中国水产科学  2024, Vol. 31 Issue (02): 177-184  DOI: 10.12264/JFSC2023-030
0

引用本文 

杜利杰, 胡益鸣, 马新航, 郭浪, 徐成勋, 李琪. 长牡蛎壳橙快速生长品系基因与环境(G×E)互作效应分析[J]. 中国水产科学, 2024, 31(2): 177-184. DOI: 10.12264/JFSC2023-030.
DU Lijie, HU Yiming, MA Xinhang, GUO Lang, XU Chengxun, LI Qi. Analysis of the interaction effect between genotype and environment (G × E) in the rapid-growth strain of the orange shell Pacific oyster Crassostrea gigas[J]. Journal of Fishery Sciences of China, 2024, 31(2): 177-184. DOI: 10.12264/JFSC2023-030.

基金项目

山东省农业良种工程项目(2021LZGC027,2022LZGCQY010).

作者简介

杜利杰(1998‒),男,硕士研究生,研究方向为贝类遗传育种. E-mail:2410079553@qq.com

通信作者

通信作者:李琪,教授,博士生导师,研究方向为海洋贝类遗传育种学. E-mail:qili66@ouc.edu.cn

文章历史

收稿日期:2023-11-16
修改日期:2023-12-22
长牡蛎壳橙快速生长品系基因与环境(G×E)互作效应分析
杜利杰1,胡益鸣1,马新航1,郭浪1,徐成勋1,李琪1,2,     
1. 中国海洋大学,海水养殖教育部重点实验室,山东 青岛 266003
2. 青岛海洋科学与技术试点国家实验室,海洋渔业科学与食物产出过程功能实验室,山东 青岛 266237
摘要:为了分析长牡蛎(Crassostrea gigas)壳橙快速生长品系生长存活性状的基因型与环境(G×E)互作效应,本研究构建28个全同胞家系并将每个家系均分成3组,分别在乳山、荣成和黄岛海域进行养殖。利用双性状动物模型和REML法估计12月龄橙快长牡蛎生长和存活性状的遗传力及G×E效应,采用BLUP育种值估计法将壳高、体重和存活性状3个指标的育种值综合加权,以期筛选出普适性育种材料。结果显示,乳山和黄岛海区的表型显著优于荣成海区,更适合作为养殖海区。乳山、荣成和黄岛3个海区生长存活性状的遗传力分别为0.09~0.75、0.02~0.94和0.03~0.75,存在尺度效应,但除了存活性状的遗传力外,都属于中高遗传力,具有良好的遗传潜力,通过育种值估计法选育效果更佳;存活性状则主要受环境因素影响,可通过表型直接选育。以不同海区为固定效应,综合3个环境计算出的生长和存活性状的遗传力为0.02~0.44,综合遗传力下降说明环境差异影响遗传力评估。此外,选育的目标性状在两两海区间的遗传相关均小于0.8,存在显著的G×E效应,在选育过程中应综合考虑环境因素。通过比较综合育种值发现存在明显的基因重排效应,家系G25对乳山海区表现出特殊的适应性,家系G16对荣成海区具有特适性,而家系G23对乳山和黄岛表现出适应性,且筛选出了对3个海区具有普适性的家系G2。研究结果为橙快长牡蛎品系的良种选育提供了重要的参考资料。
关键词长牡蛎    壳橙    家系选育    遗传参数    基因与环境(G×E)互作效应    育种值    
Analysis of the interaction effect between genotype and environment (G × E) in the rapid-growth strain of the orange shell Pacific oyster Crassostrea gigas
DU Lijie1,HU Yiming1,MA Xinhang1,GUO Lang1,XU Chengxun1,LI Qi,1,2    
1. Key Laboratory of Mariculture, Ministry of Education; Ocean University of China, Qingdao 266003, China
2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
Abstract:To analyze the genotype-environment (G×E) interaction effects on the growth and survival traits of a rapid-growth strain of Crassostrea gigas, 28 full-sib families were constructed, and each family was divided into three groups, which were cultured in the Rushan, Rongcheng, and Huangdao Sea areas. The heritability and G×E effects on the growth and survival traits of 12-month-old C. gigas were estimated using a two-trait animal model and the REML method. The BLUP breeding value estimation method was used to comprehensively weigh the breeding values for shell height, body weight, and survival traits to screen for universal breeding materials. The results showed that the shell phenotypes of the strains found in the Rushan and Huangdao Sea areas were significantly better than those of the Rongcheng Sea area, which were more suitable for aquaculture. The heritability of growth and survival traits in the Rushan, Rongcheng, and Huangdao Sea areas were 0.16-0.62, 0.07-0.80, and 0.07-0.63, respectively. A scale effect was observed; however, in addition to the heritability of survival traits, they were all medium-high heritability and had good breeding potential. Therefore, the breeding effect was improved using the breeding value estimation method. Survival traits are mainly affected by environmental factors and can be directly selected based on the phenotype. Considering the different sea areas as fixed effects, the heritability of growth and survival traits, calculated by combining the three environments was 0.04-0.31. The decrease in comprehensive heritability indicated that environmental differences affected heritability assessment. In addition, the genetic correlation of the selected target traits between the two sea areas was less than 0.8, which indicated a significant G×E effect. Therefore, environmental factors must be considered comprehensively during breeding. By comparing the comprehensive breeding values, it was found that family G25 showed special adaptability to the Rushan Sea area, family G16 had special adaptability to the Rongcheng Sea area, and family G23 showed adaptability to the Rushan and Huangdao Sea areas, all of which showed significant gene rearrangement effects. Family G2 was found to have universal adaptability to the three sea area. The results obtained in this study provide an important reference for breeding a rapid-growth strain of the orange shell C. gigas.
Key words Crassostrea gigas     orange shell    family selection    genetic parameter    genotype by environment (G×E) interaction    breeding value    

