验室鳜鱼基因组数据资源,对鳜t1rs基因家族进行全基因组鉴定,验证鳜味觉受体I型基因数目与序列结构,并检测t1rs基因早期发育表达特征、驯食前后的表达变化,为理解鳜特殊食性的形成与适应提供基础资料。

1 材料与方法 1.1 实验材料

鳜仔稚鱼样品于2023年5月1日至5月30日取自安徽省池州市秋浦特种水产开发有限公司,鳜雌雄亲鱼经人工催产,受精卵于环道内孵化,水温26~27 ℃;孵化后3 dph (days post hatching)仔鱼开口;分别取胚胎期0 dph、1 dph、3 dph、5 dph、10 dph、20 dph、30 dph的样本(各60尾), RNA保存液分装−20 ℃保存;饲料驯化组(实验组)及活饵投喂组(对照组)鳜样品取自江苏同氿生态环境科技有限公司,采用配合饲料驯化养殖8周[体长(8.2±0.5) cm],实验组及对照组鳜各取9尾,取其上、下颌、鳃、舌、口咽腔、头部皮肤样品,−80 ℃保存。

1.2 实验方法 1.2.1 基因数据收集

鳜基因组及转录组数据文件(未公开)来自本实验室(Genomics Illumina 10X)高通量测序,基因组与转录组文件利用软件Complete ORF Predict (Batch Mode)与ORF finder分别预测ORF,将输出文件上传至GXF rebuild from sequence重构鳜的基因注释文件。将注释文件上传至软件GSAman和EvidenceModeler中对GFF文件进行整合矫正,利用Gxf Sequence Extract提取全基因组CDS序列,利用Batch Translator翻译成氨基酸序列。

在公共数据库Ensembl和GenBank中检索鱼类味觉受体基因,得到鱼类味觉受体及基因数量如表1

表1  鱼类味觉受体基因数量 Tab. 1  Number of fish taste receptor genes
1.2.2 基因家族成员鉴定

基于HMM隐马尔科夫模型:将斑马鱼、大口黑鲈味觉受体基因使用MAFFT进行核苷酸多序列比对,结果上传hmmbuild建立隐马尔科夫模型,利用建立模型在鳜核苷酸序列中搜索同源基因。从PFAM网站(http://pfam-legacy.xfam.org/)下载现有味觉受体氨基酸的隐马尔科夫模型(HMM, Hidden Markov Model)文件,使用hmm search (v3.0.0)软件在鳜氨基酸序列中进行搜索,得到味觉受体氨基酸序列。

基于BLAST方式:在Ensembl (https://www. ensembl.org)下载斑马鱼、大口黑鲈t1rs基因及氨基酸序列,使用blast (v2.13.0)分别与鳜全基因序列及氨基酸序列文件比对,得到同源基因。合并上述候选Gene ID,上传同源氨基酸序列至Pfam、CDD (https://www.ncbi.nlm.nih.gov/cdd)和SMART (https://smart.embl.de)数据库进行结构域确认,确定鳜t1rs基因和氨基酸序列。

1.2.3 基因结构、系统发育、保守基序与结构域分析

上传鳜基因注释文件至GSDS2.0 (http:// gsds.gao-lab.org/)分析基因结构,鉴定基因蛋白质编码区(CDS)及非翻译区(UTR)。

利用Clustal W对表1的氨基酸序列进行比对;bootstrap值设置为1000,使用MEGA 11构建邻接树(neighbor-joining method)。采用在线网站Evolview (https://evolgenius.info/evolview/)进行进化树美化。

保守基序使用鳜氨基酸序列在网站MEME (https://meme-suite.org/meme/)进行。参数设置为:基序数量10,motif最大长度50,检索10000次;只列出保存最好的3个motif。氨基酸序列上传CDD网站用以识别保守结构域。

