中国水产科学  2024, Vol. 31 Issue (04): 391-402  DOI: 10.12264/JFSC2024-0035
0

引用本文 

刘凯, 张之怡, 侯鑫, 王军, 陈晓雯, 王成辉. 鲢♀×鳙♂杂交鱼与其亲本的形态差异分析[J]. 中国水产科学, 2024, 31(4): 391-402. DOI: 10.12264/JFSC2024-0035.
LIU Kai, ZHANG Zhiyi, HOU Xin, WANG Jun, CHEN Xiaowen, WANG Chenghui. Study on morphological characteristics among hybrids of silver carp (♀) × bighead carp (♂) and their parents[J]. Journal of Fishery Sciences of China, 2024, 31(4): 391-402. DOI: 10.12264/JFSC2024-0035.

基金项目

国家自然科学基金项目(32293254).

作者简介

刘凯(1998-),男,硕士研究生,研究方向为水产动物种质资源与种苗工程. E-mail:651986020@qq.com

通信作者

通信作者:王成辉,教授,研究方向为水产动物种质资源与种苗工程. E-mail:wangch@shou.edu.cn

文章历史

收稿日期:2024-01-25
修改日期:2024-02-29
鲢♀×鳙♂杂交鱼与其亲本的形态差异分析
刘凯,张之怡,侯鑫,王军,陈晓雯,王成辉,     
上海海洋大学,农业农村部淡水水产种质资源重点实验室,水产科学国家级实验教学示范中心,上海水产养殖工程技术研究中心,上海 201306
摘要:鲢(Hypophthalmichthys molitrix)和鳙(Hypophthalmichthys nobilis)是我国特有鱼类,已被引入美国密西西比河流域并产生了自然杂交种,而在我国鲜有自然杂交的报道。为了解鲢鳙杂交鱼的形态差异和生物学特征,本研究对鲢、鳙及其杂交鱼(鲢♀×鳙)的外部形态特征、体表色泽、色素细胞、部分器官和骨骼形态进行了比较观察。结果显示,在18个可数性状中,6个性状与鲢、鳙存在极显著差异(P<0.01),其平均杂种指数为72.2,略偏向父本鳙;而在39个可量性状和框架性状中,主成分分析、判别分析和聚类分析均显示杂交鱼与双亲具有明显的形态区分,但杂交鱼的形态更接近母本鲢,形态差异主要集中在头部和背鳍前的躯干特征性状。杂交鱼的体表和腹膜色泽介于鲢、鳙之间,但与鲢更为接近,而鳞片的黑色素细胞数量显著高于鲢(P<0.05)。此外,杂交鱼的鳃耙形态与鳙相近,而与鲢有较大区别;杂交鱼的后鳔呈独特的三角形,其形状和大小与鲢、鳙具有明显差异;杂交鱼的大多数骨骼形态与鲢相似,而骨骼大小表现为亲本的中间型。本研究可为鲢鳙杂交子代的生物学特征、在移居地的生态适应性和我国鲢鳙的种质保护研究提供科学依据。
关键词        远缘杂交    形态特征    体色    器官结构    
Study on morphological characteristics among hybrids of silver carp (♀) × bighead carp (♂) and their parents
LIU Kai,ZHANG Zhiyi,HOU Xin,WANG Jun,CHEN Xiaowen,WANG Chenghui    
Key Laboratory of Freshwater Aquatic Germplasm Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Experimental Teaching Demonstration Center of Aquatic Sciences, Shanghai Aquaculture Engineering Technology Research Center, Shanghai Ocean University, Shanghai 201306, China
Abstract:Silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) are endemic to China, with few natural hybrids found within their native distribution ranges. However, a significant number of natural hybrids emerged when these two species colonized the Mississippi River in the United States of America. To comprehend the morphological differences and biological characteristics of hybrid fish resulting from silver carp and bighead carp, comparative observations were conducted on external morphological traits, body coloration, pigment cells, and morphological changes in some organs and bones among silver carp, bighead carp, and their hybrid (silver carp ♀ × bighead carp ). The results indicated extremely significant differences (P<0.05) in six traits out of 18 countable traits between the hybrids and their parents, with an average hybrid index of 72.2, indicating a slight bias towards paternal bighead carp. Utilizing 39 quantifiable and truss traits, principal component analysis, discriminant analysis, and cluster analysis revealed evident differences among the hybrids, silver carp, and bighead carp, although the hybrids exhibited closer proximity to maternal silver carp. Morphological disparities among the hybrids mainly centered on the head and trunk anterior to the dorsal fin. Body surface and peritoneum colors of the hybrids were intermediate between those of silver carp and bighead carp, leaning closer to silver carp. Nonetheless, the number of melanocytes in the scales was significantly higher in hybrids than in silver carp (P<0.05). Moreover, gill rake characteristics of the hybrids resembled those of bighead carp but noticeably differed from those of silver carp. The shape and size of posterior swim bladders in hybrids differed from those of silver carp and bighead carp. While most skeletal characteristics of hybrids resembled those of silver carp, hybrid skeletal size ranged between that of silver carp and bighead carp, offering a scientific foundation for understanding the biological traits of hybrid offspring from silver carp and bighead carp, their ecological adaptability in migration areas, and the germplasm protection of both species in China.
Key words Hypophthalmichthys molitrix      Hypophthalmichthys nobilis     distant hybridization    body color    organ shape    

