中国水产科学  2024, Vol. 31 Issue (04): 403-415  DOI: 10.12264/JFSC2023-0351
0

引用本文 

马兴宇, 唐忠林, 陈树桥, 周国勤, 徐钢春. 转食饲料对大口黑鲈幼鱼的存活率、抗氧化酶和消化酶活性及肠道菌群的影响[J]. 中国水产科学, 2024, 31(4): 403-415. DOI: 10.12264/JFSC2023-0351.
MA Xingyu, TANG Zhonglin, CHEN Shuqiao, ZHOU Guoqin, XU Gangchun. Impacts of early weaning on survival rate, antioxidant and digestive enzyme activities, and intestinal microbiota of juvenile largemouth bass (Micropterus salmoides)[J]. Journal of Fishery Sciences of China, 2024, 31(4): 403-415. DOI: 10.12264/JFSC2023-0351.

基金项目

江苏省种业振兴“揭榜挂帅”项目[JBGS(2021)130];南京市农业专项公益性服务体系项目“2023特色淡水鱼引育种中心建设”.

作者简介

马兴宇(1987‒),男,高级工程师,研究方向为水产动物遗传育种研究与养殖技术推广. E-mail:hdmaxingyu@126.com

通信作者

通信作者:周国勤,研究员,研究方向为水产动物遗传育种研究. E-mail:fishnj@126.com

文章历史

收稿日期:2024-01-04
修改日期:2024-03-17
转食饲料对大口黑鲈幼鱼的存活率、抗氧化酶和消化酶活性及肠道菌群的影响
马兴宇1,唐忠林1,陈树桥1,周国勤1,徐钢春2,     
1. 南京市水产科学研究所,江苏 南京 210036
2. 中国水产科学研究院淡水渔业研究中心,江苏 无锡 214081
摘要:转食配合饲料是大口黑鲈(Micropterus salmoides)幼鱼培育的一个重要环节,为了找到大口黑鲈幼鱼适宜转食的规格以及转食对幼鱼生理生化的影响,本研究探讨了摄食丰年虫(Artemia salina)幼鱼转食饲料后,其存活率、组织抗氧化酶和消化酶活性及肠道菌群的变化。实验选取了平均体长分别为(1.06±0.02)cm、(2.04±0.03)cm、(3.02±0.04)cm、(4.05± 0.04) cm、(5.01±0.04)cm共5种规格幼鱼,设为体长1 cm、2 cm、3 cm、4 cm、5 cm组进行转食实验,统计了幼鱼自然死亡率、存活率和残食率。通过酶活测定方法对比分析了转食前后幼鱼肝脏与肌肉组织的抗氧化酶活性变化及胃、肠道和幽门盲囊组织的消化酶活性变化。通过高通量测序方法对比分析了转食前后幼鱼肠道菌群的变化。结果显示:(1)体长1 cm幼鱼转食死亡率、残食率最高,存活率最低,分别为60.31%、30.85%和8.84%;体长4 cm、5 cm幼鱼死亡率和残食率为0,存活率为100%,表明规格越大死亡率和残食率越低,存活率越高。(2) 转食后肝脏与肌肉的过氧化物歧化酶(SOD)活性分别升高了86.97%和16.62%(P<0.05),肝脏过氧化氢酶(CAT)活性下降了58.60%(P<0.05)。(3)转食对肠道中消化酶活性影响最为显著,转食后肠道中胰蛋白酶、脂肪酶及淀粉酶活性均显著下降,分别为50.11%、40.71%和42.79%(P<0.05);胃中胰蛋白酶活性下降了18.33%(P<0.05),幽门盲囊中消化酶活性无显著性变化。(4)转食后肠道放线菌门(Actinobacteriota)显著下降(40.91% vs 13.33%),厚壁菌门(Firmicutes)显著上升(14.03% vs 64.60%);属水平上转食前优势菌为分支杆菌属(Mycobacterium,24.73%)、微杆菌属(Microbacterium,10.25%)和副球菌属(Paracoccus,10.05%),转食后优势菌为乳球菌属(Lactococcus,14.96%)、支原体属(Mycoplasma,13.55%)和芽孢杆菌属(Bacillus,9.32%);转食前后共有不同水平的51个细菌类群发生显著性差异。结果表明,幼鱼最佳转食规格为体长3~4 cm,转食产生的应激反应引起了组织氧化损伤,降低了消化酶的活性,肠道优势菌群发生显著的转变。本研究可为提高大口黑鲈幼鱼转食存活率及添加外源辅助消化物质研究提供参考。
关键词大口黑鲈    幼鱼    转食    存活率    抗氧化酶    消化酶    肠道菌群    
Impacts of early weaning on survival rate, antioxidant and digestive enzyme activities, and intestinal microbiota of juvenile largemouth bass (Micropterus salmoides)
MA Xingyu1,TANG Zhonglin1,CHEN Shuqiao1,ZHOU Guoqin,1,XU Gangchun2    
1. Institute of Fisheries Sciences of Nanjing City, Nanjing 210036, China
2. Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Abstract:Early weaning stands as a critical phase in the breeding of juvenile largemouth bass (Micropterus salmoides), aiming to ascertain optimal size parameters and evaluate physiological and biochemical impacts. This study investigated the effects of early weaning on survival rates, antioxidant and digestive enzyme activities, and intestinal microbiota. Five length categories [(1.06±0.02) cm, (2.04±0.03) cm, (3.02±0.04) cm, (4.05±0.04) cm, (5.01±0.04) cm] of juvenile fish were subjected to early weaning experiments. Data on natural mortality, survival rates, and cannibalism rates were analyzed. Antioxidant enzyme activities in the liver and muscle, as well as digestive enzyme activities in the stomach, gut, and pyloric ceca, were assessed pre and post-early weaning. Intestinal microbiota analysis was conducted using high-throughput sequencing. Findings revealed: (1) Highest natural mortality (60.31%) and cannibalism rates (30.85%) occurred at 1 cm length level, with the lowest survival rate (8.84%). Conversely, the 4 cm and 5 cm length levels exhibited no natural mortality or cannibalism, with 100% survival. Increasing body length correlated with decreased natural mortality and cannibalism rates alongside heightened survival rates. (2) SOD activity in the liver and muscles increased by 86.97% and 16.62%, respectively (P<0.05), post-early weaning, whereas CAT activity in the liver decreased by 58.60% (P<0.05). T-AOC and MDA levels in the liver and muscles remained statistically unchanged. (3) Trypsin, lipase, and amylase activities were highest in the pyloric ceca, followed by the gut, and lowest in the stomach. Post-early weaning, trypsin, lipase, and amylase activities in the gut decreased significantly by 50.11%, 40.71%, and 42.79%, respectively. Trypsin activity in the stomach decreased by 18.33% (P<0.05), with no significant changes observed in the pyloric ceca. (4) At the phylum level, Actinobacteria, Proteobacteria, Firmicutes, and Verrucomicrobiota were predominant in juvenile Micropterus salmoides guts. Actinobacteria decreased by 67.42% (P<0.05), while Firmicutes increased by 360.44% (P<0.05) post-early weaning. At the genus level, Mycobacterium, Microbacterium, Paracoccus, and Gammaproteobacteria were predominant pre-weaning, transitioning to Lactococcus, Mycoplasma, Bacillus, and Achromobacter post-weaning. LEfSe analysis identified 51 significantly altered bacterial groups in the gut post-early weaning. Findings suggest 3-4 cm length as the optimal early weaning size for juvenile Micropterus salmoides. Early weaning-induced stress leads to oxidative damage, affecting antioxidant enzyme activities. Digestive enzyme activities exhibit significant alterations during transfeeding, with a notable decline. Intestinal microbiota composition undergoes significant changes post-early weaning, with Firmicutes emerging as the predominant phylum. This study provides valuable insights for enhancing survival rates and digestive efficiency during the early weaning phase of juvenile Micropterus salmoides.
Key words Micropterus salmoides     juvenile    early weaning    survival rate    antioxidants    digestive enzymes    intestinal microbiota    