1.2.4 基因位置与共线性分析

上传鳜基因注释文件至Tbtools绘制基因位置图,使用one step MC scan X进行物种间的共线性分析,利用不同颜色高亮显示味觉受体基因的共线性。

1.2.5 选择压力分析

鱼类t1rs基因的CDS序列使用tbtools提取,去除终止子,采用Data monkey (http://www.datamonkey.org/)中的单可能性祖先计数方法(SLAC);用非同义替换率(dN)和同义替换率(dS)来代表不同鱼类的自然选择压力。

1.2.6 基因表达分析

利用Trizol法(TIANGEN, TRNzol Universal Reagent)提取样品总RNA,将生物样品平均分为3组提取总RNA。提取的RNA调整浓度1000 mg/μL用于后续实验。使用Evo M-MLV RT Kit with gDNA Clean for qPCR II反转录试剂盒得到cDNA。根据本实验室鳜CDS序列。使用Primer Premier 5.0设计引物(表2),委托上海金唯智生物科技有限公司合成。之后SYBR green法建立荧光定量体系,反应程序:95 ℃预变性5 min, 95 ℃变性20 s, 58~62 ℃退火延伸30 s, 40个循环;95 ℃, 30 s, 65 ℃, 1 min。最后进行熔解曲线分析检测反应特异性。调整扩增体系,使目的基因和内参基因扩增效率都接近100%。扩增程序与标准曲线的扩增程序相同。每个样品均设3个重复。以β-actin基因作为qPCR的内参,采用2−ΔΔCt法计算受体基因的相对表达量。

表2  qPCR所用引物表 Tab. 2  Primers used for quantitative real-time PCR
2 结果与分析 2.1 鳜t1r家族成员基因鉴定及序列分析

根据Hmmsearch结果,利用现有GCPRs的隐马尔可夫模型(PF00003、PF07652、PF01094)[16]分别检索,合并重复部分得到163个候选基因。

利用模式生物斑马鱼和与鳜进化关系、习性接近的大口黑鲈t1r基因核苷酸序列blast到鳜的全基因序列文件中,共寻找到7个同源基因。同时,对斑马鱼及大口黑鲈的T1rs氨基酸序列进行结构域分析,鉴定出结构域名称分别为7tmC_TAS1R (cd15046)、pbp1_taste_receptor (cd06363)、7tmC_ TAS1R2a_like (cd15287)、7tmC_TAS1R2 (cd15288)、7tmC_TAS1R3 (cd15290)[17-20],经结构域信息过滤,与hmm鉴定的候选基因合并,得到4个鳜t1r基因家族成员t1r1t1r2a1t1r2a2t1r3

表3 列出了鳜4个t1r基因名称、基因簇上位置、编码氨基酸长度、蛋白质相对分子质量和蛋白等电点。该基因家族成员编码氨基酸长度分布在820~855,对应蛋白质相对分子质量为92.10~ 94.73 ku,平均蛋白质相对分子质量为93.24 ku。等电点分布在5.53~7.82。

表3  鳜4个味觉受体基因序列信息 Tab. 3  Sequence information of four taste receptor genes in Siniperca chuatsi
2.2 基因结构、保守基序与结构域分析、系统发育

图1,鳜t1r1t1r2a1t1r2a2基因具有6个外显子,且外显子结构相似;t1r3基因具有8个外显子。除第2外显子外,t1r1t1r2a1t1r2a2其他外显子结构相似,第3、4、5内含子及5ʹ端UTR长度不同。t1r2a1t1r2a2结构外显子结构一致,第3、4、5内含子及5ʹ端UTR长度不同。

图1  鳜味觉受体T1R氨基酸序列motif, domain结构图 Fig. 1  Structure of the motifs and domains in mandarin fish taste receptor T1R

