中国水产科学  2024, Vol. 31 Issue (03): 368-379  DOI: 10.12264/JFSC2024-0030
0

引用本文 

傅铄, 卓宏标, 刘建勇. 凡纳滨对虾分子育种研究进展[J]. 中国水产科学, 2024, 31(3): 368-379. DOI: 10.12264/JFSC2024-0030.
FU Shuo, ZHUO Hongbiao, LIU Jianyong. Molecular breeding of Litopenaeus vannamei: A review[J]. Journal of Fishery Sciences of China, 2024, 31(3): 368-379. DOI: 10.12264/JFSC2024-0030.

基金项目

国家重点研发计划项目(2023YFD2401705,2022YFD2400204);“十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2022SDZG01);广东省南美白对虾现代种业产业园项目(GDSCYY2022-005);2022年省科技创新战略专项资金“大专项+任务清单”(2022A05023).

作者简介

傅铄(1997‒),男,博士研究生,研究方向为水产经济动物育种. E-mail:931714146@qq.com

通信作者

通信作者:刘建勇,教授,研究方向为水产经济动物育种与增养殖. E-mail:liujy70@126.com

文章历史

收稿日期:2024-01-24
修改日期:2024-02-20
凡纳滨对虾分子育种研究进展
傅铄,卓宏标,刘建勇,     
广东海洋大学水产学院,广东 湛江 524088
摘要:凡纳滨对虾(Litopenaeus vannamei)是我国重要的水产养殖品种,由于受到种质资源限制,养殖中出现生长速度慢、存活率低以及抗病抗逆差等问题。针对凡纳滨对虾养殖产业存在的问题,我国研究人员积极开展育种工作,并取得了一定进展。近年来,水产动物遗传改良技术发展迅速,现代分子育种技术的引入为凡纳滨对虾育种带来了革命性变革。本文综述了凡纳滨对虾分子育种技术研究概况,包括种质资源研究、基因组研究、分子标记挖掘与辅助育种、基因组选择以及基因编辑等研究与应用,并对凡纳滨对虾分子育种技术未来发展趋势进行了展望,以期为利用现代分子育种技术培育凡纳滨对虾新品种提供参考。
关键词凡纳滨对虾    分子标记辅助育种    种质资源    基因组选择    基因编辑    
Molecular breeding of Litopenaeus vannamei: A review
FU Shuo,ZHUO Hongbiao,LIU Jianyong    
College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
Abstract: Litopenaeus vannamei is an important aquaculture species in China, and its production ranks first among all crustaceans. However, owing to it being a non-native species and its germplasm being limited by its origin in foreign countries, after a period of dividend farming, negative problems such as slow growth, and a low survival rate, and poor disease resistance have gradually appeared, causing huge losses to shrimp farming. In response to these problems, researchers in China have actively conducted shrimp breeding and have achieved certain results by cultivating several new varieties. In recent years, the development of genetic improvement technology for aquatic animals has been rapid, and the introduction of modern molecular breeding technology has revolutionized the breeding of L. vannamei. In this paper, we review the status of molecular breeding technology in L. vannamei, including germplasm resource research, genome research, molecular marker mining and assisted breeding, genome selection, and gene-editing research. It also provides an outlook on the future development trends of molecular breeding technology for L. vannamei, with the hope of providing a reference for the breeding of new L. vannamei varieties using these modern molecular breeding techniques.
Key words Litopenaeus vannamei     molecular marker-assisted breeding    germplasm resources    genome selection    gene editing    

凡纳滨对虾(Litopenaeus vannamei)俗称南美白对虾,原产于太平洋东岸,20世纪80年代末引入我国。由于其经济价值高,我国凡纳滨对虾总产量由2013年的142.99万t增加到2022年的209.86万t,增长了46.8%,目前是我国养殖产量最高的甲壳类动物[1]。然而由于凡纳滨对虾是国外引进品种,目前养殖凡纳滨对虾为国外引进种后代,随着养殖世代增加,逐渐出现诸如生长速度慢、整齐度差和易染病等问题,致使每年需从国外重新购买亲虾进行繁育。为打破这种局面,我国研究人员于21世纪初开始进行凡纳滨对虾本土化选育工作,利用家系选择、群体选择和杂交制种等传统育种方法,先后培育了经国家审查认定的12个凡纳滨对虾新品种。但由于我国缺乏天然优质凡纳滨对虾种源、育种工作开始较晚、选育品种推广示范不足等原因[2],致使我国自主培育的品种难以满足养殖户对优质亲虾的需求。为此,须不断加强凡纳滨对虾良种培育工作、改良选育技术,随着凡纳滨对虾基因组研究的深入,分子育种成为目前育种技术改良研究的焦点。本研究通过综述凡纳滨对虾种质资源研究、基因组研究、分子标记挖掘与分子标记辅助育种、基因组选择以及基因编辑等方面的研究进展,希望为利用现代分子育种技术培育凡纳滨对虾新品种提供思路。

1 凡纳滨对虾种质资源研究

由于凡纳滨对虾非我国本地种,为满足产业需求,需从国外进口大量亲虾,而难以对这些进口亲虾的系谱信息进行入库备案,遗传背景通常也未知,使得其产生的后代可能表现出较低的遗传多样性,并且随着育种世代增加,近亲繁殖可能性增大,造成遗传多样性显著降低,使后续选育群体生长、抗逆等性状产生近交衰退现象[3]。因此我国科研人员于21世纪初开始对凡纳滨对虾遗传多样性进行研究,这些研究分别采用了RFLP[4](restriction fragment length polymorphism,限制性片段长度多态性)、AFLP[5](amplified fragment length polymorphism,扩增片段长度多态性)、RAPD[6](random amplified polymorphic DNA,随机扩增多态性)、SSR[6](simple sequence repeats,简单重复序列)和SNP[7](single nucleotide polymorphism,单核苷酸多态性)分子标记,其中SSR标记以遗传多态性高的特点,目前研究最为广泛。近年来,随着基因组测序技术的发展,国内外研究人员逐渐开始使用第三代分子标记SNP进行群体遗传学研究。在凡纳滨对虾中,Casado等[8]采用SNP标记对古巴6个不同商业群体凡纳滨对虾的遗传多样性和群体结构进行分析,发现这6个群体呈现出中等水平的遗传分化,Garcia等[9]使用50 K基因芯片对厄瓜多尔连续繁育20代后的凡纳滨对虾群体遗传多样性进行检测,发现群体期望杂合度(He)和观测杂合度(Ho)分别为0.3496和0.3461,表明经过20代选育后仍然具有一定的遗传多样性。傅铄[10]利用40 K液相芯片分型结果对我国南方常见的5个凡纳滨对虾不同选育群体进行遗传多样性分析,发现群体期望杂合度、观测杂合度,选育群体间遗传分化指数(Fst)等指标与已报道的多个使用SSR标记计算结果相差较大[11-16],使用SNP标记进行计算的各项指标值远低于基于SSR标记的计算结果,呈现出较低的遗传多样性,Wang等[17]采用全基因组重测序技术对6个选育群体进行遗传多样性研究也得出相同结果。出现上述现象的原因除了与所用群体不同外,还有可能是所采用分子标记类型不同导致的。其他对虾中也出现类似的结果,如王凤娇[18]基于SNP标记计算出中国对虾(Fenneropenaeus chinensis)连续三代选育群体的Ho和群体间Fst值也低于基于SSR标记的研究结果,在两种对虾中均出现此类结果可能是由于采用SNP标记进行分析的标准更加严格[19-21]。与SSR标记不同,SNP是一种二态标记,通常由两种碱基组成,多态信息含量较低,但通常研究中所利用的SNP标记数量远多于SSR标记,这在一定程度上可以弥补标记多样性低的问题。