杂交和渗入是动植物分类群中普遍存在的进化现象,而发生在鱼类中的杂交比其他脊椎动物更为常见[1-2]。自然杂交可以带来新的进化,并提高种群对不断变化的环境的适应性[3-4]。相关研究发现,通过杂交形成了非洲维多利亚湖丰富的丽鲷科鱼类[5-6]。同时,杂交种有可能占据未开发的生态位,并通过随后的生殖隔离成为新物种[7-8]。另有研究发现,一些物种在原生地很难杂交,而侵入到非本源地后而产生了杂交种[9-10],且入侵物种之间的杂交会加剧对入侵生态系统的影响[11]。入侵种间自然杂交一旦开始,就可能进行多代杂交,导致混合群体的形成,特别是杂交种具有生育能力且彼此之间以及与亲本个体间杂交,从而产生重大的生态影响。

鲢(Hypophthalmichthys molitrix)和鳙(Hypophthalmichthys nobilis)是我国的特有鱼类,属于鲤科(Cyprinoidei)、鲢亚科(Hypophthalmichthyinae)的鲢属(Hypophthalmicthys)[12],是我国最重要的养殖鱼类之一,被誉为“国鱼”。鲢和鳙已被引入到70多个国家和地区[13-14],成为了有世界影响的鱼类。20世纪70年代初,美国引入了鲢和鳙,目前已遍布密西西比河流域,形成了数量巨大的群体,产生了较广泛的生态和社会影响[15-16]。鲢和鳙虽然在形态、繁殖行为和核型等方面相似[17],且两者的产卵时间和地点高度重叠,但在我国鲜有天然水域自然杂交的报道[18]。然而,移居到国外的鲢和鳙却存在较多的自然杂交现象[19-21],如移居到美国密西西比河的鲢和鳙杂交比例高达22.5%,且主要以鲢为母本的杂交[22]

随着人类活动,被运送到原生地之外的物种数量在不断增加,促进了物种跨越其自然屏障而传播,从而对本地生物多样性和生态系统功能带来了影响[23]。鲢和鳙在美国的自然杂交现象已逐渐成为生物入侵和物种进化领域的热点问题[24-25]。同时,在我国也发现鲢和鳙之间的基因渗入[26],这种现象与密西西比河流域鲢和鳙之间广泛基因渗入的报道一致。在长江大保护的背景下[27],鲢和鳙的野外种群有可能会恢复,从而可能会造成一定程度的基因渗入。关于鲢与鳙的杂交研究,目前已有相关研究,而关于以鲢为母本的鲢鳙杂交子代的形态研究还未见报道。本研究通过开展鲢、鳙的人工杂交,分析杂交鱼(鲢♀×鳙)与其双亲的外部形态性状和相关器官特征差异。为了解鲢鳙杂交子代的生物学特征、评估其在移居地的生态适应性,并为我国鲢鳙的种质保护提供科学依据。

1 材料与方法 1.1 实验材料

2023年4月11日,在上海海洋大学水产动物种质试验站(上海市浦东新区新场镇),随机挑选生长状况良好的25尾鲢(S)、28尾鳙(B)及其26尾杂交鱼[鲢 (♀)×鳙()]F1的二龄鱼(SB),平均规格为274.0~394.5 g作为实验材料。

1.2 形态数据测量

实验鱼经MS-222 (250 mg/L)麻醉5 min后,首先统计外部可数性状,包括侧线鳞数、侧线上鳞数、侧线下鳞数、背鳍棘数、背鳍数、胸鳍棘数、胸鳍数、腹鳍棘数、腹鳍数、臀鳍棘数、臀鳍数。然后,用量鱼板和游标卡尺测量外部可量性状和框架性状,可量性状包括全长、体长、体高、体厚、头长、口裂长、吻长、口裂宽、眼径、眼间距、眼后头长、尾柄长、尾柄高、背鳍棘长、胸鳍棘长、腹鳍棘长、臀鳍棘长、上颌厚、下颌厚、腹棱长,共20项。框架性状包括用10个特征点及其连线构造实验鱼的外部体型框架结构,两点间的距离分别用1-2、1-3、1-4、2-4、3-4、3-5、3-6、4-5、4-6、5-6、5-7、5-8、6-7、6-8、7-8、7-9、7-10、8-9、8-10、9-10来表示,共20项(图1)。框架测量参见李思发[28]的方法。

图1  鲢、鳙及其杂交鱼框架测量示意图1. 胸鳍基部基点;2. 吻端;3. 腹鳍基部起点;4. 头部后缘;5. 臀鳍基部起点;6. 背鳍基部起点;7. 臀鳍基部末端;8. 背鳍基部末端;9. 尾鳍腹部起点;10. 尾鳍背部起点. Fig. 1  Schematic diagram for measuring the framework of silver carp, bighead carp and their hybrid1. origin of pectoral fin; 2. tip of maxillary; 3. origin of dorsal fln; 4. forehead (end of frontal bone); 5. origin of anal fin; 6. origin of dorsal fln; 7. termination of anal fin; 8. termination of dorsal rin; 9. origin of ventral side of caudal peduncie; 10. origin of dorsal side of caudal peduncle.