长牡蛎(Crassostrea gigas)又称太平洋牡蛎,是一种广布性双壳贝类。其富含糖原、有机锌等营养物质,是我国传统的养殖贝类,经济价值高[1]。但是随着牡蛎养殖业的快速发展,环境污染[2]、牡蛎夏季大规模死亡[3]等问题频繁出现,严重制约了我国牡蛎产业的可持续发展。因此,以优质种质资源为基础,培育品相好、产量高的牡蛎新品种,对牡蛎产业的高质量和绿色发展具有重要意义。

水产养殖品种的表型取决于基因型和生长环境。不同的基因型可能对环境变化有不同的性能反应,这种现象被称为基因型-环境(G×E)相互作用[4]。基因型(G)通常指的是一个品种群体或一组家系,如后代群体或全同胞和半同胞家系。环境(E)一般是指不同水平的环境因素,如不同的水温、盐度、饵料等生产环境。G×E相互作用可能导致尺度效应[5-6]和基因重排效应[6-7],影响选育策略和选育效率[8]。长牡蛎养殖海区环境通常较为复杂,分析G×E互作效应对新品种选育很有必要。先前在长牡蛎[9-12]、半滑舌鳎(Solea solea)[13]、大菱鲆(Scophthalmus maximus)[14]、南美白对虾(Penaeus vannamei)[15]、红鲍(Haliotis rufescens)[16]、海湾扇贝(Argopecten nucleus)[17]等水产品种上都开展了相关研究,均获得相应的选育进展。

育种值估计是水产生物选择育种的重要构成,其准确性对选育的选择效果和遗传进展有重要影响。BLUP育种值估计法结合系谱信息和表型值,获得了后代加性遗传部分的育种值[18],与仅依靠表型值选育相比,选育效率更高[6,19],结果更可靠。目前,在中国对虾(Fenneropenaeus chinensis)[19]、草鱼(Ctenopharyngodon idella)[20]、大口黑鲈(Micropterus salmoides)[21]和牡蛎[6]等品种选育计划中都有应用到BLUP育种值法。