2 凡纳滨对虾基因组研究

拥有高质量的参考基因组是分子育种技术应用的前提,由于基因组中含有高活性的DNA酶、染色体数目多、杂合度和重复序列比例高(78%)等原因[22],对虾基因组测序和组装面临相当大的挑战。第三代测序技术的不断发展为对虾基因组破译提供了有力工具,自2019年凡纳滨对虾基因组首次发布以来[23],多个对虾物种,包括日本对虾(Penaeus japonicus)[24-25]、斑节对虾(Penaeus monodon)[26]、中国对虾[27-28]和印度对虾(Fenneropenaeus indicus)[29]等,纷纷完成参考基因组测序并成功组装至染色体水平。

在2019年,Zhang等[23]使用Pacbio测序技术获得了凡纳滨对虾首个全长基因组,全长约为1.66 Gb,包含25596个蛋白编码基因,并发现基因组中简单序列重复比例较高(>23.93%)。然而,该基因组并未组装到染色体水平,并且scaffold N50仅为605.56 kb。尽管该参考基因组的公布拓宽了凡纳滨对虾分子育种研究的广度和深度,但其应用受到了一定限制,特别是在对凡纳滨对虾遗传学进行深入研究方面。在此背景下,Peng等[30]于2023年采用PacBio长读长测序和Hi-C组装技术将基因组优化至染色体级别,总长度为1.87 Gb, scaffold N50长度达到39690.98 kb,两个版本基因组其他信息对比见表1。这一参考基因组的改进为凡纳滨对虾分子育种和遗传研究提供了重要的新基因组信息。然而,该基因组测序总长度仍未达到流式细胞仪测量估计值(2.45 Gb), Yuan等[31]认为对虾基因组存在两个特征影响了基因组的测序与组装质量,分别为基因组的高度杂合性和具有高比例简单序列重复。因此,未来需要进一步探索对虾基因组测序和组装策略,例如通过基于光学谱图技术的BioNano定位方法辅助基因组组装,该方法具有超长读长,并且可以跨过重复区域的特点,对于基因组中重复序列过多问题具有较好解决效果,从而获得更高质量的参考基因组[32]。同时也可通过构建泛基因组,利用涵盖所有凡纳滨对虾品种的遗传信息挖掘单一参考基因组中无法获得的关键变异,改善当前因参考基因组质量低而导致分子育种效果不佳的问题[33]。这将为凡纳滨对虾这一重要水产经济动物的功能基因组学、分子育种和遗传进化研究提供助力。

表1  已公布的两个版本凡纳滨对虾基因组信息对比 Tab. 1  Two published versions of the genome of Litopenaeus vannamei
3 分子育种方法 3.1 分子标记开发及分子标记辅助育种

与传统育种相比,分子标记辅助育种可以在DNA水平上直接选择具有期望标记的个体,从而缩短选育周期并提高准确度。分子标记辅助选择的核心是开发相关功能分子标记,研究人员最初是通过对已知候选基因进行标记–性状相关分析来确定基因内部的功能位点,如钱昭英等[34]对凡纳滨对虾CTSL基因进行检测,发现该基因中1个SNP位点多态性与生长性状有显著相关性,陈晓敏等[35]通过研究凡纳滨对虾CAT基因SNP位点多态性及其与耐低溶氧性状相关性发现该基因中具有1个与凡纳滨对虾耐低溶氧性状显著相关的SNP位点。但此类方法受候选基因限制,无法获得未知功能基因的相关位点。因此研究人员开始通过构建遗传连锁图谱捕获数量性状基因座(quantitative trait locus, QTL)。2014年中国科学院海洋研究所构建了首个凡纳滨对虾高密度遗传连锁图谱,定位到了生长和性别相关QTL[36]。之后凡纳滨对虾中陆续构建了耐高氨氮[37]、耐高亚硝酸盐氮、耐高pH[38-39]、耐低盐[40]、耐低温[41]等多个重要经济性状的遗传连锁图谱,捕获到了性状相关区域。但是遗传连锁图谱定位精度有限,难以准确锁定单个标记位点,而全基因组关联分析(genome-wide association studies, GWAS)[42]利用高密度分子标记在整个基因组范围内寻找性状相关位点,并利用统计分析方法评估每个标记位点与性状关联性。这一方法不仅有助于发现目前功能尚不明确的基因,还能找到分布在非编码区的大量SNP位点,为分子标记辅助育种研究提供了重要工具[43]

近年来,虾类中已有关于凡纳滨对虾和日本沼虾全基因组关联分析的研究发表,其中凡纳滨对虾研究相对全面,涵盖生长、性别、抗病、抗逆等性状。2017年,王全超[44]利用凡纳滨对虾简化基因组测序数据进行生长和抗弧菌病全基因组关联分析,总计获得了97个与生长性状以及8个与抗弧菌性状相关SNP位点,这是GWAS在凡纳滨对虾中的首个研究;罗正[45]通过整合GWAS和机器学习方法对耐高盐性状进行GWAS,发现了1个与性状显著相关的标记并将其定位到1个丝氨酸蛋白酶类基因,与转录组数据分析结果相吻合;孙坤[46]对抗白斑综合征病毒性状进行GWAS,发现了与性状相关的多个显著基因座,推测该性状受微效多基因控制。诸多研究表明,大部分经济性状受微效多基因控制,对于这些性状,由于涉及基因较多,在每个基因影响相对较小的情况下,仅关注少数候选基因难以显著改善性状。此外,全基因组关联分析在确定与性状显著关联位点时需设定显著性阈值,未达到阈值的位点被直接舍弃,但这些位点同样对性状有一定影响。因此,针对这类性状,采用基因组选择(genomic selection, GS)方法进行改良是一种更高效的途径。