大口黑鲈(Micropterus salmoides)隶属鲈形目(Perciformes)、太阳鱼科(Cehtrachidae)、鲈亚科(Porcoidei)、黑鲈属(Micropterus),又称加州鲈,于20世纪80年代由美国引进至我国,目前已经成为一种重要经济价值的名特优水产养殖品种[1]。大口黑鲈属于肉食性鱼类,通过人工驯化可以完全摄食配合饲料,转食配合饲料是大口黑鲈苗种培育过程中一个重要的环节,转食饲料的成效直接影响苗种培育的经济效益。多种鱼类幼鱼转食研究已见报道,如松江鲈(Trachidermus fasciatus)、胭脂鱼(Myxocyprinus asiaticus)、菊黄东方鲀(Takifugu flavidus)、翘嘴鳜(Siniperca chuatsi)等,研究了其转食策略、存活率、生长性能及食性相关的基因表达[2-5]。目前大口黑鲈幼鱼转食策略研究,主要集中在生物饵料混合不同比例配合饲料逐步过渡到完全投喂配合饲料的方式上,在此基础上还研究了幼鱼的起始转食日龄[6]和持续转食时间[7]对转食存活率和生长性能的影响。但混合投喂进行转食的策略存在幼鱼喜食生物饵料,排斥配合饲料,导致个体转食成功周期不一致,易产生规格差异,且造成饲料浪费,败坏水质等问题。目前,采用完全配合饲料对幼鱼进行转食的策略研究还较少,该策略可以避免因幼鱼前期摄食生物饵料而导致实际摄食饲料时规格发生偏移而产生的误差,可以准确地评估出适宜摄食饲料的幼鱼规格,缩短转食周期,减少规格差异。另外不同的品系转食的难易程度也不一样,有研究表明,以易驯食为选育指标,定向选育群体比非选育群体更易驯食[8]

大口黑鲈幼鱼消化系统发育的完善程度直接影响其消化酶的分泌水平,从而间接影响到幼鱼的存活率和生长性能[9],肠道菌群也起到调节营养物质的吸收和机体免疫力作用[10-11]。研究表明,大口黑鲈幼鱼的组织抗氧化能力、消化能力及肠道菌群受到水流、养殖密度、外源添加剂、饲料营养水平等因素的影响[12-16],而对于转食行为对其影响的研究较少。针对生产中大口黑鲈幼鱼转食成活率不高及适宜转食的规格不确定的问题,本研究采用完全配合饲料对幼鱼进行转食的方法,研究了不同体长幼鱼转食饲料的死亡率、存活率和残食率,转食前后组织抗氧化酶活性、消化酶活性和肠道菌群的变化,旨在提高大口黑鲈幼鱼转食存活率,探索转食对其生理生化的影响,为生产上苗种驯料及后续添加辅助消化物质和有益菌研究奠定基础。