最后,将鱼解剖取出鳔室,并煮熟剔除肌肉组织后,对咽喉齿行数及每行颗数、鳔室数、脊椎骨数、肋骨数计数。

1.3 体表和腹膜的色泽观察

实验鱼拭干体表水分后,用色差仪(KONICA CR-10)测定背鳍前缘至侧线鳞间的体表,以及侧线鳞至腹鳍后缘间体表的色差值。测定前进行色差仪白板校正,每个位置测定2次,取平均值,分别统计亮度(L*)、红度(a*)和黄度(b*)等色泽参数。

取出全部内脏器官,拭干右侧腹膜的血渍和水分后,采用与体表相同的方法测量腹膜的色差值。同时参照徐伟等[29]的方法对腹膜的黑色程度进行分级(I~VI级)。

1.4 鳞片色素细胞观察

在体色测量的相同部位,每条鱼取5~6个鳞片,每个群体大于100片。鳞片经磷酸盐缓冲液(PBS)洗涤,置于显微镜(Leica DM500)和软件(Toup View 3.7)下拍照并计算整个鳞片上色素细胞数量和大小。

1.5 鳃、鳔结构观察

用剪刀小心剪取完整的鳃和鳔组织,0.1 mol/L磷酸缓冲液(pH 7.4)轻轻冲洗表面杂物,随后置于干净白板中测量和拍照。

1.6 头部及主轴骨骼观察

采用煮沸剔肉法[30],将全鱼放进水中煮20 min,保证骨骼完整,剔除骨骼以外的组织,得到的骨骼用20%的过氧化氢浸泡数小时漂白、晾干,随后拍照,并参照王程欣等[30]、水柏年等[31]和多甜[32]的方法对骨骼命名。

1.7 统计分析

为消除样本大小差异对形态特征的影响,将20个可量性状和20个框架形态性状均除以体长予以校正,构建39个反映体型的比例性状。利用卡方检验、单因子方差分析、主成分分析、聚类分析和判别分析来比较鲢、鳙及其杂交鱼的形态差异。参见顾志敏等[33]的方法计算可数性状的杂种指数(hybrid index, HI)。应用Microsoft Excel 2016、SPSS 27.0和R软件进行相关数据处理,数据使用平均值±标准差($\bar x \pm {\rm{SD}}$)进行描述。

2 结果与分析 2.1 鲢、鳙及其杂交鱼的形态特征 2.1.1 可数性状比较

鲢、鳙及其杂交鱼的18个可数性状比较见表1。杂交鱼在侧线鳞数、侧线上鳞数、第一鳃耙数和肋骨对数这4个性状介于双亲鲢和鳙之间;在侧线下鳞数和第一鳃丝数这两个性状高于双亲鲢和鳙;脊椎骨数与父本鳙相同,而其他12个性状均与双亲基本一致。经卡方检验,杂交鱼的侧线鳞数、侧线上鳞数、第一鳃耙数、肋骨对数、侧线下鳞数和第一鳃丝数共6个性状与鲢、鳙存在极显著差异(P<0.01)。此外,杂交鱼可数性状的平均杂种指数为72.2 (>55),略偏向于父本鳙。

表1  鲢、鳙及其杂交鱼的可数性状比较 Tab. 1  Comparison of the countable traits of silver carp, bighead carp and their hybrid
2.1.2 可量性状和框架性状比较

对39个形态比例性状的单因素方差分析结果表明,除全长、体高、尾柄长、5-7、5-8、7-9、7-10这7个性状在3种鱼间无显著差异外(P>0.05),其他32个性状均存在显著差异(P<0.05)。杂交鱼在上颌厚、尾柄高、背鳍棘长、腹鳍棘长、3-4、3-5、4-5、4-6这8个性状与母本鲢存在显著差异(P<0.05);而在口裂宽、体厚、1-2、3-5、5-6、6-7、7-8、8-9、8-10这9个性状与父本鳙有显著差异(P<0.05)。杂交鱼的腹棱长与鲢、鳙具有显著性差异(P<0.05)。鲢为完全腹棱,鳙为不完全腹棱,杂交鱼腹棱长介于双亲之间,偏向鲢,与体长的比值为0.43,而鲢、鳙分别为0.47和0.17。此外,杂交鱼的胸鳍末端超过腹鳍的比例(28.45±6.4)%与鲢(4.13±8.3)%、鳙(47.04±8.7)%具有显著性差异(P<0.05)。

对39个比例性状进行平方欧氏距离聚类分析表明,杂交鱼与鲢先聚类,然后再与鳙聚类,说明杂交鱼的可量性状和框架性状与母本鲢较为接近。

主成分分析发现,杂交鱼形态介于双亲鲢、鳙中间,距离略靠近于母本鲢(图2)。前5个主成分对变异的贡献率分别为45.31%、9.25%、6.6%、6.4%和4.2%,累计贡献率为71.76%。影响第一主成分的性状主要是头部性状,如眼间距、头长、2-4等;影响第二主成分的性状主要是背鳍前段的躯干特征性状,如1-4、3-4、4-6等;影响第三主成分的主要性状是背鳍后段的躯干特征性状,如3-6、5-6、2-5等。

图2  鲢、鳙及其杂交鱼主成分分析 Fig. 2  Principal component analysis of silver carp, bighead carp and their hybrid

对单因素方差分析存在显著差异的32个性状进行逐步判别分析,结果显示(图3), 3种鱼均能分别判入各自群体,判别准确率达100%。从判别分析散点图中各群体的组质心可见,3种鱼分别占据不同区域,区分明显。

图3  鲢、鳙及其杂交鱼典型判别分析 Fig. 3  Typical discriminant analysis of silver carp, bighead carp and their hybrid
2.2 体表和腹膜色泽比较

图4可见,杂交鱼的体表和腹膜色泽介于母本鲢和父本鳙之间。杂交鱼体色银灰,稍带灰黄,躯干两侧均匀分布着颜色较鳙浅而小、不规则的黑色素斑点,而在鲢上未见黑斑。色差仪测得的色泽参数表明,杂交鱼除背部黄度(b*)值低于双亲外,在体表背部和腹部,以及腹膜色泽均位于鲢、鳙之间,且与鲢的色泽更为接近(表2)。