3.2 基因组选择

基因组选择是指基于基因型和表型进行基因组预测育种值(genome estimated breeding values, GEBV)的估计,并根据其结果开展选择的育种方法[47],多项研究结果表明与基于系谱的传统选择方法相比,基因组选择可以提高遗传增益,缩短育种周期和增加预测准确性[48-50]

水产动物中鱼类作为种类数量最多的水产动物,在各项研究中均处于领先地位,因此基因组选择在鱼类中的研究开展最早且目前研究成果最多[51-52]。相较于鱼类,虾类基因组选择研究较少,仅在罗氏沼虾(Macrobrachium rosenbergii)[53]、中国对 虾[54]、凡纳滨对虾和墨吉明对虾[55] (Fenneropenaeus merguiensis)这几种虾类中有相关报道,且主要集中在生长和抗病性状研究中(表2)。其中在凡纳滨对虾中,王全超[44]利用简化基因组测序技术对生长和抗弧菌性状、孙坤[46]利用重测序技术对生长和抗WSSV性状进行了基因组选择研究,结果均发现在凡纳滨对虾生长、抗弧菌病和抗WSSV性状遗传选育中应用基因组选择可以提高预测准确性。同时,为降低基因组选择成本,Wang等[56]还对标记密度与基因组预测能力的关系进行了研究,发现当用于分析的标记数目达到3.2 K时,标记密度的增加对预测精度影响较弱。陈美佳[57]在凡纳滨对虾收获体重性状基因组选择研究中同样发现将SNP标记密度降低至10 K后,预测准确度与基于全部重测序数据预测结果并无明显差异,利用该密度分子标记进行基因组选择可减少基因型分型费用。

表2  凡纳滨对虾已发表基因组选择研究 Tab. 2  Published GS studies on Litopenaeus vannamei

基因组选择准确性除与使用标记数量有关外,主要还受参考群体规模,选择群体与参考群体亲缘关系以及统计模型等影响。其中统计模型是最容易进行修正同时影响较大的因素,上述研究发现基因组选择模型在水产养殖品种中研究的所有性状总体上优于基于系谱的PBLUP模型,而不同模型的优劣与所研究性状、分型数量等有关。目前对虾中常用的基因组选择模型主要有GBLUP (genomic best linear unbiased prediction)、ssGBLUP (single step genomic BLUP), rrBLUP (ridge regression BLUP)和多种基于贝叶斯方法的计算模型[48],其中GBLUP和ssGBLUP属于直接法模型,这类模型将分子标记和亲缘关系信息直接生成矩阵后代入模型计算个体育种值,其计算速度快,但对于低遗传力效果弱于间接法模型,间接法模型包括rrBLUP和各类贝叶斯算法模型,该类模型通过计算出每个SNP的效应来估算个体育种值,因此计算时间长于直接法模型,但对于低遗传力的预测效果较好[58]。因此在实施基因组选择时建议同时使用多种模型进行预测,并选择最优模型指导实际生产。目前,随着人工智能技术的深入,机器学习算法逐渐应用于基因组选择中,这类模型可以更为有效地整合显性效应和上位效应,从而提升预测准确度。杨琼等[59]对凡纳滨对虾体质量性状进行分子标记育种值估计,结果表明机器学习算法的预测效果好于贝叶斯线性回归模型,Luo等[60]同时使用机器学习算法和传统基因组选择模型进行凡纳滨对虾生长性状基因组育种值预测,同样发现机器学习算法预测效果均强于其他基因组选择模型。虽然相比于传统基因组选择方法,机器学习有着更高的预测准确度,但学习过程需要不断测试与优化,这将耗费更久的计算时间,不过随着计算能力的不断提升,计算时间的差距会逐渐缩小,从而能够保证机器学习在基因组选择实际应用中的时效性。

目前普遍认为基因型分型成本是实施基因组选择的主要限制,基因型分型工具包括简化基因组测序、全基因组重测序和基因芯片分型[65]。相较于重测序和简化基因组测序,基因芯片是一种更迅速、更经济,且覆盖面更广的替代基因型分型技术[66-67]

有研究表明相较于全基因组重测序获得的海量分子标记,使用较低密度分子标记同样可进行精确基因组选择,但成本大幅降低[57,68-72]。因此和畜牧动物研究历程类似,研究人员开始进行适用于不同种群凡纳滨对虾育种芯片开发,目前国内外共有3个机构开发了5个版本的基因芯片(表3)。首先是中国科学院海洋研究所基于其检测获得的凡纳滨对虾全基因组数据,开发出600 K高密度固相芯片,但检测价格较为昂贵,甚至超过全基因组重测序,巴西圣保罗大学和美国illumina公司也开发出了50 K的固相芯片并进行应用[9]。随着测序技术的发展,基于靶向测序的液相芯片技术被提出,此方法具有成本低、对检测平台要求较低等特点,因此是目前阶段基因芯片开发常采用的技术[73]。借助此技术,中国科学院海洋研究所将600 K固相芯片优化成9 K液相育种芯片和1.5 K低密度液相芯片,并使用1.5 K密度的液相芯片对耐高盐性状进行了基因组选择研究[74],结果表明使用基因组模型对凡纳滨对虾生存时间、半致死盐度和生存状态预测准确度分别为0.62±0.03、0.64±0.04和0.76±0.01,与传统系谱选择相比,基因组选择模型预测准确率最高提升了12.1%,说明该芯片可以在维持预测效果的同时节约成本。此外中国水产科学研究院黄海水产研究所孔杰团队[75]也基于其核心选育群体开发出40 K液相芯片“黄海芯1号”及其55 K升级版本,在此升级版本中,体现了液相芯片升级灵活的技术特点,55 K液相芯片并非从头开发,而是由原来的40 K液相芯片+新的15 K液相芯片模块组成,利用此芯片在凡纳滨对虾生长速度、致急性肝胰腺坏死病抗性、副溶血弧菌抗性和白斑综合征病毒抗性等方面进行了研究[63-64]。这两所机构开发出的芯片研究结果表明使用基因芯片进行基因组选择,可在显著降低成本的同时维持一个较为理想的预测准确度,对于基因组选择育种在实践中应用具有重要意义。

表3  凡纳滨对虾已开发基因芯片 Tab. 3  Developed gene chips in Litopenaeus vannamei

虽然目前基因组选择技术在凡纳滨对虾中获得了较多研究成果,但并未应用到实际生产,随着分型成本的降低、统计模型的优化以及测序技术的提升,期待未来基因组选择在凡纳滨对虾中能够取得大量实践成果。