1 材料与方法 1.1 实验设计与饲养管理

实验用大口黑鲈幼鱼来源于南京市水产科学研究所禄口基地自繁群体,养殖于温棚内水泥池中,实验前以刚孵化的丰年虫(Artemia salina)无节幼体为饵料进行喂养。根据前期预实验得知体长1~5 cm幼鱼均可成功转食,其中1 cm规格转食死亡率较高,5 cm规格转食无死亡,而幼鱼规格越大投喂活饵需要成本越高,因此实验选取幼鱼转食规格范围为1~5 cm。选取平均体长分别为(1.06±0.02) cm、(2.04±0.03) cm、(3.02±0.04) cm、(4.05±0.04) cm、(5.01±0.04) cm共5种规格健康幼鱼设为体长1 cm、2 cm、3 cm、4 cm、5cm组进行转食实验,每种规格设置3个平行组,每组放养30尾幼鱼。转食实验鱼养殖于长度×宽度×高度为28 cm×17 cm× 24 cm的玻璃鱼缸中,水体体积为10 L,养殖用水为经过充分曝气的自来水,养殖过程中控制水温恒定25 ℃,溶解氧大于7 mg/L,氨氮小于0.02 mg/L,亚硝酸盐小于0.005 mg/L。转食用的饲料为江苏长寿集团南山饲料有限公司生产的膨化颗粒饲料,根据幼鱼口径,1~2 cm规格投喂饲料粒径为0.5 mm, 3~5 cm规格投喂饲料粒径为1.0 mm,两种饲料营养水平一致详见表1,每天早、中、晚各投喂一次,转食期间仅投喂配合饲料,投喂方式为少量多次投料,当15 min内无幼鱼吃料时停止投喂,转食周期为8 d,转食期间每天吸除缸底杂质一次,换水1/2。每天记录幼鱼自然死亡数量,转食结束后记录各组存活数量。自然死亡判断依据为:幼鱼样本沉入缸底,体表无伤,用玻璃棒触碰无任何条件反射。

表1  实验用饲料营养水平(干饲料) Tab. 1  Nutrient levels of experimental diet (dry diet)

另选取未转食平均体长为(5.02±0.04) cm和转食成功平均体长为(5.05±0.03) cm的两组幼鱼各90尾,养殖于上述玻璃鱼缸中,每组幼鱼设置3个缸,每个缸放养30尾,养殖条件同上。待幼鱼稳定后,未转食组投喂丰年虫,转食成功组投喂1.0 mm粒径膨化颗粒饲料,养殖周期为3 d,最末一次投喂至各组幼鱼均饱食后停饲,待采集组织样本,用于测定酶的活性和肠道菌群。转食成功幼鱼判断依据为:幼鱼对配合饲料的摄食状态为抢食,摄食饲料结束后腹部明显鼓胀,且在日常养殖过程中保持摄食状态,不存在闭口现象。

1.2 样本采集

停饲6 h后未转食和转食成功的两组幼鱼每缸随机取6尾采集全肠,用75%乙醇擦拭鱼体表后用超纯水反复漂洗,用经过消毒灭菌的解剖器材剪取完整肠道保留内容物,迅速去除肠道外壁附着的脂肪,并用蘸有75%乙醇的无菌棉签轻拭肠道外壁,放入2 mL无菌离心管中冻于−80 ℃冰箱,用于测定肠道菌群。停饲24 h后两组幼鱼每缸随机取10尾采集肝脏、胃、幽门盲囊、全肠和肌肉,迅速去除组织表面的脂肪后,放于5 mL无菌离心管中冻于−80 ℃冰箱,肝脏和肌肉用于测定抗氧化酶活性,胃、幽门盲囊和全肠用于测定消化酶活性。

1.3 抗氧化酶与消化酶活性分析

检测的抗氧化指标包括总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和丙二醛(MDA)含量,消化酶指标包括胃蛋白酶活性、胰蛋白酶活性、脂肪酶活性和淀粉酶活性,8种指标的测定均采用南京建成生物工程研究所的试剂盒,具体测定方法按照测试盒说明书进行。蛋白浓度用考马斯亮蓝染色法测定,采用酶标仪测定吸光度值。

1.4 肠道微生物菌群分析

总DNA提取、PCR扩增和测序文库构建 肠道菌群总基因组DNA利用E.Z.N.A.® soil DNA kit (Omega U.S.)试剂盒进行抽提,具体抽提操作根据说明书进行,使用1%的琼脂糖凝胶电泳检测抽提的基因组DNA的质量,使用Nano Drop2000测定DNA 浓度和纯度。以上述提取的DNA为模板,使用携带Barcode序列的上游引物338F (5ʹ-ACTCCTACGGGAGGCAGCAG-3ʹ)和下游引物806R (5ʹ-GGACTACHVGGGTWTCTAAT-3ʹ)对16S rRNA基因V3-V4可变区进行PCR扩增。扩增产物利用AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, USA)进行纯化,2%琼脂糖凝胶电泳检测,并用Quantus™ Fluorometer (Promega, USA) 对回收产物进行检测定量,纯化后的PCR产物送至上海美吉生物医药科技有限公司进行文库构建与测序。