在已长牡蛎的选育实践中获得长牡蛎壳橙近交品系[22],并通过与快速生长品系杂交,培育出壳橙快速生长品系(以下简称“橙快”)[23-27]。本研究使用家系选育方法,比较12月龄3个海区各家系的生长存活数据,选出良好的养殖海区,同时分析目标性状的遗传力和G×E效应,结合BLUP育种值估计法筛选出具有普适性的家系材料,为该品系的选育提供基础数据。

1 材料与方法 1.1 家系构建

2022年7月,将山东乳山海区养殖的橙快长牡蛎第3代群体转移至莱州育苗场,从中挑选发育良好、壳色纯正的个体作为亲贝,解剖法收集精卵,采用巢氏设计模型,人工混合受精,共建立11个半同胞家系和33个全同胞家系。

1.2 幼虫培育及海上养成

幼虫培育在100 L聚乙烯塑料桶中进行。受精卵孵化22 h后发育至D形幼虫,通过选优、换水、投饵及控制密度,监测幼虫期生长情况并作出适当调整。整个培育过程保证各家系充气、投饵、换水等管理操作基本一致。当35%的幼虫发育至眼点幼虫阶段,投放扇贝附着基采苗,待片上密度达20个/片后,置于室外沉淀池暂养。当所选海区无野生牡蛎幼虫污染时,将各家系均分成3份装入扇贝笼中,转移至3个不同海区养殖。

1.3 养殖海区选择

选择3个牡蛎养殖海区:乳山海阳所附近海域(36.75°N, 121.66°E)、荣成桑沟湾(37.12°N, 122.52°E)和黄岛胶南附近海域(35.91°N, 120.23°E)(图1)。3个海区环境存在显著的差异,荣成海区年平均波高、水温、盐度分别为0.30 m、12.95 ℃、32.20;乳山为0.50 m、14.20 ℃、30.00;黄岛为0.32 m、15.39 ℃、31.00[28-30]

图1  乳山(RS)、荣成(RC)、黄岛(HD) 3个养殖海区地点示意 Fig. 1  Locations of growout environments in Rushan (RS), Rongcheng (RC), and Huangdao (HD)
1.4 指标测定

幼虫期33个橙快长牡蛎家系有28个发育至稚贝期,2023年7月收获12月龄长牡蛎成体,3个海区各家系均未丢失。3个海区分开测量,各家系随机选取30只牡蛎,用游标卡尺(精度0.01 mm)测量样品的壳高、壳长和壳宽;用电子秤(精度0.01 g)称量样品的总重。3个海区各家系的存活率按下式计算[31]:

S(%)=(N12/N0)×100

其中S为12月龄存活率;N12为12月龄时每个扇贝笼中计数的各家系活牡蛎数;N0代表2022年8月转移时每个扇贝笼中各家系的初始存活牡蛎总数。同时,记录各家系存活和死亡的牡蛎个体数。

1.5 统计分析 1.5.1 表型数据分析

通过Excel软件对3个海区各家系的生长存活数据进行初步处理,经过数据结构调整后导入SPSS25.0软件进行统计分析。使用单因素方差分析(ANOVA)和Tukey多重比较对同一家系在3个海区下的各个指标进行显著性分析,显著性水平设为0.05,差异用不同字母表示。

1.5.2 遗传力估计

通过R软件运行ASReml 3.0程序包,采用约束极大似然法(REML)进行遗传参数的评估,在pin函数下计算。根据软件要求对数据结构进行整理排列,建立个体动物模型[6]:

$\mathop y\nolimits_{hijk} = \mu + \mathop a\nolimits_{hijk} + \mathop {Envi}\nolimits_h + aijk\left( {Envih} \right) + \mathop e\nolimits_{hijk} $(1)

式中,hijk分别为海区编号、父本编号、母本编号和个体编号。yhijk为性状观测值;µ为性状总体平均值;ahijk为性状的加性遗传效应;Envih为第h个海区的环境固定效应;ahijk(Envih)是嵌套在第h个环境下第k个个体的加性效应;ehijk为性状的随机残差。以环境为固定效应,动物个体为随机效应,利用模型(1)估计橙快长牡蛎在乳山、荣成和黄岛3个海区环境下的生长和存活性状综合遗传力。