图4  鲢、鳙及其杂交鱼的体表和腹膜特征 Fig. 4  Surface and peritoneal characteristics of silver carp, bighead carp and their hybrid
表2  鲢、鳙及其杂交鱼体表和腹膜的色泽参数 Tab. 2  Color parameters of the body surface and peritoneum of silver carp, bighead carp and their hybrid
2.3 鳞片色素细胞比较

3种鱼的鳞片上均分布有黑色素细胞、黄色素细胞和虹彩细胞,且色素细胞的形态相似。在色素细胞数量和大小方面,杂交鱼背部的黑色素细胞和黄色素细胞数量分别为(6.43±3.33)个和(40.14±12.87)个,显著高于鲢[(3.19±2.75)个、(28.79±14.9)个],但少于鳙[(7.93±4.11)个、(48.4± 19.0)个,(P<0.05)]。杂交鱼腹部的黑色素细胞和黄色素细胞分别为(0.8±0.75)个和(18.8±7.3)个,显著少于鳙[(2.36±2.14)个、(25.7±14.84)个,(P<0.05)],鲢腹部鳞片未发现黑色素细胞,仅有极少数个体含有黄色素细胞。杂交鱼的黑色素细胞大小为(72.81±33.95) μm略小于鲢(87.56±36.7) μm和鳙(98.21±58.89) μm,而黄色素细胞(22.63± 12.3) μm显著大于鲢(13.89±4.1) μm和鳙[(16.65± 5.76) μm, (P<0.05)]。

2.4 鳃和鳔形态比较

杂交鱼的鳃耙形态与鳙相近,呈梳状,排列整齐(图5),与鲢的海绵状鳃耙有较大区别。杂交鱼的鳃耙数和鳃耙间距介于双亲鲢、鳙之间,且差异显著(P<0.05),而鳃耙长低于双亲,但鳃丝数和鳃丝长均显著高于双亲(P<0.05)(表3)。

图5  鲢、鳙及其杂交鱼的鳃和鳔特征 Fig. 5  Characteristics of gill and swim bladder of silver carp, bighead carp and their hybrid
表3  鲢、鳙及其杂交鱼的第一鳃弓特征参数 Tab. 3  Characteristic data of the first gill arch of silver carp, bighead carp and their hybrid

杂交鱼的鳔结构与鲢、鳙相似,均分为前后两室,前鳔室大,后鳔室小,但后鳔的形状和大小与鲢、鳙具有明显差异,呈独特的三角形(图5)。杂交鱼的鳔重与鲢相近,均明显高于鳙;杂交鱼的前鳔与后鳔长度之比介于鲢和鳙之间,而前鳔与后鳔宽度之比与鳙一致,显著高于鲢(P<0.05);杂交鱼的总鳔和鳔前室容量与鲢接近,而显著高于鳙,且鳔后室容量介于双亲之间(P<0.05)(表4)。

表4  鲢、鳙及其杂交鱼的鳔的相关参数比较 Tab. 4  Relative parameter comparisons of swim bladders in silver carp, bighead carp and their hybrid
2.5 头部及主轴骨骼观察

杂交鱼大多数骨骼形态与鲢相似,骨骼致密光滑,而鳙骨骼较粗糙。杂交鱼脑颅长度大于鲢和鳙,长约为最宽处的2.4倍(鲢2.5倍、鳙2.1倍),脑颅较窄,吻部尖长而突出,眼后头部较短。鳙脑颅较宽,吻短钝,眼后头部长。杂交鱼脑颅顶部具有一定弧度,从后向前弯曲,而鳙较为平直(图6)。杂交鱼其他类型的骨骼大小均属亲本的中间类型,但较鳙单薄多孔。杂交鱼咽骨长度大于鲢,小于鳙;咽齿与鲢、鳙相似,表面光滑、无环纹。杂交鱼与双亲均具有一排齿,齿式4/4,齿面较为平坦,但鳙齿面中间隆起。3种鱼的齿间均具有较大缝隙,但鲢的齿缝最大,杂交鱼次之,鳙最小(图7)。

图6  鲢、鳙及其杂交鱼的脑颅和左侧头骨表层骨骼观察ab、cd和ef分别为鲢、杂交鱼和鳙;ace: 1. 犁骨;2. 中筛骨;3. 侧筛骨;4. 额骨;5. 顶骨;6. 上枕骨;7. 蝶耳骨;8. 翼蝶骨;9. 前耳骨;10. 侧枕骨;11. 基枕骨;12. 角质垫;bdf: 1. 齿骨;2. 关节骨;3. 上颌骨;4. 前颌骨;5. 下眶骨;6. 泪骨;7. 上眶骨;8. 围眶骨;9. 续骨;10. 方骨;11. 隅骨;12. 翼耳骨;13. 前鳃盖骨;14. 间鳃盖骨;15. 鳃条骨;16. 鳃盖骨;17. 下鳃盖骨;18. 锁骨;19. 后颞颥骨;20. 上锁骨;21. 肩胛骨;22. 后匙骨;23. 副蝶骨;24. 舌尾骨;25. 间舌骨;26. 上舌骨;27. 角舌骨. Fig. 6  Observation on the skull and the surface bone of the left skull of silver carp, bighead carp and their hybridab, cd and ef were silver carp, their hybrid and bighead carp, respectively; ace: 1. plow bone; 2. middle ethmoid bone; 3. lateral ethmoid bone; 4. frontal bone; 5. parietal bone; 6. upper occipital bone; 7. sphenoidal ear bone; 8. wing sphenoid bone; 9. anterior ear bone; 10. lateral occipital bone; 11. base occipital bone; 12. keratin pad; bdf: 1. tooth bone; 2. joint bone; 3. maxillary bone; 4. premaxillary bone; 5. lower orbital bone; 6. lacrimal bone; 7. upper orbital bone; 8. periorbital bone; 9. bone renewal; 10. square bone; 11. corner bone; 12. pterygoid ear bone; 13. anterior operculum bone; 14. interbranchial operculum bone; 15. gill bone; 16. operculum bone; 17. lower operculum bone; 18. clavicle; 19. posterior temporal bone; 20. upper clavicle; 21. scapula; 22. posterior spoon bone; 23. parasphenoid bone; 24. tongue tail bone; 25. interhyoid bone; 26. upper hyoid bone; 27. angle hyoid bone.
图7  鲢、鳙及其杂交鱼的咽骨特征 Fig. 7  Characteristics of pharyngeal bones of silver carp, bighead carp and their hybrid
3 讨论