高通量数据生信分析 利用美吉生物云平台(https://cloud.majorbio.com)进行数据分析,具体如下:使用UPARSE软件根据97%的相似度对质控拼接后的序列进行操作分类单元(operational taxonomic unit, OUT)聚类并剔除嵌合体,去除所有样品中注释到叶绿体和线粒体序列,按最小样本序列数抽平。采用mothur软件计算Alpha多样性指数,并采用Wilxocon秩和检验进行Alpha多样性的组间差异分析。采用R语言(version 3.3.1)工具统计和作图,分析物种组成。采用LEfSe分析(Linear discriminant analysis Effect Size)(http:// huttenhower.sph.harvard.edu/LEfSe)确定两组间从门到属水平丰度显著差异的细菌类群。

1.5 计算公式

自然死亡率(natural mortality rate, NMR, %)=自然死亡数/总数×100%;存活率(survival rate, SR, %)=存活数/总数×100%;残食率(cannibalism rate, CR, %)=100%−存活率−自然死亡率。

1.6 数据分析

数据用Excel 2016软件统计整理,用SPSS 25.0软件进行单因素方差分析(one-way ANOVA), LSD法多重比较,或进行成对样本T检验,实验数据均以平均值±标准误表示($\bar x \pm {\rm{SE}}$), P<0.05表示差异显著。

2 结果与分析 2.1 转食饲料对大口黑鲈幼鱼的自然死亡率、存活率和残食率的影响

图1可知,体长1 cm的幼鱼转食自然死亡率为60.31%,体长2 cm的幼鱼为34.45%,体长3~5 cm的幼鱼在转食周期内无自然死亡,体长1 cm的幼鱼自然死亡率显著高于其他组(P<0.05),体长2 cm的幼鱼自然死亡率显著高于3~5 cm组(P<0.05),可见体长越长转食自然死亡率越低;体长1~5 cm的幼鱼转食存活率分别为8.84%、63.33%、93.33%、100%和100%,体长1 cm、2 cm的幼鱼存活率显著低于3~5 cm (P<0.05),可见体长越长转食存活率越高;体长1 cm的幼鱼残食率最高,为30.85%,显著高于其他组(P<0.05), 2 cm的残食率为2.22%, 3 cm的残食率为6.67%; 4 cm、5 cm的幼鱼无残食现象,2~5 cm的幼鱼残食率差异不显著(P>0.05)。

图1  不同体长大口黑鲈幼鱼转食的自然死亡率、存活率和残食率柱形图上方不同小写字母表示组间差异显著(P<0.05). Fig. 1  Natural mortality, survival rate and cannibalism rate of different level length juvenile Micropterus salmoides after early weaningDifferent letters on the column indicate significant difference between groups (P<0.05).
2.2 转食饲料对大口黑鲈幼鱼肝脏与肌肉组织抗氧化酶活性的影响

转食前的幼鱼肝脏较小,颜色呈血红色;转食后肝脏明显增大,颜色变浅。如表2所示,转食前后幼鱼肝脏与肌肉中T-AOC和MDA含量均无显著差异(P>0.05)。转食后幼鱼肝脏中SOD活性为471.05 U/mg prot,比转食前升高了86.97% (P<0.05),肌肉SOD活性为75.49 U/mg prot,比转食前升高了16.62% (P<0.05)。转食后幼鱼肝脏中CAT活性为8.38 U/mg prot,比转食前下降了58.60% (P<0.05),肌肉CAT活性无显著性差异(P>0.05)。

表2  转食饲料对大口黑鲈幼鱼肝脏与肌肉组织抗氧化酶活性的影响 Tab. 2  Effects of early weaning on the activities of antioxidant enzymes in liver and muscle of juvenile Micropterus salmoides n=10; $\bar x \pm {\rm{SE}}$
2.3 转食饲料对大口黑鲈幼鱼消化组织消化酶活性的影响

表3所示,大口黑鲈幼鱼的胃蛋白酶活性分布为胃内最高,肠道次之,幽门盲囊最低;胰蛋白酶活性、脂肪酶活性及淀粉酶活性均在幽门盲囊内最高,肠道次之,胃内最低。转食后胃蛋白酶活性在胃内降低,肠道和幽门忙囊内升高,但均无显著性差异(P>0.05)。转食后胰蛋白酶活性在3个组织中均呈下降趋势,在胃和肠道内分别下降了18.33%和50.11% (P<0.05)。转食后脂肪酶和淀粉酶活性在肠道内分别下降了40.71%和42.79% (P<0.05),而在其他组织呈下降趋势,但均无显著性变化(P>0.05)。

表3  转食饲料对大口黑鲈幼鱼消化组织消化酶活性的影响 Tab. 3  Effects of early weaning on the activities of digestive enzymes of juvenile Micropterus salmoides n=10; $\bar x \pm {\rm{SE}}$
2.4 转食饲料对大口黑鲈幼鱼肠道菌群的影响

测序结果共获得优化序列222393条,序列平均长度为414 bp。去除叶绿体和线粒体,按照97%相似度聚类后得到736个OTUs,分属19门、47纲、130目、212科、409属、580种。所有样本稀释曲线接近平缓,表明测序深度能够反映肠道微生物多样性。OTU水平上选择Sobs指数、Ace指数、Chao 1指数、Shannon指数和Simpson指数反映大口黑鲈幼鱼肠道菌群的α-多样性,结果如表4所示,转食前后以上指数差异均不显著(P>0.05)。

表4  转食饲料对大口黑鲈幼鱼肠道微生物α-多样性的影响 Tab. 4  Effects of early weaning on the Alpha diversity of intestinal microbiota of juvenile Micropterus salmoides n=6; $\bar x \pm {\rm{SE}}$