3.3 基因编辑育种

基因编辑技术作为基因工程中的重要组成部分,近年来高速持续发展,也是国家制定的未来育种发展重要方向。研究人员前期已对凡纳滨对虾生长[77-79]、繁殖[80]、抗逆[81-83]、抗病[81,84-86]相关基因进行了大量基础研究,确定了具有重要价值的功能基因,利用基因编辑可以对已知功能的基因进行优化,使其控制的性状更为优良。

目前基因编辑技术多是基于CRISPR/Cas9系统实现的,在畜禽[87]、植物[88]以及水产动物中的鱼类[89]中取得了较多成果。甲壳动物中,2016年国内外首次在脊尾白虾(Exopalaemon carinicauda)中实现基因编辑[90], 2023年中国水产科学研究院淡水渔业研究中心在日本沼虾(Macrobrachium nipponense)[91]上也有了研究进展,但在其他经济价值较高的对虾中基因编辑技术相对不成熟。脊尾白虾和日本沼虾属于抱卵繁殖类虾,其受精卵在经过显微注射后能够保持不破裂;相比之下,凡纳滨对虾属于均黄卵,显微注射后易发生破裂,导致胚胎孵化率低(通常小于3%)[92]。此外,对虾受精卵还会形成一层孵化囊膜,起到对胚胎的保护作用,阻碍CRISPR/Cas9转基因复合体的进入,增加了显微注射的难度[93],这些因素成为目前利用显微注射技术进行对虾基因编辑的瓶颈问题。

目前,有研究人员认为可以绕开显微注射的步骤,通过物理和化学转染方法,利用DNA质粒、信使核糖核酸和重组蛋白这3种不同的载体进行Cas9的递送,目前发表的凡纳滨对虾的基因编辑成果多是基于此方法,来自秘鲁的研究人员首先针对抗WSSV性状,选定受体基因LvRab7,设计了一个sgRNA,并基于精子DNA中靶基因扩增产物深度测序建立了精子细胞体内转染和诱导突变的方法[94];进一步针对另外一个性状相关基因LvYY1开发了一种用于转染肌肉细胞、胚胎和精子细胞的调节方法,通过共聚焦显微镜和质谱法检测,发现CRISPR/Cas9在肌肉细胞、精子细胞和胚胎中对该基因的编辑效率值分别为45%~72%、1.4%和2.16%,分子对接结果显示相比对照组编辑后的蛋白质被截断,对用来表达病毒蛋白的ie1启动子亲和力更低,推测对该基因的基因编辑增强了对虾的白斑病毒抵抗能力,但未进行实验验证[95]。Gonzalez-Duarte等[96]通过电穿孔的物理方法和聚乙烯亚胺及阳离子脂质转染的化学方法进行Cas9传递。虽然发现大多数经过处理的受精卵的孵化率都很高,但通过高分辨率熔化曲线分析和Sanger测序对处理后的受精卵进行基因分型未能证实这是CRISPR/Cas9诱导的基因编辑,这表明基因编辑技术在对虾中的应用还面临着技术瓶颈,需要开展多方面技术研究来实现突破。

4 展望

“国以农为本,农以种为先”,种业是现代农业发展的核心。尽管我国凡纳滨对虾遗传育种已经取得了一些成果,培育出了多个新品种,但在育种技术创新与应用方面仍存在一些不足,许多领域和技术仍需进一步发展和突破。首先,全基因组选择技术趋于成熟,但尚未广泛应用,一方面是因为前期投入巨大,另一方面是对虾单个个体经济价值低,但单尾母虾单次可产20万粒受精卵,后代数目多,这在一定程度上弥补了单体价值低的缺点。建议育种过程中将基因组育种与传统家系育种方法相结合,逐步将其应用于实际生产中,并在生产过程中进行养殖良法的配套,以促进成果的快速应用,同时结合分子标记辅助育种,利用预选的低密度功能位点进行基因组选择,提高成果应用的经济效益,为凡纳滨对虾种业科技创新注入新的活力。其次,凡纳滨对虾的基因编辑育种目前仍处于起步阶段,同时也面临一系列技术上的挑战,针对已经明确功能的目的基因,后续打破瓶颈后可以利用基因编辑技术进行功能验证与定向编辑,从而实现性状的优化。第三,各种分子育种技术的可行性和安全性需要深入评估,以确保对虾的品质和对环境的影响在可控和可预测的范围内。最后,育种人员需要更好地理解市场需求,确保育种目标与市场趋势保持一致。在未来,我们期望通过更深入地整合基因组学、蛋白质工程、分子标记辅助选择和传统育种等多种技术手段,实现对凡纳滨对虾性状更为精确和全面的调控,同时与环境科学、生态学等相关领域进行密切合作,推动对虾养殖业的可持续发展。