关于鲤科鱼类的远缘杂交种的性状变异,已有较多报道[34-39]。多数研究认为,杂交种的外部形态性状一般偏向于母本,如鲫(♀)×禾花鱼()、团头鲂(♀)×长春鳊()、荷包红鲤(♀)×沅江鲤()等。然而,杂交种形态性状的变化又具有复杂性。顾志敏等[33]发现翘嘴红鲌(♀)×团头鲂()杂交种的多数形态性状表现为中间型,而刘苏等[40]发现斑鳢(♀)×乌鳢()杂交种的形态性状表现了明显的趋父性遗传。鱼类的形态特征是物种遗传特性最直接的外在表现[41],与栖息环境有密切联系,但在很大程度上取决于遗传特性。本研究结果表明,杂交鱼在外部形态上表现出杂交属性,并结合了双亲的形态特征。在18项可数性状中,平均杂种指数为72.2 (>55),略偏向父本鳙,而对39项可量性状和框架性状的形态多元分析,发现杂交鱼的形态与母本鲢更接近。通过主成分分析发现,3种鱼的形态差异主要集中在头部性状和躯干特征性状上。在密西西比河流域,通过鳃耙可比较准确地识别出鲢和鳙,但却对杂交鱼缺乏准确性[22]。本研究中,筛选出多个判别力较高的形态性状,如(头长、腹棱长等),有助于对于自然杂交鱼的识别和管理。

鱼类不同的体色是由于体表色素细胞的数量和分布差异所致[42]。在本研究中,杂交鱼的体表色泽介于母本鲢和父本鳙之间,且与鲢的色泽更为接近。但杂交鱼体表带有鲢不具有的黑斑,说明是受到父本鳙的影响。随后,对鳞片显微观察验证了杂交鱼鳞片的黑色素细胞数量显著高于鲢(P<0.05)。有作者在马来西亚红罗非鱼、黄颡鱼等[43]鱼类中也发现了黑色素细胞增加的现象。郭诗照等[44]对草鱼(♀)×鳙()进行杂交,发现杂交种体形和草鱼更相似,而体色接近鳙,同样具有黑斑。上述结果说明鳙的黑斑性状具有较强的遗传特性。

基于杂交种的环境选择和适应性,以及杂交区的种群结构,有研究提出了4种主要模型来预测物种自然杂交结果和杂交种的后续发展[1,45-47],即张力区模型、有界杂交优势模型、镶嵌模型和进化新颖性模型。本研究中,杂交鱼头长与体长之比为0.32,与鳙相近(0.35),较鲢(0.28)有更大的头长。由于鱼类的形态特征可反映其生态特征、摄食策略以及对环境的适应性[48-50]。Kristjánsson等[51]认为通过头长的增加能够使红点鲑获取更多的食物,提高了摄食效率,从而适应更高的摄食强度,在蛇鮈[52]中也有相似的表现。鱼类的鳃耙主要起机械过滤作用[53]。鲢鳃耙致密,对水流的阻力相应增大,滤水速度较慢[54]。杂交鱼的鳃耙间距和数目变化表现为亲本中间型,较鲢稀疏,滤水速度可能高于鲢。杂交鱼有着更大的头长和鳃耙间距,使其摄食效率增大,相较于亲本鲢将会有更大的竞争优势。因此,推测杂交鱼符合进化新颖性模型,即某些杂交种能够占据远离杂交区的新生境,或胜过一个特定的亲本物种。同时,关于移居美国的鲢鳙自然杂交现象[55],可能符合镶嵌模型。即假设亲本和杂交种适应了不同的环境,这些环境在杂交区域呈零散分布,适合杂交种及其亲本共同存在,促进群体间的相互渗入。杂交区内一种或两种亲本物种的稀缺性,栖息地和饵料的重叠以及物种分类间的交配破裂在促进杂交方面起作用[56]。鲢和鳙在栖息水层、饵料、形态等方面具有较高的相似性[57],容易产生杂交,因为密切相关的群体间杂交通常会产生可育的后代[58]。鲢、鳙在非原生地的杂交可能会促进群体分布的进一步扩大[24],如果不采取保护措施,所有种群都可能成为杂交群体。因而,鲢和鳙的自然杂交现象需引起进一步关注。