图2韦恩图所示,转食前大口黑鲈幼鱼肠道菌群中有374个OTUs,转食后增至509个OTUs,两者共有的OTUs为147个,共有的OTUs占全部OTUs的19.97%。如图3图4所示,在门水平上转食前后大口黑鲈幼鱼肠道优势菌群为放线菌门(Actinobacteriota, 40.91% vs 13.33%)、变形菌门(Proteobacteria, 36.34% vs 20.67%)、厚壁菌门(Firmicutes, 14.03% vs 64.60%)和疣微菌门(Verrucomicrobiota, 3.59% vs 0.25%),转食后放线菌门和疣微菌门丰度显著下降,分别降低了67.42%和93.04% (P<0.05),而厚壁菌门丰度上升了360.44% (P<0.05)。

图2  大口黑鲈幼鱼肠道菌群OTUs的韦恩图BW表示转食前,AW表示转食后. Fig. 2  VENN analysis of intestinal microbiota OUTs of juvenile Micropterus salmoidesBW: before early weaning; AW: after early weaning.
图3  大口黑鲈幼鱼肠道菌群门水平相对丰度BW表示转食前,AW表示转食后. Fig. 3  Percent of community abundance on phylum level of intestinal microbiota of juvenile Micropterus salmoidesBW: before early weaning; AW: after early weaning.
图4  大口黑鲈幼鱼肠道菌群门水平相对丰度差异Student T检验BW表示转食前,AW表示转食后. *表示差异显著(P<0.05), **表示差异极显著(P<0.01) Fig. 4  Difference in percent of community abundance on phylum level of intestinal microbiota in juvenile Micropterus salmoides by student T testBW: before early weaning; AW: after early weaning. * indicates significant difference (P<0.05); **indicates extremely significant difference (P<0.01)

图5所示,在属水平上转食前优势菌为分支杆菌属(Mycobacterium, 24.73%)、微杆菌属(Microbacterium, 10.25%)、副球菌属(Paracoccus, 10.05%)、γ-变形菌属(Gammaproteobacteria, 6.40%)、芽殖杆菌属(gemmobacter, 4.77%)、狭义梭菌属(Clostridium_sensu_stricto_1, 4.71%)和罗姆布茨菌属(romboutsia, 3.75%),转食后优势菌为乳球菌属(Lactococcus, 14.96%)、支原体属(Mycoplasma, 13.55%)、芽孢杆菌属(Bacillus, 9.32%)、无色杆菌属(Achromobacter, 5.95%)、林杆菌属(Alsobacter, 4.25%)、漫游球菌属(Vagococcus, 4.21%)、红球菌属(Rhodococcus, 3.24%)和链球菌属(Streptococcus, 3.11%),如图6所示,转食后属水平优势菌群种类和丰度发生了显著性演替变化,共有6个属显著降低,9个属显著升高。

图5  大口黑鲈幼鱼肠道菌群属水平相对丰度BW表示转食前,AW表示转食后. Fig. 5  Percent of community abundance on genus level of intestinal microbiota of juvenile Micropterus salmoidesBW: before early weaning, AW: after early weaning.
图6  大口黑鲈幼鱼肠道菌群属水平相对丰度差异student T检验BW表示转食前,AW表示转食后. *表示差异显著(P<0.05), **表示差异极显著(P<0.01) Fig. 6  Difference in percent of community abundance on genus level of intestinal microbiota of juvenile Micropterus salmoides by student T testBW: before early weaning; AW: after early weaning. * indicates significant difference (P<0.05); **indicates extremely significant difference (P<0.01)

图7所示,采用LEfSe软件对两组肠道菌群样本进行线性判别分析(LDA),分析转食前后显著性响应的菌群。对LDA判别值大于4的细菌类群进行分析,共有不同水平的51个细菌类群在两组间具有显著性差异。转食前显著优势菌群为放线菌门、放线菌纲、分支杆菌属、微杆菌科、棒状杆菌目、红细菌目、微杆菌目、α-变形菌纲、红细菌科等22类群;转食后显著优势菌群为芽孢杆菌纲、厚壁菌门、乳杆菌目、链球菌科、乳球菌属、支原体目、支原体科、支原体属、芽孢杆菌目、芽孢杆菌科、芽孢杆菌属等29类群。

图7  大口黑鲈幼鱼肠道菌群LEfSe分析BW表示转食前,AW表示转食后. Fig. 7  LEfSe analysis of intestinal microbiota of juvenile Micropterus salmoidesBW: before early weaning; AW: after early weaning.
3 讨论 3.1 转食饲料对大口黑鲈幼鱼的自然死亡率、存活率和残食率的影响