鳜T1Rs蛋白在保守基序方面一致性较高,均有Motif1, motif2, motif3基序(图1)。T1R1结构域为PBP1_superfamily (cd01536)、NCD3G (pfam07652)、7tm_GCPRs_superfamily (cl28897)。T1R2a1、T1R2a2结构域一致,为PBP1_superfamily、NCD3G、7tmC_tas1r2a-like (cd15287)。T1R3结构域为PBP1_taste_receptor (cd06363)、NCD3G (pfam07652)、7tmC_tas1r3 (cd15290)。T1R1、T1R2a1、T1R2a2含有PBP1_superfamily结构域;4个蛋白都含有NCD3G结构域。

t1r2a1t1r2a2聚为一支,结构相似,这两个基因具有相似的进化关系。

图2所示,脊椎动物中t1r家族蛋白具有相同的保守结构域结构,通常由胞外结合域(PBP1_taste_receptor, PBP1_superfamily)、富含半胱氨酸的区域(NCD3G)与不同类型的N端氨基酸残基结构域(7tmC_TAS1R1, 7tmC_TAS1R2, 7tmC_TAS1R2a-like, 7tmC_TAS1R3)构成[7]

图2  脊椎动物味觉受体T1R氨基酸序列进化树及domain结构a. T1R1s; b. T1R2s; c. T1R3s. Fig. 2  Evolutionary tree and domain structure of the vertebrate taste receptor T1R amino acid sequencea. T1R1s; b. T1R2s; c. T1R3s.

鳜T1R2 (T1R2a1、T1R2a2)与斑马鱼(T1R2b)、青鳉(T1R2b、T1R2c)、虹鳟(T1R2)、红鳍东方鲀(T1R2a)、三刺鱼(T1R2b、T1R2c、T1R2d、T1R2e、T1R2f)结构域一致。

2.3 基因位置与共线性分析

鳜4个t1rs基因,分布不均匀(图3), t1r1, t1r2a1, t1r2a2在Scaffold_19上集中分布,t1r2a1, t1r2a2在基因簇上的位置较近,t1r3单独位于Scaffold_14上。

图3  鳜t1r1, t1r2a1, t1r2a2, t1r3基因在基因簇上的位置 Fig. 3  Location of t1r1, t1r2a1, t1r2a2, t1r3 genes on gene clusters in mandarin fish

图4所示,鳜t1r1与尼罗罗非鱼、青鳉、贝氏隆头鱼、半滑舌鳎、斑马鱼t1r2存在共线性关系;鳜t1r2a1与尼罗罗非鱼、半滑舌鳎、高体鰤、三刺鱼t1r1存在共线性关系;鳜t1r3与其他10种鱼类都存在共线性关系(虹鳟t1r3at1r3b)。鳜t1r2a2基因与10种鱼类味觉受体基因间未发现共线性关系。

图4  鳜味觉受体基因与其他鱼类共线性关系相同颜色线对应的基因存在共线性关系. Fig. 4  Covariance of mandarin fish taste receptor genes with other fishCovariance exists for genes corresponding to the same colour line.
2.4 选择压力分析

肉食性、杂食性鱼类t1r1呈现出正选择,t1r2s、t1r3呈现负选择;草食性鱼类的t1r2基因呈现出正向选择,t1r1t1r3呈现负选择。鳜t1r1基因呈现正选择,t1r2t1r3基因呈现负选择(表4)。

表4  不同食性鱼类味觉受体基因选择压力 Tab. 4  Selection pressure on taste receptor genes in fish with different feeding habits
2.5 味觉受体基因的早期表达

胚胎期,4个t1r基因表达未明显检测;1 dph, 4个t1r基因开始表达;此后,表达量逐渐升高(图5)。3 dph起,t1r1表达量开始高于t1r2,其中t1r2a1, t1r2a2表达差异不显著。

图5  鳜味觉受体t1r基因早期发育表达a. t1r1, b. t1r3, c. t1r2a1, d. t1r2a2;图中不同小写字母(a, b, c, d, e, f, g)代表组间有显著差异(P<0.05). Fig. 5  Early developmental expression of the taste receptor t1r gene in mandarin fisha. t1r1, b. t1r3, c. t1r2a1, d. t1r2a2; Different lowercase letters (a, b, c, d, e, f, g) in the figure represent significant differences between groups (P<0.05).