参考文献
[1]
Administrative Department for Fisheries the Ministry for Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2022[M]. Beijing: China Agriculture Press, 2022. [农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会. 2022中国渔业统计年鉴[M]. 北京:中国农业出版社,2022.].》Google Scholar
[2]
Meijerink E, Fries R, Vögeli P, et al. Two alpha (1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci[J]. Mammalian Genome, 1997, 8(10): 736-741..》Google Scholar
[3]
Fang Z P, Meng X H, Li X P, et al. Genetic diversity analysis of domestic commercial brands seedlings of Litopenaeus vannamei based on microsatellite molecular markers[J]. Progress in Fishery Sciences, 2020, 41(5): 101-109. [方振朋,孟宪红,李旭鹏,等. 基于微卫星分子标记的凡纳滨对虾商业苗种遗传多样性分析[J]. 渔业科学进展,2020, 41(5): 101-109.].》Google Scholar
[4]
Yang K, Ma C Y, Ma L B, et al. PCR-RFLP analysis of imported and cultured stocks of Litopenaeus vannamei[J]. Marine Fisheries, 2010, 32(1): 16-23. [杨柯,马春艳,马凌波,等. 凡纳滨对虾引进群体和养殖群体的PCR-RFLP分析[J]. 海洋渔业,2010, 32(1): 16-23.].》Google Scholar
[5]
Ye N, Bao X F, Liu J Y. AFLP analysis of genetic diversity of imported Litopenaeus vannamei populations and cultured stocks[J]. Journal of Fisheries of China, 2017, 41(3): 339- 346. [叶宁,包秀凤,刘建勇. 凡纳滨对虾引进群体与养殖群体遗传多样性的AFLP分析[J]. 水产学报,2017, 41(3): 339-346.].》Google Scholar
[6]
Tang F, Wen B N, Liu H. Microsatellite genetic diversity in different Litopenaeus vannamei breeding populations[J]. Journal of Southern Agriculture, 2021, 52(4): 1108-1115. [唐芳,温贝妮,刘红. 不同凡纳滨对虾养殖群体的微卫星遗传多样性分析[J]. 南方农业学报,2021, 52(4): 1108-1115.].》Google Scholar
[7]
Liu J Y, Liu J H, Kong J, et al. Development of SNP markers and verification analysis of relationship on family in Litopenaeus vannamei[J]. Progress in Fishery Sciences, 2021, 42(1): 108-116. [刘峻宇,刘均辉,孔杰,等. 凡纳滨对虾SNP标记开发与家系亲缘关系验证分析[J]. 渔业科学进展,2021, 42(1): 108-116.].》Google Scholar
[8]
Casado E, Cabrera H, González M, et al. Genetic diversity and growth-related traits in Penaeus vannamei after ten years without introducing new stocks into Cuba[J]. Aquaculture, 2022, 554: 738097..》Google Scholar
[9]
Garcia B F, Bonaguro Á, Araya C, et al. Application of a novel 50K SNP genotyping array to assess the genetic diversity and linkage disequilibrium in a farmed Pacific white shrimp (Litopenaeus vannamei) population[J]. Aquaculture Reports, 2021, 20: 100691..》Google Scholar
[10]
Fu S. Genome wide association study and genomic selection of high-ammonia nitrogen tolerance traits in Litopenaeus vannamei[D]. Zhanjiang: Guangdong Ocean University, 2022. [傅铄. 凡纳滨对虾耐高氨氮性状全基因组关联分析与基因组选择研究[D]. 湛江:广东海洋大学,2022.].》Google Scholar
[11]
Bao X F. Analysis of genetic diversity of selected stocks of Litopenaeus vannamei[D]. Zhanjiang: Guangdong Ocean University, 2014. [包秀凤. 凡纳滨对虾选育群体遗传多样性分析[D]. 湛江:广东海洋大学,2014.].》Google Scholar
[12]
Xie L, Chen G L, Ye F L, et al. Genetic diversity of four selected stocks of Litopenaeus vannamei as revealed by SSR marker[J]. Journal of Guangdong Ocean University, 2009, 29(4): 5-9. [谢丽,陈国良,叶富良,等. 凡纳滨对虾4个选育群体遗传多样性的SSR分析[J]. 广东海洋大学学报,2009, 29(4): 5-9.].》Google Scholar
[13]
Wang J J, Wang Q, Qin Z, et al. Development of SSR markers from genomic data for Litopenaeus vannamei and analysis of genetic diversity in different cultured populations[J]. Journal of Fisheries of China, 2023, 47(6): 64-74. [王佳佳,王琼,秦桢,等. 凡纳滨对虾全基因组SSR标记开发及不同养殖群体的遗传多样性[J]. 水产学报,2023, 47(6): 64-74.].》Google Scholar
[14]
Ren S J, Mather P B, Tang B G, et al. Standardized microsatellite panels for pedigree management of farmed white-leg shrimp (Penaeus vannamei) stocks validated in a VIE tagged family selection line[J]. Aquaculture, 2022, 551: 737946..》Google Scholar
[15]
Liu H T, Yang M Q, He Y G, et al. Microsatellite analysis of genetic diversity in eight geographical populations of Litopenaeus vannamei[J]. Natural Science Journal of Hainan University, 2018, 36(2): 146-152. [刘洪涛,杨明秋,何玉贵,等. 凡纳滨对虾八个地理群体遗传多样性的微卫星分析[J]. 海南大学学报(自然科学版), 2018, 36(2): 146-152.].》Google Scholar
[16]
Li Q Y, Li M, Zeng D G, et al. Development of microsatellite markers of Litopenaeus vannamei and genetic polymorphism analysis of different cultured families[J]. Journal of Southern Agriculture, 2020, 51(2): 429-436. [李强勇,李旻,曾地刚,等. 凡纳滨对虾微卫星分子标记的开发及不同养殖家系遗传多态性分析[J]. 南方农业学报,2020, 51(2): 429-436.].》Google Scholar
[17]
Wang H, Teng M X, Liu P P, et al. Selection signatures of Pacific white shrimp Litopenaeus vannamei revealed by whole-genome resequencing analysis[J]. Frontiers in Marine Science, 2022, 9: 844597..》Google Scholar
[18]
Wang F J. Study on construction of SNP database and genetic diversity of different populations in Chinese shrimp (Fenneropenaeus chinensis)[D]. Shanghai: Shanghai Ocean University, 2019. [王凤娇. 中国对虾SNP数据库的构建及不同群体遗传多样性分析[D]. 上海:上海海洋大学,2019.].》Google Scholar
[19]
Sellars M J, Dierens L, McWilliam S, et al. Comparison of microsatellite and SNP DNA markers for pedigree assignment in black tiger shrimp, Penaeus monodon[J]. Aquaculture Research, 2014, 45(3): 417-426..》Google Scholar
[20]
Mahbub Alam M M, Pálsson S. Population structure of the giant tiger shrimp Penaeus monodon in Bangladesh based on variation in microsatellites and immune-related genes[J]. Marine Biology Research, 2016, 12(7): 706-714..》Google Scholar
[21]
Perez-Enriquez R, Robledo D, Houston R D, et al. SNP markers for the genetic characterization of Mexican shrimp broodstocks[J]. Genomics, 2018, 110(6): 423-429..》Google Scholar
[22]
Yuan J B, Zhang X J, Li F H, et al. Genome sequencing and assembly strategies and a comparative analysis of the genomic characteristics in penaeid shrimp species[J]. Frontiers in Genetics, 2021, 12: 658619..》Google Scholar
[23]