大口黑鲈幼鱼开始转食的规格对转食期间的死亡率影响较大,体长1 cm、2 cm规格转食具有较高的自然死亡率,而体长大于3 cm规格转食期间无自然死亡。规格越大转食自然死亡率越低,说明大规格幼鱼对转食的应激反应抵御能力较强。同样的,规格越大的幼鱼在转食期间相互残食率越低,实验期间体长1 cm幼鱼转食残食率高达30.85%,而4 cm和5 cm幼鱼无残食现象,表明规格越小的幼鱼原始的肉食特性越强,当体长达到2 cm以上时,食性较易转变。从转食存活率来看,规格越大转食存活率越高,体长3 cm幼鱼存活率达93.33%,显著高于1 cm、2 cm,而与4 cm、5 cm差异不显著。与本研究相类似,贺厚雄[6]采用活饵丰年虫和商品饲料混合投喂的方法对孵化后不同日龄(10~19日龄)大口黑鲈进行转食,结果表明16日龄存活率最高,19日龄生长速率最大。Suzer等[17]对欧洲海鲈(Dicentrarchus labrax L.)幼苗分别从孵化后的第15 d、20 d、25 d开始转食微粒饲料,结果表明转食时间越迟存活率越高。Aya等[18]直接用配合饲料对孵化后不同日龄的铅色匀鯻(Leiopotherapon plumbeus)进行转食,发现第26天开始转食幼鱼的存活率与生长性能显著高于第8~20天。以上研究均表明转食过早,幼鱼的死亡率高、生长性能较差。但南方比目鱼(Paralichthys lethostigma)在不同时间点转食对幼鱼的存活率影响不显著[19],说明不同物种,其转食特性也存在差异。日龄或规格均是反映幼鱼生长发育程度的判断指标,两种判断依据在生产上均有使用,日龄与规格存在正向线性关系,但由于养殖管理水平、幼鱼质量不一致,也会存在误差,本研究以规格大小作为转食起始的衡量指标。从实验结果来看,规格过小转食的自然死亡率高,残食率高,存活率低,当幼鱼体长达到3~4 cm时,是转食的适宜时机。

3.2 转食饲料对大口黑鲈幼鱼肝脏与肌肉组织抗氧化酶活性的影响

总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和丙二醛(MDA)被视为氧化应激的生物指标[20], SOD是一种细胞抗氧化防御酶,通过将超氧化物分解为分子氧和过氧化氢,保护生物体免受活性氧诱导的氧化应激[21], CAT催化过氧化氢分解产生水和分子氧,保护细胞免受进一步的氧化损伤[22]。转食饲料后大口黑鲈幼鱼肝脏和肌肉中SOD活性均显著升高,表明转食配合饲料可能对幼鱼产生了氧化应激,机体启动了防御系统,以抵御细胞受到氧化损伤。转食饲料后幼鱼肝脏中CAT活性显著下降,暗示肝脏可能会受到过氧化氢的氧化损伤。但MDA含量转食前后无显著变化,甚至转食后略有下降,表明MDA在体内并未积累,可能是因为幼鱼正处于生长发育阶段,机体抵御胁迫与恢复能力较强。

3.3 转食饲料对大口黑鲈幼鱼消化组织消化酶活性的影响

鱼类消化系统消化酶活性反映了其消化能力,影响鱼类对营养物质的吸收利用[23],研究表明投喂频率[24]、饵料种类[25]和饲料营养结构[26-27]等因素都可影响大口黑鲈消化酶的活性。本研究结果表明,大口黑鲈幼鱼的胃蛋白酶主要分布于胃中,而胰蛋白酶在幽门盲囊中最高,其次为肠道,胃部最低;脂肪酶和淀粉酶主要分布于幽门盲囊和肠道中,可以看出幽门盲囊和肠道是幼鱼多种消化酶的主要分布场所。转食前后胃蛋白酶活性在3个器官中变化不显著,表明其受转食行为影响较小。转食后肠道内胰蛋白酶、脂肪酶和淀粉酶活性显著下降,说明相比于摄食丰年虫转食饲料后肠道消化酶分泌受到抑制,这与何阔的研究结果一致[28]。类似的,欧洲海鲈幼苗由饲喂卤虫无节幼体转食微粒饲料后,胰蛋白酶和脂肪酶活性显著降低[17]。李鸣宵等[29]研究了不同养殖阶段大口黑鲈消化酶的活性,结果表明摄食丰年虫阶段肠道胰蛋白酶、脂肪酶和淀粉酶活性显著高于转食阶段,但当肠道完全适宜饲料后消化酶活性又会回升。说明幼鱼从摄食丰年虫到转食饲料肠道需要一个调节过程才能完全适应。

3.4 转食饲料对大口黑鲈幼鱼肠道菌群的影响

肠道菌群在机体免疫、营养吸收和代谢中发挥重要作用[30-32],鱼类的肠道菌群对于代谢途径中的底物、中间体或最终产物都能很好的利用[33]。鱼类肠道菌群受到物种类别、发育阶段、饵料组成、水体环境、养殖模式等众多因子的影响[34],其中饵料组成的影响尤为重要[35]。大口黑鲈幼鱼转食后肠道菌群OTUs增多,且转食前后相同的OTUs只有19.97%,表明肠道菌群种类变化较大,从α-多样性分析来看转食对菌群的多样性影响不显著。大量研究表明鱼类肠道优势菌群为变形菌门、厚壁菌门、拟杆菌门和放线菌门[36-37],本研究表明大口黑鲈幼鱼肠道主要的优势菌群为放线菌门、厚壁菌门、变形菌门和疣微菌门。转食前放线菌门为占比最高的优势菌群,转食后占比最高的演替为厚壁菌门,而变形菌门变化不显著,相对稳定。厚壁菌门是植物微生物组的重要组成部分,有研究表明植物源蛋白、脂肪有利于厚壁菌门的存在,而鱼粉、鱼油有利于变形菌门的存在[38]。大口黑鲈幼鱼转食配合饲料后厚壁菌门成为占比最高的优势菌群,可能是因为饲料中含有较多植物源成分。属水平上,转食前优势菌群为分支杆菌属、微杆菌属、副球菌属和γ-变形菌属等,而转食后为乳球菌属、支原体属、芽孢杆菌属和无色杆菌属等,两者差异显著。从线性判别分析来看,摄食活饵丰年虫有利于放线菌、微杆菌、棒状杆菌和红细菌等菌群存在,而摄食配合饲料更有利于芽孢杆菌、乳杆菌、链球菌和支原体等菌群生存。鱼类肠道菌群能够促进食物中氨基酸、短链脂肪酸、酶和矿物质等营养物质的形成与吸收[39],研究表明芽孢杆菌和乳杆菌对饲料的消化利用具有显著的促进作用[40-41],转食饲料后两者作为肠道优势菌可能参与到了饲料营养的代谢过程中,进而可能抵消了肠道消化酶水平不足带来的负面影响。但放线菌、棒状杆菌、支原体和链球菌中的某些种类属于水产动物条件致病菌[42-43],其作为优势菌可能会增加大口黑鲈幼鱼患病风险。转食前后肠道菌群结构的巨大变化,反映了其与食物的组成的密切关系。