图6,鳜味觉受体基因表达量在舌最高,其次是口腔上皮,之后是上颌、下颌、鳃、头部皮肤。经历饲料驯食之后,t1r1t1r2、t1r3基因表达水平下调,其中t1r1基因表达水平下调显著。

图6  鳜饲料驯化养殖后味觉受体基因表达变化a. 组织表达,b. 舌,c. 口咽腔;图中不同小写字母(a, b, c, d)代表组间有显著差异(P<0.05). Fig. 6  Changes in the expression of taste receptor genes in mandarin fish after feed-domestication culturea. Tissue expression, b. gene expression in the tongue, c. gene expression in the oropharyngeal cavity. Different lowercase letters (a, b, c, d) in the figure represent significant differences between groups (P<0.05).
3 讨论 3.1 鳜t1r基因家族数目

鱼类味觉受体基因具有多样性,硬骨鱼类的t1r基因多样性体现在t1r1t1r2的数量上。Ding等[15]在鳜全基因组数据鉴定了3个味觉受体I型基因(t1r1, t1r2, t1r3),鲜味受体与甜味受体基因各1个。本研究鉴定了4个味觉受体I型基因(t1r1, t1r2a1, t1r2a2, t1r3), t1r1为单基因,t1r2存在基因复制,这种数目差异可能是由于不同基因组测序的数据质量或检索方法差异导致。

郝月月[14]通过RACE技术扩增出2个鳜t1r2基因(t1r2a1,t1r2a2) cDNA序列,这与本研究基因组鉴定结果一致(t1r2存在基因复制)。由于RACE技术不能保证序列扩增、拼接的完整性,获得的t1r2a1仅有1个结构域,t1r2a2没有完整的结构域,推测t1r2a2可能为假基因。本研究中鉴定的鳜4个t1r基因,其编码区序列与结构完整,未发现有假基因现象。

此外,在公共数据库GenBank (ASM2008510v1)中,也检索发现鳜含有4个味觉受体I型基因(表1),有3个命名为鲜味受体基因t1r1 (t1r1: 122882744, t1r1: 122882770, t1r1-like: 122882772)。鉴定鳜t1rs家族基因数目(4个)与本实验一致,仅分类命名出现分歧。

3.2 鳜t1r基因复制与选择压力

甜味、鲜味受体基因缺失或复制常与鱼类的食性演化有关。肉食性鱼类鲜味受体基因t1r1复制,甜味受体基因t1r2缺失;而草食性鱼类甜味受体基因t1r2复制,鲜味受体基因t1r1缺失[21-22]。鳜具有典型的肉食性,本研究中发现鳜t1r1t1r3为单基因,t1r2出现基因复制(t1r2a1t1r2a2),但未出现鲜味基因复制或甜味基因缺失(假基因)现象。如表1所示,在红鳍东方鲀中也出现t1r1单基因,t1r2基因复制;三刺鱼中,t1r1出现复制(3个),但甜味受体基因t1r2复制数目更多(6个)。因此,仅依据味觉受体基因复制现象,来判断鱼类的食性可能并不准确。

本研究中,鳜t1r1受到正选择压力,t1r2s受到负选择压力。这与肉食性鱼类t1r1表现出正选择,t1r2s表现出负选择;草食性鱼类t1r2基因表现为正选择,t1r1基因表现为负选择的结果一致。t1r1+t1r3共同负责鲜味感知,在肉食性鱼类食物识别中作用更为明显;正向选择压力说明,在肉食性鱼类中t1r1基因可能正经历基因功能的特化[23]t1r2+t1r3基因负责甜味感知,草食性鱼类食物中含有更多的糖类,在草食性鱼类中t1r2s会出现较高选择压力[24]。这也说明甜、鲜味受体基因受到的选择压力与鱼类长期的摄食习性有关[25]

t1r2虽有两个拷贝,其选择压力呈现出负选择。由于鲜味是鳜识别食物的重要基础,因此,t1r1在其食性形成和维持中呈现正向选择,功能出现特化,t1r2基因功能发挥次要作用,2个t1r2基因的进化压力小。