Zhang X J, Yuan J B, Sun Y M, et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting[J]. Nature Communications, 2019, 10(1): Article No.356..》Google Scholar
[24]
Kawato S, Nishitsuji K, Arimoto A, et al. Genome and transcriptome assemblies of the kuruma shrimp, Marsupenaeus japonicus[J]. G3: Genes, Genomes, Genetics, 2021, 11(11): jkab268..》Google Scholar
[25]
Ren X Y, Lv J J, Liu M, et al. A chromosome-level genome of the kuruma shrimp (Marsupenaeus japonicus) provides insights into its evolution and cold-resistance mechanism[J]. Genomics, 2022, 114(3): 110373..》Google Scholar
[26]
Uengwetwanit T, Pootakham W, Nookaew I, et al. A chromosome-level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of growth-associated genes[J]. Molecular Ecology Resources, 2021, 21(5): 1620-1640..》Google Scholar
[27]
Wang Q, Ren X Y, Liu P, et al. Improved genome assembly of Chinese shrimp (Fenneropenaeus chinensis) suggests adaptation to the environment during evolution and domestication[J]. Molecular Ecology Resources, 2022, 22(1): 334-344..》Google Scholar
[28]
Yuan J B, Zhang X J, Wang M, et al. Simple sequence repeats drive genome plasticity and promote adaptive evolution in penaeid shrimp[J]. Communications Biology, 2021, 4(1): Article No.186..》Google Scholar
[29]
Katneni V K, Shekhar M S, Jangam A K, et al. A superior contiguous whole genome assembly for shrimp (Penaeus indicus)[J]. Frontiers in Marine Science, 2022, 8: 808354..》Google Scholar
[30]
Peng M, Chen X L, Yang C L, et al. A high-quality genome assembly of the Pacific white shrimp (Litopenaeus vannamei) provides insights into its evolution and adaptation[J]. Aquaculture Reports, 2023, 33: 101859..》Google Scholar
[31]
Yuan J B, Yu Y, Zhang X J, et al. Recent advances in crustacean genomics and their potential application in aquaculture[J]. Reviews in Aquaculture, 2023, 15(4): 1501- 1521..》Google Scholar
[32]
Giani A M, Gallo G R, Gianfranceschi L, et al. Long walk to genomics: History and current approaches to genome sequencing and assembly[J]. Computational and Structural Biotechnology Journal, 2020, 18: 9-19..》Google Scholar
[33]
Chen S L, Xu W T, Lu S, et al. Development strategy for aquatic breeding biotechnology[J]. Strategic Study of CAE, 2023, 25(4): 214-226. [陈松林,徐文腾,卢昇,等. 水产育种生物技术发展战略研究[J]. 中国工程科学,2023, 25(4): 214-226.].》Google Scholar
[34]
Qian Z Y, Li X L, Xin J J, et al. PCR-SSCP Polymorphism of CTSL gene and its correlation with growth traits of Litopenaeus vannamei and the different mRNA expressions of CTSL[J]. Acta Oceanologica Sinica, 2013, 35(6): 121-127. [钱昭英,李喜莲,辛静静,等. 凡纳滨对虾CTSL基因PCR-SSCP多态性与生长性状的关联分析及其mRNA的差异表达[J]. 海洋学报(中文版), 2013, 35(6): 121-127.].》Google Scholar
[35]
Chen X M, Liu J Y, Zhang J C, et al. Single nucleotide polymorphisms in catalase gene and their association with resistant hypoxia traits in Litopenaeus vannamei[J]. Journal of Guangdong Ocean University, 2016, 36(6): 16-20. [陈晓敏,刘建勇,张嘉晨,等. 凡纳滨对虾过氧化氢酶基因单核苷酸多态性及其与耐低溶氧性状的相关性[J]. 广东海洋大学学报,2016, 36(6): 16-20.].》Google Scholar
[36]
Yu Y. Development of molecular markers and their applications in selective breeding of the Pacific white shrimp, Litopeneaus vannamei[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014. [于洋. 凡纳滨对虾分子标记的开发及其在遗传育种中的应用[D]. 青岛:中国科学院研究生院(海洋研究所), 2014.].》Google Scholar
[37]
Zeng D G, Yang C L, Li Q Y, et al. Identification of a quantitative trait loci (QTL) associated with ammonia tolerance in the Pacific white shrimp (Litopenaeus vannamei)[J]. BMC Genomics, 2020, 21(1): Article No.857..》Google Scholar
[38]
Huang W, Cheng C H, Liu J S, et al. Fine mapping of the high-pH tolerance and growth trait-related quantitative trait loci (QTLs) and identification of the candidate genes in Pacific white shrimp (Litopenaeus vannamei)[J]. Marine Biotechnology, 2020, 22(1): 1-18..》Google Scholar
[39]
Huang W, Li H M, Cheng C H, et al. Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress[J]. PLoS ONE, 2018, 13(12): e207771..》Google Scholar
[40]
Chen B, Zhong P, Wu X P, et al. Construction of a genetic linkage map, QTLs mapping for low salinity and growth-related traits and identification of the candidate genes in Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture Reports, 2022, 22: 100978..》Google Scholar
[41]
Lu H J, Chen W, Liu F K, et al. A genetic linkage map of the Pacific white shrimp (Litopenaeus vannamei): QTL mapping for low-temperature tolerance and growth-related traits and identification of the candidate genes[J]. Aquaculture, 2023, 562: 738834..》Google Scholar
[42]
Risch N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281): 1516-1517..》Google Scholar
[43]
Liu L, Liao X P, Lin D X. Opportunities and challenges in the post-genome-wide association research era[J]. Chinese Journal of Preventive Medicine, 2012, 46(3): 198-201. [刘丽,缪小平,林东昕. 后全基因组关联研究时代的机遇与挑战[J]. 中华预防医学杂志,2012, 46(3): 198-201.].》Google Scholar
[44]
Wang Q C. Genome-wide association study and genomic selection of growth and disease resistance traits in Litopenaeus vannamei[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2017. [王全超. 凡纳滨对虾生长和抗病性状的全基因组关联分析与基因组选择育种研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2017.].》Google Scholar
[45]
Luo Z. Identification of molecular markers related to growth or high salinity tolerance traits and development of genomic selection techniques in Pacific white shrimp Litopenaeus vannamei[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2022. [罗正. 凡纳滨对虾生长和耐高盐性状相关标记的筛选及基因组育种技术研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2022.].》Google Scholar
[46]