4 总结

综上所述,大口黑鲈幼鱼适宜转食饲料的规格不宜过小,最佳转食规格为3~4 cm,其具有存活率高,活饵投入时间短的优势。转食饲料能够引起肝脏组织的氧化损伤,产生应激反应,引起抗氧化系统的免疫应答。转食饲料后幼鱼肠道消化酶活性显著下降,说明相较于活饵丰年虫幼鱼对配合饲料的消化能力较弱,但转食后肠道中的有益菌群可能会促进饲料的消化与利用。食物类别对幼鱼肠道菌群结构影响较大,投喂丰年虫放线菌门占主导优势,而转食饲料后被厚壁菌门替代,变形菌门相对稳定。

参考文献
[1]
Bai J J, Lutz-Carrillo D J, Quan Y C, et al. Taxonomic status and genetic diversity of cultured largemouth bass Micropterus salmoides in China[J]. Aquaculture, 2008, 278(1-4): 27-30..》Google Scholar
[2]
Guo Z D, Liu Y Q, Huang J, et al. Effects of different weaning strategies on the growth and survival rate in larvae and juvenile of Chinese sucker, Myxocyprinus asiaticus[J]. Journal of Fisheries of China, 2016, 40(1): 64-72. [郭忠娣,刘亚秋,黄静,等. 不同转食策略对胭脂鱼仔鱼和稚鱼生长及存活率的影响[J]. 水产学报,2016, 40(1): 64-72.].》Google Scholar
[3]
Bi X, Zhang F M, Zhang Y L, et al. Study on early weaning Acclimation of Trachidermus fasciatus[J]. Fisheries Science & Technology Information, 2018, 45(3): 137-140. [毕详,张飞明,张友良,等. 松江鲈苗种转食驯化技术研究[J]. 水产科技情报,2018, 45(3): 137-140.].》Google Scholar
[4]
Shi Y H, Xie Y D, Liu Y S, et al. The changes in growth and fatty acid composition of tawny puffer (Takifugu flavidus) juvenile during the bait conversion period[J]. Journal of Shanghai Ocean University, 2017, 26(1): 48-56. [施永海,谢永德,刘永士,等. 菊黄东方鲀幼鱼转食过程中生长和脂肪酸组成变化[J]. 上海海洋大学学报,2017, 26(1): 48-56.].》Google Scholar
[5]
Liu T, Liang X F, Zhuang W Y, et al. Association of DNA methylation of pck1 and tlr1 with the food habits of Chinese perch, Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2022, 29(7): 1064-1072. [刘通,梁旭方,庄武元,等. 翘嘴鳜pck1tlr1基因DNA甲基化在其转食人工饲料中的作用[J]. 中国水产科学,2022, 29(7): 1064-1072.].》Google Scholar
[6]
He H X. Effects of different domestication time and different feed feed enzyme preparations on the domestication largemouth bass fry[D]. Wuhan: Huazhong Agricultural University, 2022: 21-22. [贺厚雄. 不同驯食时间和不同饲料酶制剂对大口黑鲈苗种驯食效果的影响[D]. 武汉:华中农业大学,2022: 21-22.].》Google Scholar
[7]
Cai L E. Study on the development of digestive system and bait conversion strategy of Micropterus salmoides[D]. Wuhan: Huazhong Agricultural University, 2023: 44-45. [蔡龙恩. 大口黑鲈消化系统发育和饵料转换策略研究[D]. 武汉:华中农业大学,2023: 44-45.].》Google Scholar
[8]
Zhao L, Li S J, Bai J J, et al. Transfer food from zooplankton to formulated feed in juvenile selectively bred largemouth bass Micropterus salmoides[J]. Fisheries Science, 2019, 38(6): 846-850. [赵荦,李胜杰,白俊杰,等. 大口黑鲈选育群体幼鱼转食配合饲料的驯食研究[J]. 水产科学,2019, 38(6): 846-850.].》Google Scholar
[9]
Li W H, Sun C F, Dong J J, et al. Early developmental characteristics of digestive system of Micropterus salmoides larvae during the first feeding and artificial formula feed adaptation[J]. Progress in Fishery Sciences, 2023, 44(1): 80-89. [李武辉,孙成飞,董浚键,等. 大口黑鲈开口摄食与转食人工配合饲料期消化系统发育特征[J]. 渔业科学进展,2023, 44(1): 80-89.].》Google Scholar
[10]
Machate D J, Figueiredo P S, Marcelino G, et al. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis[J]. International Journal of Molecular Sciences, 2020, 21(11): 4093..》Google Scholar
[11]
Ni J J, Yan Q Y, Yu Y H, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism[J]. FEMS Microbiology Ecology, 2014, 87(3): 704-714..》Google Scholar
[12]
Liu M, Lian Q P, Ni M, et al. Effects of inner-pond raceway aquaculture on the growth performance, antioxidant enzymes, digestive enzymes, digestive tract structure, and bacterial flora of largemouth bass (Micropterus salmoides)[J]. Journal of Fisheries of China, 2021, 45(12): 2011-2028. [刘梅,练青平,倪蒙,等. 池塘内循环流水养殖模式对大口黑鲈生长性能、抗氧化酶、消化酶及消化道组织结构和菌群的影响[J]. 水产学报,2021, 45(12): 2011-2028.].》Google Scholar
[13]