1.5.3 G×E效应评估

从模型(1)中剔除Envih,模型简化如下:

$\mathop y\nolimits_{ijk} = \mu + \mathop a\nolimits_{ijk} + \mathop e\nolimits_{ijk} $(2)

利用模型(2)分别估计3个海区环境下的遗传力,将在两个海区环境下的同一指标视为两个不同性状[8],并用模型(2)估计遗传相关。计算存活性状的遗传力和遗传相关时,把各家系存活个体记为1,死亡个体记为0,形成二项数据,将ASReml包中的logit模型嵌套进模型(1)和(2)中再进行计算。当采用logit模型计算遗传力时,残差值约为3.28987。

1.5.4 育种值估计

在橙快长牡蛎的选育过程中,以壳高、总重和存活率作为主要生长性状选育指标,故采用模型(2)分别估计乳山、荣成和黄岛3个养殖海区的壳高、总重和存活性状的育种值。当进行多个性状的综合选育时,可以根据各个性状的重要程度对性状进行加权,得出综合育种值[6]。综合育种值的计算公式为:

$Ai = W1a1i + W2a2i + W3a3i$(3)

式中,W1为壳高的加权值,定义为1/3U, a1i为个体i的壳高育种值;W2为总重的加权值,定义为1/3U, a2i为个体i的总重育种值;W3为存活性状的加权值,定义为1/3U, a3i为个体i的存活性状育种值。

2 结果与分析 2.1 三个海区各家系生长和存活性状表型参数比较

根据描述统计,乳山海区和黄岛海区目标性状的均值对比荣成海区都有显著优势(P<0.05),壳高性状分别高出7.34%、7.90%,体重性状高出34.43%、39.42%,存活率相对提高了10.52%、10.42%,而乳山海区和黄岛海区的表型差异不显著。经多重比较,各海区同一个家系间表型也存在显著差异,如表1所示。从表型上看,乳山海区的优势家系为G23和G19,黄岛为G2和G8,荣成为G2和G19。

表1  3个海区环境下的橙快长牡蛎品系生长和存活性状表型参数 Tab. 1  Phenotypic parameters of growth and survival traits in the rapid-growth strain of the orange shell Crassostrea gigas in three sea area environments
2.2 遗传力和G×E效应

结果显示,乳山、荣成和黄岛海区目标性状的遗传力不同,表型最优的乳山海区在性状遗传力上并不是最优的,所以有必要通过育种值估计准确评估选育进展。将3个海区作为固定效应,得到的综合遗传力与单独海区估计相比,都出现了下降。G×E效应可通过同一性状在不同海区环境间的遗传相关进行评估,除了乳山-荣成组的壳长性状(0.80±0.10)和黄岛-荣成组的壳宽性状(0.88±0.12),其他性状在两两海区间的遗传相关均小于0.8,存在显著的G×E互作效应(表2)。

表2  3个海区环境下的橙快长牡蛎品系生长和存活性状的遗传参数 Tab. 2  Genetic parameters of growth and survival traits in the rapid-growth strain of the orange shell Crassostrea gigas in three sea area environments
2.3 综合育种值分析

将壳高、总重和存活率设为BLUP育种值法的3个指标,综合得出各海区排名前20的个体。乳山海区的优势个体主要来源于家系G23 (40%)、G3 (15%)、G2 (10%)、G19 (10%)和G15 (10%),黄岛海区主要源于家系G2 (40%)、G23 (20%)、G2 5 (15%)和G8 (15%),荣成海区则是大多出自家系G2 (70%)和G16 (10%)(表3)。与单从表型挑选优势家系相比,育种值排序结合了加性遗传效应,提供了一个更加全面可靠的结果。

表3  3个海区环境下橙快长牡蛎的综合育种值排序 Tab. 3  Ranks of comprehensive breeding values of the rapid-growth strain of the orange shell Crassostrea gigas in three sea area environments
3 讨论