Sun K. Genetic parameter evaluation and genome wide association analysis of important economic traits in Litopenaeus vannamei[D]. Shanghai: Shanghai Ocean University, 2021. [孙坤. 凡纳滨对虾重要经济性状的遗传评估及全基因组关联分析[D]. 上海:上海海洋大学,2021.].》Google Scholar
[47]
Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819-1829..》Google Scholar
[48]
Song H L, Dong T, Yan X Y, et al. Genomic selection and its research progress in aquaculture breeding[J]. Reviews in Aquaculture, 2023, 15(1): 274-291..》Google Scholar
[49]
Zenger K R, Khatkar M S, Jones D B, et al. Genomic selection in aquaculture: Application, limitations and opportunities with special reference to marine shrimp and pearl oysters[J]. Frontiers in Genetics, 2019, 9: 693..》Google Scholar
[50]
Du Z Y, Nie P, Liu J S. Genetic improvement for aquaculture species: A promising approach for aquaculture challenges and development[J]. Reviews in Aquaculture, 2021, 13(4): 1756-1757..》Google Scholar
[51]
Zhao J, Bai H Q, Ke Q Z, et al. Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker[J]. Aquaculture, 2021, 531: 735786..》Google Scholar
[52]
Vallejo R L, Leeds T D, Gao G T, et al. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture[J]. Genetics Selection Evolution, 2017, 49(1): Article No.17..》Google Scholar
[53]
Liu J Y, Yang G L, Kong J, et al. Using single-step genomic best linear unbiased prediction to improve the efficiency of genetic evaluation on body weight in Macrobrachium rosenbergii[J]. Aquaculture, 2020, 528: 735577..》Google Scholar
[54]
Liu M Y, Dai P, Kong J, et al. Assessing accuracy of genomic breeding values of selection candidates under biosecurity restrictions by progeny testing in Chinese shrimp Fenneropenaeus chinensis[J]. Aquaculture, 2023, 566: 739181..》Google Scholar
[55]
Nguyen N H, Vu N T, Patil S S, et al. Multivariate genomic prediction for commercial traits of economic importance in Banana shrimp Fenneropenaeus merguiensis[J]. Aquaculture, 2022, 555: 738229..》Google Scholar
[56]
Wang Q C, Yu Y, Yuan J B, et al. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei[J]. BMC Genetics, 2017, 18(1): Article No.45..》Google Scholar
[57]
Chen M J. Effects of SNPS with different densities and low-density imputation panels on genomic prediction accuracy of harvest weight trait in Litopenaeus vannamei[D]. Shanghai: Shanghai Ocean University, 2021. [陈美佳. 不同密度SNP和低密度填充面板对凡纳滨对虾收获体重基因组预测准确性的影响[D]. 上海:上海海洋大学,2021.].》Google Scholar
[58]
Yin L L, Ma Y L, Xiang T, et al. The progress and prospect of genomic selection models[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(2): 233-242. [尹立林,马云龙,项韬,等. 全基因组选择模型研究进展及展望[J]. 畜牧兽医学报,2019, 50(2): 233-242.].》Google Scholar
[59]
Yang Q, Liu Q Y, Li Q Y, et al. Prediction of breeding value of molecular markers in Litopenaeus vannamei using artificial neural network[J]. Journal of Guangdong Ocean University, 2022, 42(3): 122-126. [杨琼,刘青云,李强勇,等. 基于人工神经网络的凡纳滨对虾分子标记育种值预测[J]. 广东海洋大学学报,2022, 42(3): 122-126.].》Google Scholar
[60]
Luo Z, Yu Y, Bao Z N, et al. Evaluation of machine learning method in genomic selection for growth traits of Pacific white shrimp[J]. Aquaculture, 2024, 581: 740376..》Google Scholar
[61]
Wang Q C, Yu Y, Li F H, et al. Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1221-1229..》Google Scholar
[62]
Lyu D, Yu Y, Zhang Q, et al. Estimating genetic parameters for resistance to Vibrio parahaemolyticus with molecular markers in Pacific white shrimp[J]. Aquaculture, 2020, 527: 735439..》Google Scholar
[63]
Liu Y, Luan S, Liu M Y, et al. Genomic prediction accuracy analysis of AHPND resistance genome prediction in Litopenaeus vannamei using SNP panels with different densities[J]. Journal of Fisheries of China, 2023, 47(1): 165-174. [刘杨,栾生,刘绵宇,等. 基于不同密度SNP面板的凡纳滨对虾AHPND抗性基因组预测准确性分析[J]. 水产学报,2023, 47(1): 165-174.].》Google Scholar
[64]
Liu M Y, Li X P, Kong J, et al. Application of the liquid chip "Yellow Sea Chip No.1" in genetic evaluation of the base population with resistance to acute hepatopancreatic necrosis disease in Litopenaeus vannamei[J]. Journal of Fisheries of China, 2023, 47(1): 217-226. [刘绵宇,李旭鹏,孔杰,等. 液相芯片“黄海芯1号”在凡纳滨对虾急性肝胰腺坏死病抗性基础群体遗传评估中的应用[J]. 水产学报,2023, 47(1): 217-226.].》Google Scholar
[65]
Li Y H, Wang H P. Advances of genotyping-by-sequencing in fisheries and aquaculture[J]. Reviews in Fish Biology and Fisheries, 2017, 27(3): 535-559..》Google Scholar
[66]
Yu H H, Xie W B, Li J, et al. A whole-genome SNP array (RICE6K) for genomic breeding in rice[J]. Plant Biotechnology Journal, 2014, 12(1): 28-37..》Google Scholar
[67]
Bailey-Serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781): 109-118..》Google Scholar
[68]
Yoshida G M, Bangera R, Carvalheiro R, et al. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout[J]. G3: Genes, Genomes, Genetics, 2018, 8(2): 719-726..》Google Scholar
[69]
Odegård J, Moen T, Santi N N, et al. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar)[J]. Frontiers in Genetics, 2014, 5: Article No.402..》Google Scholar
[70]
Bangera R, Correa K, Lhorente J P, et al. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar)[J]. BMC Genomics, 2017, 18(1): Article No.121..》Google Scholar
[71]
Tsai H Y, Hamilton A, Tinch A E, et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array[J]. BMC Genomics, 2015, 16(1): Article No.969..》Google Scholar
[72]
Robledo D, Palaiokostas C, Bargelloni L, et al. Applications of genotyping by sequencing in aquaculture breeding and genetics[J]. Reviews in Aquaculture, 2018, 10(3): 670-682..》Google Scholar
[73]
Xu Y B, Yang Q N, Zheng H J, et al. Genotyping by target sequencing (GBTS) and its applications[J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. [徐云碧,杨泉女,郑洪建,等. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学,2020, 53(15): 2983-3004.].》Google Scholar