3.3 鳜t1r基因早期发育与摄食表达特征

开口前,鳜消化系统快速发育,口裂与口咽腔形成,伴随味觉细胞分化,味蕾出现[26]。开口期前,4个味觉受体基因均开始表达,这表明味觉发育对鳜开口摄食(只食活鱼苗)具有重要作用。开口后,4个味觉受体t1r基因表达量快速提高,且t1r1基因表达水平显著高于t1r2。鳜鲜味受体基因t1r1表达水平上升,为其摄食选择(终生以活饵为食)提供了重要条件。这些结果表明,鳜味觉受体基因(特别是t1r1)发育表达与其专食活鱼饵间存在一定关联。

前期研究表明,鳜口咽腔中,上下颌味蕾数目最多,其次是口咽腔、舌[27],这表明味蕾在上下颌咬住食物、食物通过舌进入口咽腔,以及食物吞咽过程中均发挥识别作用。本研究中,t1r基因表达水平由高到低依次是舌、口咽腔、下颌、上颌、鳃、头部皮肤,表达水平顺序与口咽腔中味蕾数目分布基本一致。

与活饵组相比,饲料驯食组味觉受体t1r基因表达水平均表现下调,其中,t1r1, t1r3基因表达水平下调显著。研究发现,与经历一次驯食相比,二次驯食饲料鳜的t1r1基因表达水平也显著降低[28]。相较于鲜活鱼类,配合饲料中鲜味物质含量明显降低,对鳜味觉刺激减小,推测由于食物类型变化,饲料中鲜味成分下降,鳜t1r1表达下调与食物中低鲜味物质的感受性相适应。