表型和遗传参数是选育中重要的衡量指标。表型中最受关注的是产量性状和质量性状。产量性状是一个综合指标,包含了快速生长和高存活率。壳高、壳长、壳宽、体重等都是快速生长的选育目标。有的研究以单个性状为选育指标,如收获时体重[11]、夏季存活率[32]等,有的则是综合生长和存活率进行选育[9-10]。质量性状主要包括肉质、壳型和壳色。壳色性状通常与生长性状协同选育[33-34]。本研究将橙快长牡蛎家系的壳高、体重和存活率综合在一起进行选育,可以更全面地衡量该品系在3个海区的生长表型情况。其中,3个海区的存活率均超过了50%,与先前报道的中国北方的长牡蛎的夏季死亡率超过60%相比有所提升[35]。乳山和黄岛海区的环境对于该品系壳高和体重的增益明显好于荣成,这种差异可能是3个海区间的风浪大小、温度、盐度和饵料丰度不同导致的[36]。从表型上分析,乳山和黄岛相比荣成海区更适合橙快长牡蛎生长。

遗传力是制定选育策略、预测遗传进展的重要因素,也是选育性状与养殖环境的综合体现。本研究所得各海区性状遗传力不同,黄岛的总重和壳高遗传力高于乳山和荣成,而乳山的存活性状遗传力高于黄岛和乳山,存在尺度效应,即在G×E互作效应中表现出遗传组分的异质性[5],这与邢德等[6]在壳白长牡蛎中的研究结果类似,在国外对长牡蛎不同环境下的遗传力估计中也普遍存在[9-10]。各海区遗传力除了存活率,都属于中高遗传力,表明橙快长牡蛎的生长性状有良好的选育潜力,可以作为目标性状继续获得遗传增益。存活率的遗传力都很低,说明橙快长牡蛎的存活性状主要受环境影响,而不是遗传因素。但是以3个海区为固定效应,综合3个海区计算出的遗传力有所降低,说明环境差异确实对遗传力评估有影响[4]

G×E互作效应还会表现出跨环境的基因重排效应[5]。Falconer[8]最先提出将不同环境中的同一性状视为不同性状即遗传相关的概念,能够量化G×E互作效应,从而预测育种计划可获得的遗传增益[11]。当遗传相关降到0.8以下就可认为存在显著的G×E互作效应[8,37]。本研究中橙快长牡蛎的壳高、体重和存活率性状在两两海区间的遗传相关都小于0.8,均表现出了显著的G×E互作效应。对于水产动物的G×E互作研究很广泛,但是结果不尽相同,所采取的育种策略也不同。在长牡蛎体重[11]、美洲牡蛎(Crassostrea virginica)生长[38]、葡萄牙牡蛎(Crassostrea angulata)体重和杂种优势[39]以及一些其他水产动物相关性状[14-16]的研究中G×E互作效应并不显著,在育种计划中可以不考虑环境因素。而在长牡蛎产量和存活性状[9-10]、海湾扇贝生长与存活性状[17]、虹鳟的生长性状[5]等研究中,均存在显著的G×E互作效应,需要将环境纳入选育范围。因此,在选育橙快长牡蛎品系时,需要综合考量养殖环境因素,提高选育效率。

育种值是指个体表型值中加性遗传效应部分,只有加性效应值即育种值能够稳定遗传给后代,因此育种值估计对选育计划来说十分必要[18]。本研究通过将3个性状的育种值进行加权计算,对于橙快长牡蛎品系的选育具有参考重要意义[6,21]。其中,存活性状的育种值在数值上均小于0.1,对于综合育种值的影响不显著,在以存活性状为选育目标时,可以直接挑选存活率高的家系作为育种材料。比较各海区所有个体的综合育种值,发现G2家系对3个海区具有普适性;G23家系则对乳山和黄岛表现出适应性;G25家系对黄岛有特适性;G16家系对荣成表现出特殊适应性。3个海区的育种值排序表现出基因重排效应,这意味着在一个海区表现好的基因型在其他环境可能无法保持优势。所以在生长性状的选育上,采用育种值估计比单从表型上选育效果更好。