[74]
Luo Z, Yu Y, Bao Z N, et al. Evaluation of genomic selection for high salinity tolerance traits in Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture, 2022, 557: 738320..》Google Scholar
[75]
Liu M Y. Application of the liquid chip “Yellow Sea Chip No.1” in the selective breeding of resistance on AHPND in Litopenaeus vannamei[D]. Lianyungang: Jiangsu Ocean University, 2022. [刘绵宇. 液相芯片“黄海芯1号”在凡纳滨对虾AHPND抗性选择育种中的应用[D]. 连云港:江苏海洋大学,2022.].》Google Scholar
[76]
Fu S, Liu J Y. Genome-wide association study identified genes associated with ammonia nitrogen tolerance in Litopenaeus vannamei[J]. Frontiers in Genetics, 2022, 13: 961009..》Google Scholar
[77]
Luo Y L, Liu H, Yu Z L, et al. Cloning and expression analysis of HDAC1 gene related to growth of Litopenaeus vannamei cultured in freshwater[J]. Journal of Southern Agriculture, 2022, 53(5): 1388-1398. [骆永丽,刘红,于忠利,等. 淡水养殖凡纳滨对虾生长相关基因HDAC1克隆及其表达分析[J]. 南方农业学报,2022, 53(5): 1388-1398.].》Google Scholar
[78]
Yu Y, Wang Q C, Zhang Q, et al. Genome scan for genomic regions and genes associated with growth trait in Pacific white shrimp Litopeneaus vannamei[J]. Marine Biotechnology, 2019, 21(3): 374-383..》Google Scholar
[79]
Wang Q C, Yu Y, Zhang Q, et al. The polymorphism of LvMMD2 and its association with growth traits in Litopenaeus vannamei[J]. Marine Biotechnology, 2020, 22(4): 564-571..》Google Scholar
[80]
Luo Y L, Liu H, Liu Z W, et al. Cloning and expression of breeding-& development-related gene Allatostatin-A receptor from Litopenaeus vannamei[J]. Journal of Shanghai Ocean University, 2023, 32(1): 20-30. [骆永丽,刘红,刘志伟,等. 凡纳滨对虾繁育相关基因Allatostatin-AR的克隆与表达分析[J]. 上海海洋大学学报,2023, 32(1): 20-30.].》Google Scholar
[81]
Guo H, Li T, Zhang X X, et al. Cloning and function analysis of peroxiredoxin 3 gene in Litopenaeus vannamei[J]. Journal of Guangdong Ocean University, 2023, 43(2): 18-25. [郭慧,李腾,张秀霞,等. 凡纳滨对虾过氧化物还原酶3基因的分子克隆与功能分析[J]. 广东海洋大学学报,2023, 43(2): 18-25.].》Google Scholar
[82]
Zhuo H B, Liu J Y. Nuclear factor interleukin 3 (NFIL3) participates in regulation of the NF-κB-mediated inflammation and antioxidant system in Litopenaeus vannamei under ammonia-N stress[J]. Fish & Shellfish Immunology, 2022, 131: 1192-1205..》Google Scholar
[83]
Wang F F, Liang Q J, Liu C, et al. Tuberous sclerosis complex 1 (PvTSC1) participates in ammonia nitrogen induced oxidative stress in Penaeus vannamei by regulating autophagy[J]. Aquaculture, 2021, 533: 736107..》Google Scholar
[84]
Bi J X, Ning M X, Xie X J, et al. A typical C-type lectin, perlucin-like protein, is involved in the innate immune defense of whiteleg shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2020, 103: 293-301..》Google Scholar
[85]
Niu S W, Zhu Y N, Geng R, et al. A novel chitinase Chi6 with immunosuppressive activity promotes white spot syndrome virus (WSSV) infection in Penaeus vannamei[J]. Fish & Shellfish Immunology, 2023, 132: 108450..》Google Scholar
[86]
Dekham K, Jones S M, Jitrakorn S, et al. Functional and genomic characterization of a novel probiotic Lactobacillus johnsonii KD1 against shrimp WSSV infection[J]. Scientific Reports, 2023, 13(1): Article No.21610..》Google Scholar
[87]
Fang W, Guo J P, Wang Z Z, et al. Application of gene editing technology CRISPR-Cas9 in the field of livestock and poultry improvement[J]. Agriculture and Technology, 2023, 43(12): 105-108. [房玮,郭佳朋,王梓桢,等. 基因编辑技术CRISPR-Cas9在畜禽改良领域的应用[J]. 农业与技术,2023, 43(12): 105-108.].》Google Scholar
[88]
Zou W N, Yun G L, Song M. Current situation and implications of innovation value chain in global gene editing breeding[J]. Journal of China Agricultural University, 2023, 28(9): 12-23. [邹婉侬,贠桂玲,宋敏. 全球基因编辑育种创新价值链现状与启示[J]. 中国农业大学学报,2023, 28(9): 12-23.].》Google Scholar
[89]
Peng S M, Wang Y B, Wang Q, et al. A review: Molecular breeding related techniques of Larimichthys crocea[J]. Marine Fisheries, 2022, 44(3): 375-384. [彭士明,王亚冰,王倩,等. 大黄鱼分子育种相关技术研究进展[J]. 海洋渔业,2022, 44(3): 375-384.].》Google Scholar
[90]
Gui T S, Zhang J Q, Song F G, et al. CRISPR/ Cas9-Mediated genome editing and nutagenesis of EcChi4 in exopalaemon carinicauda[J]. G3: Genes, Genomes, Genetics, 2016, 6(11): 3757-3764..》Google Scholar
[91]
Qiao H, Jiang S F, Fu H T, et al. CRISPR/Cas9 establishment-mediated targeted mutagenesis in Macrobrachium nipponense[J]. Frontiers in Physiology, 2023, 14: 1141359..》Google Scholar
[92]
Carrasco D M M. Microinyección como metodología de entrega de material de edición a través de CRISPR/Cas9 en Penaeus vannamei[D]. Mexico City: Instituto Politécnico Nacional, 2021..》Google Scholar
[93]
Guo H R, Tao Y W. Advances on the application of CRISPR/Cas9 gene editing technology in aquatic crustacean[J]. Periodical of Ocean University of China, 2020, 50(9): 105-112, 119. [郭华荣,陶奕文. CRISPR/Cas9基因编辑技术在水生甲壳动物中的应用进展[J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 105-112, 119.].》Google Scholar
[94]
Bemudez Y M Z. Implementacion del sistema CRISPR/ CAS9 para la mutagenesis dirigida de receptores del virus del síndrome de la mancha blanca en espermatidas del lamgostino Litopenaeus vannamei[D]. Tumbes: Universidad Nacional de Tumbes, 2019..》Google Scholar
[95]
Esquén Bayona D A. Edición genómica en el. “langostino blanco” Litopenaeus vannamei mediada por el sistema CRISPR/Cas9 dirigida al gen LvYY1 implicado en la infección del virus de la mancha blanca[D]. Tumbes: Universidad Nacional de Tumbes, 2020..》Google Scholar
[96]
Gonzalez-Duarte R J, de Aquino W E, García-Carreño F, et al. The hurdles of delivery CRISPR-Cas9 components for gene editing in penaeid shrimps[J]. Aquaculture Research, 2021, 52(11): 5297-5306..》Google Scholar