参考文献
[1]
Kuhn T, Györfi O, Ruprecht E. Seedling performance, allocation patterns and phenotypic plasticity of two sympatric hawthorn species and their natural hybrid[J]. Flora, 2022, 287: 151994..》Google Scholar
[2]
Allendorf F W, Leary R F, Hitt N P, et al. Intercrosses and the U.S. endangered species act: Should hybridized populations be included as westslope cutthroat trout?[J]. Conservation Biology, 2004, 18(5): 1203-1213..》Google Scholar
[3]
Budd A F, Pandolfi J M. Evolutionary novelty is concentrated at the edge of coral species distributions[J]. Science, 2010, 328(5985): 1558-1561..》Google Scholar
[4]
Grant P R, Grant B R. Unpredictable evolution in a 30-year study of Darwin's finches[J]. Science, 2002, 296(5568): 707-711..》Google Scholar
[5]
McGee M D, Borstein S R, Meier J I, et al. The ecological and genomic basis of explosive adaptive radiation[J]. Nature, 2020, 586(7827): 75-79..》Google Scholar
[6]
Ngoepe N, Muschick M, Kishe M A, et al. A continuous fish fossil record reveals key insights into adaptive radiation[J]. Nature, 2023, 622(7982): 315-320..》Google Scholar
[7]
Seehausen O. Hybridization and adaptive radiation[J]. Trends in Ecology & Evolution, 2004, 19(4): 198-207..》Google Scholar
[8]
Smith P F, Konings A, Kornfield I. Hybrid origin of a cichlid population in Lake Malawi: Implications for genetic variation and species diversity[J]. Molecular Ecology, 2003, 12(9): 2497-2504..》Google Scholar
[9]
Allendorf F W, Leary R F, Spruell P, et al. The problems with hybrids: Setting conservation guidelines[J]. Trends in Ecology & Evolution, 2001, 16(11): 613-622..》Google Scholar
[10]
Fournier D, Aron S. Hybridization and invasiveness in social insects-The good, the bad and the hybrid[J]. Current Opinion in Insect Science, 2021, 46: 1-9..》Google Scholar
[11]
Arnold M L, Hodges S A. Are natural hybrids fit or unfit relative to their parents?[J]. Trends in Ecology & Evolution, 1995, 10(2): 67-71..》Google Scholar
[12]
Li G F. Fishes of the Pearl River[M]. Beijing: Science Press, 2018. [李桂峰. 珠江鱼类图鉴[M]. 北京:科学出版社,2018.].》Google Scholar
[13]
Lu G Q, Wang C H, Zhao J L, et al. Evolution and genetics of bighead and silver carps: Native population conservation versus invasive species control[J]. Evolutionary Applications, 2020, 13(6): 1351-1362..》Google Scholar
[14]
Li S F, Wang Q, Chen Y L. Biochemical genetic structures and variations in natural populations of silver carp, bighead and grass carp in Changjiang River, Zhujiang River and Heelongjiang River[J]. Journal of Fisheries of China, 1986, 10(4): 351-372. [李思发,王强,陈永乐. 长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种种群的生化遗传结构与变异[J]. 水产学报,1986, 10(4): 351-372.].》Google Scholar
[15]
Farrington H L, Edwards C E, Guan X, et al. Mitochondrial genome sequencing and development of genetic markers for the detection of DNA of invasive bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) in environmental water samples from the United States[J]. PLoS One, 2015, 10(2): e117803..》Google Scholar
[16]
Lamer J T, Ruebush B C, McClelland M A, et al. Body condition (Wr) and reproductive potential of bighead and silver carp hybrids: Postzygotic selection in the Mississippi River Basin[J]. Ecology and Evolution, 2019, 9(16): 8978- 8986..》Google Scholar
[17]
de Almeida-Toledo L F, Bigoni A P V, Bernardino G, et al. Chromosomal location of Nors and C bands in F1 hybrids of bighead carp and silver carp reared in Brazil[J]. Aquaculture, 1995, 135(4): 277-284..》Google Scholar
[18]
Gong L J, Wen Z R, Xia C. Hybridization of bighead carp and silver carp occurred in the aquaculture farm of Bancha Lake[J]. Hubei Agricultural Sciences, 1991, 30(12): 41. [龚珞军,温周瑞,夏晨. 汈汊湖养殖场出现鳙鲢杂交现象[J]. 湖北农业科学,1991, 30(12): 41.].》Google Scholar
[19]
Mia M Y, Taggart J B, Gilmour A E, et al. Detection of hybridization between Chinese carp species (Hypophthalmichthys molitrix and Aristichthys nobilis) in hatchery broodstock in Bangladesh, using DNA microsatellite loci[J]. Aquaculture, 2005, 247(1-4): 267-273..》Google Scholar
[20]
Nosova A Y, Kipen V N, Tsar A I, et al. Differentiation of hybrid progeny of silver carp (Hypophthalmichthys molitrix val.) and bighead carp (H. nobilis Rich.) based on microsatellite polymorphism[J]. Russian Journal of Genetics, 2020, 56(3): 317-323..》Google Scholar
[21]
Wang J, Lamer J T, Gaughan S, et al. Transcriptomic comparison of invasive bigheaded carps (Hypophthalmichthys nobilis and Hypophthalmichthys molitrix) and their hybrids[J]. Ecology and Evolution, 2016, 6(23): 8452-8459..》Google Scholar