综上所述,橙快长牡蛎的生长存活性状存在显著的G×E互作效应,在选育进程中应把养殖环境纳入考量范围。此外,通过表型分析发现乳山和黄岛更适合作为养殖海区,通过育种值比较筛选到了普适于3个海区的家系G2。同时,橙快长牡蛎12月龄生长性状的遗传力处于中高水平,具有良好的遗传潜力,通过育种值估计法选育效果更好;但存活性状为低水平遗传力,主要受环境因素影响,可直接通过表型选育。不足的是,本研究只选取了3个海区环境养殖,想要选育新品种还需要推广到更多海区,筛选出更多普适性材料。研究结果为橙快长牡蛎的良种选育提供了重要的参考资料。

参考文献
[1]
Zhang G F, Li L, Que H Y. An evolution of oyster mariculture industry in China: New knowledge, variety and product[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 740-749. [张国范,李莉,阙华勇. 中国牡蛎产业的嬗变——新认知、新品种和新产品[J]. 海洋与湖沼,2020, 51(4): 740-749.].》Google Scholar
[2]
Bhavsar D, Pandya H, Jasrai Y. Aquaculture and environmental pollution: a review work[J]. International journal of Engineering Science, 2016, 2: 40-45..》Google Scholar
[3]
Dégremont L, Bédier E, Boudry P. Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield[J]. Aquaculture, 2010, 299(1-4): 21-29..》Google Scholar
[4]
Falconer D S, Mackay T F C. Introduction to quantive genetics[M]. 4th edition. Chu M X, translated. Beijing: China Agricultural Science and Technology Press, 2000: 127-135. [(英)Falconer D S, (美)Mackay T F C. 数量遗传学导论[M]. 第4版. 储明星,译. 北京:中国农业科技出版社,2000: 127- 135.].》Google Scholar
[5]
Sae-Lim P, Kause A, Mulder H A, et al. Genotype-by- environment interaction of growth traits in rainbow trout (Oncorhynchus mykiss): A continental scale study[J]. Journal of Animal Science, 2013, 91(12): 5572-5581..》Google Scholar
[6]
Xing D, Li Q, Zhang J X. Genotype by environment (G×E) interaction for growth and shell color traits in the white-shell strain of Pacific oyster (Crassostrea gigas)[J]. Journal of Fisheries of China, 2019, 43(2): 474-482. [邢德,李琪,张景晓. 壳白长牡蛎基因型与环境互作(G×E)效应分析[J]. 水产学报,2019, 43(2): 474-482.].》Google Scholar
[7]
Mulder H A, Bijma P. Effects of genotype×environment interaction on genetic gain in breeding programs[J]. Journal of Animal Science, 2005, 83(1): 49-61..》Google Scholar
[8]
Falconer D S. The problem of environment and selection[J]. The American Naturalist, 1952, 86(830): 293-298..》Google Scholar
[9]
Evans S, Langdon C. Effects of genotype×environment interactions on the selection of broadly adapted Pacific oysters (Crassostrea gigas)[J]. Aquaculture, 2006, 261(2): 522-534..》Google Scholar
[10]
Dégremont L, Bédier E, Soletchnik P, et al. Relative importance of family, site, and field placement timing on survival, growth, and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas)[J]. Aquaculture, 2005, 249(1-4): 213-229..》Google Scholar
[11]
Swan A A, Thompson P A, Ward R D. Genotype×environment interactions for weight in Pacific oysters (Crassostrea gigas) on five Australian farms[J]. Aquaculture, 2007, 265(1-4): 91-101..》Google Scholar
[12]
Song S L, Li Q, Kong L F, et al. Genetic effect and interaction between genotype and environment of growth- related traits of Pacific oyster (Crassostrea gigas)[J]. Periodical of Ocean University of China, 2013, 43(10): 41-47. [宋盛亮,李琪,孔令锋,等. 长牡蛎生长性状的遗传效应及与环境互作分析[J]. 中国海洋大学学报(自然科学版), 2013, 43(10): 41-47.].》Google Scholar
[13]
Mas-Muñoz J, Blonk R, Schrama J W, et al. Genotype by environment interaction for growth of sole (Solea solea) reared in an intensive aquaculture system and in a semi- natural environment[J]. Aquaculture, 2013, 410-411: 230-235..》Google Scholar