参考文献
[1]
Ahmad R, Dalziel J E. G protein-coupled receptors in taste physiology and pharmacology[J]. Frontiers in Pharmacology, 2020, 11: 587664..》Google Scholar
[2]
Roper S D, Chaudhari N. Taste buds: Cells, signals and synapses[J]. Nature Reviews Neuroscience, 2017, 18(8): 485-497..》Google Scholar
[3]
Diószegi J, Llanaj E, Ádány R. Genetic background of taste perception, taste preferences, and its nutritional implications: A systematic review[J]. Frontiers in Genetics, 2019, 10: 1272..》Google Scholar
[4]
Töle J C, Behrens M, Meyerhof W. Taste receptor function [J]. Handbook of Clinical Neurology, 2019, 164: 173-185..》Google Scholar
[5]
Chandrashekar J, Hoon M A, Ryba N J, et al. The receptors and cells for mammalian taste[J]. Nature, 2006, 444(7117): 288-294..》Google Scholar
[6]
Iwata S, Yoshida R, Ninomiya Y. Taste transductions in taste receptor cells: Basic tastes and moreover[J]. Current Pharmaceutical Design, 2014, 20(16): 2684-2692..》Google Scholar
[7]
Bachmanov A A, Bosak N P, Lin C L, et al. Genetics of taste receptors[J]. Current Pharmaceutical Design, 2014, 20(16): 2669-2683..》Google Scholar
[8]
Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors[J]. Nature Reviews Neuroscience, 2004, 5(4): 263-278..》Google Scholar
[9]
Nelson G, Hoon M A, Chandrashekar J, et al. Mammalian sweet taste receptors[J]. Cell, 2001, 106(3): 381-390..》Google Scholar
[10]
Jin K, Xue C Y, Wu X L, et al. Why does the giant panda eat bamboo? A comparative analysis of appetite-reward-related genes among mammals[J]. PLoS One, 2011, 6(7): e22602..》Google Scholar
[11]
Jiao H W, Xie H W, Zhang L B, et al. Loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(4): e2021516118..》Google Scholar
[12]
Cai W J, He S, Liang X F, et al. DNA methylation of T1R1 gene in the vegetarian adaptation of grass carp Ctenopharyngodon idella[J]. Scientific Reports, 2018, 8(1): Article No.6934..》Google Scholar
[13]
Li W, Hicks B J, Lin M L, et al. Impacts of hatchery-reared mandarin fish Siniperca chuatsi stocking on wild fish community and water quality in a shallow Yangtze Lake[J]. Scientific Reports, 2018, 8(1): Article No.11481..》Google Scholar
[14]
Hao Y Y. Early development of taste buds and pseudogenes of putative sweet taste receptors (T1R2s) of mandarin fish (Siniperca chuatsi)[D]. Shanghai: Shanghai Ocean University, 2019. [郝月月. 鳜味蕾早期发育与甜味受体假基因化研究[D]. 上海:上海海洋大学,2019.].》Google Scholar
[15]
Ding W D, Zhang X H, Zhao X M, et al. A chromosome- level genome assembly of the mandarin fish (Siniperca chuatsi)[J]. Frontiers in Genetics, 2021, 12: 671650..》Google Scholar
[16]
Jiang P H, Cui M, Zhao B H, et al. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3[J]. The Journal of Biological Chemistry, 2005, 280(40): 34296- 34305..》Google Scholar
[17]
Civelli O, Reinscheid R K, Zhang Y, et al. G protein-coupled receptor deorphanizations[J]. Annual Review of Pharmacology and Toxicology, 2013, 53: 127-146..》Google Scholar
[18]
Nuemket N, Yasui N, Kusakabe Y, et al. Structural basis for perception of diverse chemical substances by T1r taste receptors[J]. Nature Communications, 2017, 8: Article No.15530..》Google Scholar
[19]
Vaidehi N, Bhattacharya S, Larsen A B. Structure and dynamics of G-protein coupled receptors[J]. Advances in Experimental Medicine and Biology, 2014, 796: 37-54..》Google Scholar
[20]
Duarte J M, Biyani N, Baskaran K, et al. An analysis of oligomerization interfaces in transmembrane proteins[J]. BMC Structural Biology, 2013, 13: Article No.21..》Google Scholar
[21]
Morais S. The physiology of taste in fish: Potential implications for feeding stimulation and gut chemical sensing[J]. Reviews in Fisheries Science & Aquaculture, 2017, 25(2): 133-149..》Google Scholar
[22]
Liu H. Based on the genomics of Megalobrama amblycephala reveals the adaption to herbivorous diet[D]. Wuhan: Huazhong Agricultural University, 2016. [刘寒. 基于基因组学的团头鲂植食性机制研究[D]. 武汉:华中农业大学,2016.].》Google Scholar
[23]
Wachter J, Hill S. Positive selection pressure drives variation on the surface-exposed variable proteins of the pathogenic Neisseria[J]. PLoS One, 2016, 11(8): e0161348..》Google Scholar
[24]
Mahalapbutr P, Darai N, Panman W, et al. Atomistic mechanisms underlying the activation of the G protein- coupled sweet receptor heterodimer by sugar alcohol recognition [J]. Scientific Reports, 2019, 9(1): 10205..》Google Scholar
[25]
Mouritsen O G, Khandelia H. Molecular mechanism of the allosteric enhancement of the umami taste sensation[J]. The FEBS Journal, 2012, 279(17): 3112-3120..》Google Scholar
[26]
Shen Y W, Li H Y, Zhao J L, et al. The digestive system of mandarin fish (Siniperca chuatsi) can adapt to domestication by feeding with artificial diet[J]. Aquaculture, 2021, 538: 736546..》Google Scholar
[27]
Hao Y Y, Zhao J L, Zhang R Q, et al. Histological characteristics of taste bud during early development of mandarin fish Siniperca chuatsi[J]. Chinese Journal of Zoology, 2018, 53(5): 752-759. [郝月月,赵金良,张瑞祺,等. 鳜早期味蕾发育的组织学特征[J]. 动物学杂志,2018, 53(5): 752-759.].》Google Scholar
[28]
Dou Y Q, He S, Liang X F, et al. Memory function in feeding habit transformation of mandarin fish (Siniperca chuatsi)[J]. International Journal of Molecular Sciences, 2018, 19(4): Article No.1254..》Google Scholar