[22]
Lamer J T, Dolan C R, Petersen J L, et al. Introgressive hybridization between bighead carp and silver carp in the Mississippi and Illinois Rivers[J]. North American Journal of Fisheries Management, 2010, 30(6): 1452-1461..》Google Scholar
[23]
Kolar C S, Lodge D M. Progress in invasion biology: Predicting invaders[J]. Trends in Ecology & Evolution, 2001, 16(4): 199-204..》Google Scholar
[24]
Wang J, Gaughan S, Lamer J T, et al. Resolving the genetic paradox of invasions: Preadapted genomes and postintroduction hybridization of bigheaded carps in the Mississippi River Basin[J]. Evolutionary Applications, 2019, 13(2): 263-277..》Google Scholar
[25]
Zhu L F, Zhang Z, Chen H, et al. Gut microbiomes of bigheaded carps and hybrids provide insights into invasion: A hologenome perspective[J]. Evolutionary Applications, 2020, 14(3): 735-745..》Google Scholar
[26]
Jian J B, Yang L D, Gan X N, et al. Whole genome sequencing of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) provide novel insights into their evolution and speciation[J]. Molecular Ecology Resources, 2021, 21(3): 912-923..》Google Scholar
[27]
Dong F, Fang D D, Zhang H, et al. Protection and development after the ten-year fishing ban in the Yangtze River[J]. Journal of Fisheries of China, 2023, 47(2): 245-259. [董芳,方冬冬,张辉,等. 长江十年禁渔后保护与发展[J]. 水产学报,2023, 47(2): 245-259.].》Google Scholar
[28]
Li S F. Genetical characterization of major freshwater culture fishes in China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1998. [李思发. 中国淡水主要养殖鱼类种质研究[M]. 上海:上海科学技术出版社,1998.].》Google Scholar
[29]
Xu W, Li C T, Cao D C, et al. Melanin observation of visceral peritoneum in transparent color crucian carp, red crucian carp and Koi carp[J]. Journal of Fishery Sciences of China, 2007, 14(1): 144-148. [徐伟,李池陶,曹顶臣,等. 水晶彩鲫、红鲫和锦鲤的腹膜脏层黑色素观察[J]. 中国水产科学,2007, 14(1): 144-148.].》Google Scholar
[30]
Wang C X, Ge J M, Wang X Y, et al. Comparative study on skeletal structure of two species of schizothoracinae[J]. Sichuan Journal of Zoology, 2023, 42(4): 430-438. [王程欣,葛建民,王新月,等. 2种裂腹鱼类骨骼结构比较研究[J]. 四川动物,2023, 42(4): 430-438.].》Google Scholar
[31]
Shui B N, Zhao S L, Han Z Q, et al. Systematic ichthyology[M]. Beijing: China Ocean Press, 2019. [水柏年,赵盛龙,韩志强,等. 系统鱼类学[M]. 北京:海洋出版社,2019.].》Google Scholar
[32]
Duo T. The descriptive study of the morphology on the skull of the Carassius auratus var. Qihe and the Cyprinus carpio haematopterus[D]. Xinxiang: Henan Normal University, 2018. [多甜. 淇河鲫与黄河鲤头骨形态学描述性研究[D]. 新乡:河南师范大学,2018.].》Google Scholar
[33]
Gu Z M, Jia Y Y, Ye J Y, et al. Studies on morphological characteristics and genetic analysis of the hybrid F1, Erythroculter ilishaeformis♂×Megalobrama amblycephala ♀[J]. Journal of Fisheries of China, 2008, 32(4): 533-544. [顾志敏,贾永义,叶金云,等. 翘嘴红鲌(♀)×团头鲂()杂种F1的形态特征及遗传分析[J]. 水产学报,2008, 32(4): 533-544.].》Google Scholar
[34]
Zhao B W, Zhao H H, Yang Z H, et al. Morphological characteristics and gonadal development of Megalobrama amblycephala (♀) × Parabramis pekinesis () hybrids[J]. Journal of Huazhong Agricultural University, 2015, 34(4): 89-96. [赵博文,赵鸿昊,杨振华,等. 团头鲂(♀)×长春鳊()杂交F1代形态特征及性腺发育[J]. 华中农业大学学报,2015, 34(4): 89-96.].》Google Scholar
[35]
Li W H, Hu J, Sun C F, et al. Morphological and genetic characteristics of hybrid F1 derived from largemouth bass (Micropterus salmoides) (♀) × bluegill (Lepomis mearchirus) ()[J]. Journal of Fisheries of China, 2020, 44(8): 1225-1236. [李武辉,胡婕,孙成飞,等. 大口黑鲈(♀)×蓝鳃太阳鱼()杂交F1的形态及遗传特征[J]. 水产学报,2020, 44(8): 1225-1236.].》Google Scholar
[36]
Liu F, Gao S B, Liu Y Y, et al. Morphological characteristics comparison of Larimichthys polyactis, L. crocea and their hybrids (L. polyactis♀×L. crocea♂)[J]. Journal of Shanghai Ocean University, 2020, 29(2): 189-198. [刘峰,高松柏,刘阳阳,等. 小黄鱼与大黄鱼及其杂交F1(小黄鱼♀×大黄鱼)表型差异分析[J]. 上海海洋大学学报,2020, 29(2): 189-198.].》Google Scholar
[37]
Mi G Q, Zhao J L, Jia Y Y, et al. Morphological and microsatellite analysis of Siniperca chautsi♀× Siniperca scherzeri♂ hybrid with their parents[J]. Journal of Shanghai Ocean University, 2010, 19(2): 145-150. [宓国强,赵金良,贾永义,等. 鳜(♀)×斑鳜()杂种F1的形态特征与微卫星分析[J]. 上海海洋大学学报,2010, 19(2): 145-150.].》Google Scholar
[38]
Sun H C, Dai L. Morphology studied between F1 hybrid (Carassius auratus♀× Procypris merus♂) and the original brood stocks[J]. Freshwater Fisheries, 2011, 41(1): 48-52. [孙翰昌,代丽. 鲫(♀)×禾花鱼()杂交及杂交F1、亲本的形态特征研究[J]. 淡水渔业,2011, 41(1): 48-52.].》Google Scholar