[14]
Guan J T, Hu Y L, Wang M S, et al. Estimating genetic parameters and genotype-by-environment interactions in body traits of turbot in two different rearing environments[J]. Aquaculture, 2016, 450: 321-327..》Google Scholar
[15]
Li W J, Luan S, Luo K, et al. Genetic parameters and genotype by environment interaction for cold tolerance, body weight and survival of the Pacific white shrimp Penaeus vannamei at different temperatures[J]. Aquaculture, 2015, 441: 8-15..》Google Scholar
[16]
Farías W J, Winkler M F, Brokordt K B. Genotype by environment interactions, heritabilities and genetic correlations for productive traits of Haliotis rufescens[J]. Aquaculture, 2017, 473: 407-416..》Google Scholar
[17]
Barros J, Winkler F M, Velasco L A. Heritability, genetic correlations and genotype-environment interactions for growth and survival of larvae and post-larvae of the Caribbean scallop, Argopecten nucleus (Mollusca: Bivalvia)[J]. Aquaculture, 2018, 495: 948-954..》Google Scholar
[18]
Luan S, Kong J, Wang Q Y. Methods and application of aquatic animal breeding value estimation: A review[J]. Marine Fisheries Research, 2008, 29(3): 101-107. [栾生,孔杰,王清印. 水产动物育种值估计方法及其应用的研究进展[J]. 海洋水产研究,2008, 29(3): 101-107.].》Google Scholar
[19]
Zhang T S, Kong J, Luan S, et al. Estimation of genetic parameters and breeding values in shrimp Fenneropenaeus chinensis using the REML/BLUP procedure[J]. Acta Oceanologica Sinica, 2011, 30(1): 78-86..》Google Scholar
[20]
Jiang P, Han L Q, Bai J J, et al. Estimation of genetic parameters and breeding values for growth traits in grass carp (Ctenopharyngodon idellus)[J]. Journal of Fishery Sciences of China, 2018, 25(1): 18-25. [姜鹏,韩林强,白俊杰,等. 草鱼生长性状的遗传参数和育种值估计[J]. 中国水产科学,2018, 25(1): 18-25.].》Google Scholar
[21]
Li R, Bai J J, Li S J, et al. Estimation of parameters and breeding values for growth traits of largemouth bass[J]. Journal of Fishery Sciences of China, 2011, 18(4): 766-773. [李镕,白俊杰,李胜杰,等. 大口黑鲈生长性状的遗传参数和育种值估计[J]. 中国水产科学,2011, 18(4): 766-773.].》Google Scholar
[22]
Han Z Q, Li Q. Different responses between orange variant and cultured population of the Pacific oyster Crassostrea gigas at early life stage to temperature-salinity combinations[J]. Aquaculture Research, 2018, 49(6): 2233-2239..》Google Scholar
[23]
Xu L, Li Q, Yu H, et al. Estimates of heritability for growth and shell color traits and their genetic correlations in the black shell strain of Pacific oyster Crassostrea gigas[J]. Marine Biotechnology, 2017, 19(5): 421-429..》Google Scholar
[24]
Xing D, Li Q, Kong L F, et al. Heritability estimate for mantle edge pigmentation and correlation with shell pigmentation in the white-shell strain of Pacific oyster, Crassostrea gigas[J]. Aquaculture, 2018, 482: 73-77..》Google Scholar
[25]
Han Z Q, Li Q, Liu S K, et al. Crossbreeding of three different shell color lines in the Pacific oyster reveals high heterosis for survival but low heterosis for growth[J]. Aquaculture, 2020, 529: 735621..》Google Scholar
[26]
Han Z Q, Li Q. Mendelian inheritance of orange shell color in the Pacific oyster Crassostrea gigas[J]. Aquaculture, 2020, 516: 734616..》Google Scholar