[39]
Lin Z C, Gao Z Y. Morphological studies of the hybrids of aristichthys nobilis and Hypophthalmichthys molitrix[J]. Journal of Fisheries of China, 1965, 2(4): 35-50. [林志春,高振义. 鳙、鲢杂交种的形态学研究[J]. 水产学报,1965, 2(4): 35-50.].》Google Scholar
[40]
Liu S, Zhu X P, Chen K C, et al. Morphological variations of Channa maculata, Channa argus and their hybrid (C.·maculata♀× C.·argus♂)[J]. Journal of Huazhong Agricultural University, 2011, 30(4): 488-493. [刘苏,朱新平,陈昆慈,等. 斑鳢、乌鳢及其杂交种形态差异分析[J]. 华中农业大学学报,2011, 30(4): 488-493.].》Google Scholar
[41]
Wang C H. Study on genetic diversity of red common carps in China[D]. Shanghai: Shanghai Fisheries University, 2002: 41-53. [王成辉. 中国红鲤遗传多样性研究[D]. 上海:上海水产大学,2002: 41-53.].》Google Scholar
[42]
Wang L M, Song F B, Zhu W B, et al. Effects of temperature on body color of Malaysian red tilapia during overwintering period[J]. Journal of Fisheries of China, 2018, 42(1): 72-79. [王兰梅,宋飞彪,朱文彬,等. 温度对马来西亚红罗非鱼越冬期体色的影响[J]. 水产学报,2018, 42(1): 72-79.].》Google Scholar
[43]
Ding X F, Ye Y T, Jiang R, et al. Effects of feed pigments on carotenoids, lutein content and tyrosinase activity in the skin and serum of Pelteobagrus fulvidraco[J]. Journal of Fisheries of China, 2010, 34(11): 1728-1735. [丁小峰,叶元土,蒋蓉,等. 饲料色素对黄颡鱼皮肤类胡萝卜素、叶黄素含量和酪氨酸酶活力的影响[J]. 水产学报,2010, 34(11): 1728- 1735.].》Google Scholar
[44]
Guo S Z, Wang R Q, Fu J J, et al. Morphological differences among grass carp, bighead carp and their hybrids[J]. Jiangsu Agricultural Sciences, 2011, 39(5): 320-322. [郭诗照,王荣泉,傅建军,等. 草鱼、鳙及其杂交鱼的形态差异分析[J]. 江苏农业科学,2011, 39(5): 320-322.].》Google Scholar
[45]
Capblancq T, Després L, Mavárez J. Genetic, morphological and ecological variation across a sharp hybrid zone between two alpine butterfly species[J]. Evolutionary Applications, 2020, 13(6): 1435-1450..》Google Scholar
[46]
Gramlich S, Hörandl E. Fitness of natural willow hybrids in a pioneer mosaic hybrid zone[J]. Ecology and Evolution, 2016, 6(21): 7645-7655..》Google Scholar
[47]
Abbott R J. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones[J]. Journal of Systematics and Evolution, 2017, 55(4): 238-258..》Google Scholar
[48]
Arnegard M E, McGee M D, Matthews B, et al. Genetics of ecological divergence during speciation[J]. Nature, 2014, 511(7509): 307-311..》Google Scholar
[49]
Schluter D. Ecology and the origin of species[J]. Trends in Ecology & Evolution, 2001, 16(7): 372-380..》Google Scholar
[50]
Eklöv P, Svanbäck R. Predation risk influences adaptive morphological variation in fish populations[J]. The American Naturalist, 2006, 167(3): 440-452..》Google Scholar
[51]
Kristjánsson B K, Skúlason S, Snorrason S S, et al. Fine-scale parallel patterns in diversity of small benthic Arctic charr (Salvelinus alpinus) in relation to the ecology of lava/groundwater habitats[J]. Ecology and Evolution, 2012, 2(6): 1099-1112..》Google Scholar
[52]
Xiao J, Zeng Y, Zhang F B, et al. Comparison of morphological differences of Saurogobio dabryi in different reaches of Jialing River[J]. Journal of Fisheries of China, 2020, 44(11): 1832-1840. [肖瑾,曾燏,张富斌,等. 嘉陵江不同江段蛇的形态差异比较[J]. 水产学报,2020, 44(11): 1832-1840.].》Google Scholar
[53]
Li D S, Dong S L. The structure and function of the filtering apparatus of silver carp and bighead carp[J]. Current Zoology, 1996, 42(1): 10-14. [李德尚,董双林. 鲢、鳙滤食器官结构与功能的研究[J]. 动物学报,1996, 42(1): 10-14.].》Google Scholar
[54]
Wang W. Culture and enhancement of fishes[M]. Beijing: China Agriculture Press, 2000. [王武. 鱼类增养殖学[M]. 北京:中国农业出版社,2000.].》Google Scholar
[55]
Lamer J T, Ruebush B C, Arbieva Z H, et al. Diagnostic SNPs reveal widespread introgressive hybridization between introduced bighead and silver carp in the Mississippi River Basin[J]. Molecular Ecology, 2015, 24(15): 3931-3943..》Google Scholar
[56]
Montanari S R, Hobbs J P A, Pratchett M S, et al. The importance of ecological and behavioural data in studies of hybridisation among marine fishes[J]. Reviews in Fish Biology and Fisheries, 2016, 26(2): 181-198..》Google Scholar
[57]
Zhou J, Lin F. The feeding habit of silver carp and bighead and their digestion of algae[J]. Acta Hydrobiologica Sinica, 1990, 14(2): 170-175, 197-198. [周洁,林峰. 鲢、鳙的食性及其对藻类的消化利用[J]. 水生生物学报,1990, 14(2): 170-175, 197-198.].》Google Scholar
[58]
Vinšálková T, Gvoždík L. Mismatch between temperature preferences and morphology in F1 hybrid newts (Triturus carnifex× T. dobrogicus)[J]. Journal of Thermal Biology, 2007, 32(7): 433-439..》Google Scholar