[27]
Han Z Q, Li Q. Relationship between shell color and growth and survival traits in the Pacific oyster Crassostrea gigas[J]. Journal of Ocean University of China, 2021, 20(4): 985-991..》Google Scholar
[28]
Gao F, Li G X, Qiao L L. Resource assessment of the tidal energy around the Shandong Peninsula[J]. Periodical of Ocean University of China, 2012, 42(12): 91-96. [高飞,李广雪,乔璐璐. 山东半岛近海潮汐及潮汐、潮流能的数值评估[J]. 中国海洋大学学报(自然科学版), 2012, 42(12): 91-96.].》Google Scholar
[29]
Sun B N, Yang Y Z, Teng Y, et al. Study on wave characteristic parameters in the coastal area of Rushan Bay[J]. Advances in Marine Science, 2014, 32(4): 459-466. [孙宝楠,杨永增,滕涌,等. 乳山湾邻近海域波浪特征要素规律研究[J]. 海洋科学进展,2014, 32(4): 459-466.].》Google Scholar
[30]
Wang Z Y, Wang W L, Hu W, et al. Statistical analysis of wave characteristics in coastal waters of Qingdao[J]. Journal of Ocean Technology, 2021, 40(2): 61-68. [王志勇,王炜荔,胡伟,等. 青岛近岸海域波浪要素特征研究[J]. 海洋技术学报,2021, 40(2): 61-68.].》Google Scholar
[31]
Jiang G W, Li Q, Xu C X, et al. Reciprocal hybrids derived from Crassostrea gigas and C. angulata exhibit high heterosis in growth, survival and thermotolerance in Northern China[J]. Aquaculture, 2021, 545: 737173..》Google Scholar
[32]
Dégremont L, Boudry P, Ropert M, et al. Effects of age and environment on survival of summer mortality by two selected groups of the Pacific oyster Crassostrea gigas[J]. Aquaculture, 2010, 299(1-4): 44-50..》Google Scholar
[33]
Wan S, Li Q, Liu T, et al. Heritability estimates for shell color-related traits in the golden shell strain of Pacific oyster (Crassostrea gigas) using a molecular pedigree[J]. Aquaculture, 2017, 476: 65-71..》Google Scholar
[34]
Chen Y L, Xu C X, Liu S K, et al. Estimates of genetic parameters for orange shell color and their correlation with growth traits in the improved orange shell line of Pacific oyster (Crassostrea gigas)[J]. Journal of Fisheries of China, 2024, 48(1): 123-131. [陈雨露,徐成勋,刘士凯,等. 长牡蛎壳橙性状遗传参数评估及与生长性状的关联性[J]. 水产学报,2024, 48(1): 123-131.].》Google Scholar
[35]
Yang B, Zhai S Y, Li X, et al. Identification of Vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific Oyster (Crassostrea gigas) in China[J]. Aquaculture, 2021, 535: 736363..》Google Scholar
[36]
Xu H Q, Li Q, Han Z Q, et al. Fertilization, survival and growth of reciprocal crosses between two oysters, Crassostrea gigas and Crassostrea nippona[J]. Aquaculture, 2019, 507: 91-96..》Google Scholar
[37]
Robertson A. The sampling variance of the genetic correlation coefficient[J]. Biometrics, 1959, 15(3): 469-485..》Google Scholar
[38]
Sirovy K A, Johnson K M, Casas S M, et al. Lack of genotype-by-environment interaction suggests limited potential for evolutionary changes in plasticity in the eastern oyster, Crassostrea virginica[J]. Molecular Ecology, 2021, 30(22): 5721-5734..》Google Scholar
[39]
In V V, Sáng V V, O'Connor W, et al. Are strain genetic effect and heterosis expression altered with culture system and rearing environment in the Portuguese oyster (Crassostrea angulata)?[J]. Aquaculture Research, 2017, 48(8): 4058-4069..》Google Scholar