Ni J J, Wang Y Y, Xu G C, et al. Effects of stocking density on the antioxidant status, tissue structure, and HSP70 and Cu/Zn-SOD expression in largemouth bass (Micropterus salmoides) in an in-pond raceway culture system[J]. Journal of Fishery Sciences of China, 2020, 27(6): 660-670. [倪金金,王裕玉,徐钢春,等. 养殖密度对池塘工程化循环水养殖大口黑鲈抗氧化力、组织结构及应激基因表达的影响[J]. 中国水产科学,2020, 27(6): 660-670.].》Google Scholar
[14]
Feng Z D, Liao R S, Sun H, et al. Effects of enzymatic chicken pulp on liver antioxidant capacity, intestinal physical barrier and microflora of Micropterus salmoides[J]. Journal of Fisheries of China, 2022, 46(10): 1824-1835. [冯转东,廖瑞生,孙皓,等. 饲料中添加酶解鸡浆对大口黑鲈肝脏抗氧化能力、肠道物理屏障和肠道菌群的影响[J]. 水产学报,2022, 46(10): 1824-1835.].》Google Scholar
[15]
Zhu T T, Jin M, Sun P, et al. Effects of dietary lipid level on morphology indexes, tissue fatty acid composition, serum biochemical indexes and liver antioxidant indexes of largemouth bass (Micropterus salmoides)[J]. Chinese Journal of Animal Nutrition, 2018, 30(1): 126-137. [朱婷婷,金敏,孙蓬,等. 饲料脂肪水平对大口黑鲈形体指标、组织脂肪酸组成、血清生化指标及肝脏抗氧化性能的影响[J]. 动物营养学报,2018, 30(1): 126-137.].》Google Scholar
[16]
Zhang G G, Li X, Cai X B, et al. Effects of enzymatic hydrolyzed soybean meal on growth performance, liver function and metabolism of largemouth bass (Micropterus salmoides)[J]. Acta Hydrobiologica Sinica, 2019, 43(5): 1001-1012. [张改改,李向,蔡修兵,等. 酶解豆粕替代鱼粉对大口黑鲈的生长性能、消化酶活性、肝脏功能及代谢的影响[J]. 水生生物学报,2019, 43(5): 1001-1012.].》Google Scholar
[17]
Süzer C, Firat K, Saka S, et al. Effects of early weaning on growth and digestive enzyme activity in larvae of sea bass (Dicentrarchus labrax L.)[J]. Israeli Journal of Aquaculture- Bamidgeh, 2007, 59(2): 81-90..》Google Scholar
[18]
Aya F A, Nillasca V S N, Garcia L M B, et al. Effects of weaning on survival and growth of silver therapon (Leiopotherapon plumbeus) larvae fed live and artificial diet[J]. Aquaculture Research, 2021, 52(10): 4799-4806..》Google Scholar
[19]
Faulk C K, Holt G J. Early weaning of southern flounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes[J]. Aquaculture, 2009, 296(3-4): 213-218..》Google Scholar
[20]
Saleh N E, Mourad M M, El-Banna S G, et al. Soybean protein concentrate as a fishmeal replacer in weaning diets for common sole (Solea solea) post-larvae: Effects on the growth, biochemical and oxidative stress biomarkers, and histopathological investigations[J]. Aquaculture, 2021, 544: 737080..》Google Scholar
[21]
Kim B M, Rhee J S, Park G S, et al. Cu/Zn and Mn- superoxide dismutase (SOD) from the copepod Tigriopus japonicus: Molecular cloning and expression in response to environmental pollutants[J]. Chemosphere, 2011, 84(10): 1467-1475..》Google Scholar
[22]
Moniruzzaman M, Ghosal I, Das D, et al. Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway[J]. Biological Research, 2018, 51(1): Article No.17..》Google Scholar
[23]
Thongprajukaew K, Kovitvadhi U, Kovitvadhi S, et al. Effects of different modified diets on growth, digestive enzyme activities and muscle compositions in juvenile Siamese fighting fish (Betta splendens Regan, 1910)[J]. Aquaculture, 2011, 322-323: 1-9..》Google Scholar
[24]
Xie S M, Xu G C, Wang Y Y, et al. Effects of feeding frequency on digestive enzymes, histomorphology, and gene expression of lipid metabolic enzymes of largemouth bass (Micropterus salmoides) reared in in-pond raceway culture systems[J]. Journal of Fishery Sciences of China, 2021, 28(2): 157-166. [谢苏明,徐钢春,王裕玉,等. 投喂频率对池塘循环水养殖大口黑鲈消化酶、组织结构及脂代谢酶基因表达的影响[J]. 中国水产科学,2021, 28(2): 157-166.].》Google Scholar
[25]
Ou H X, Wang G J, Xie J, et al. Effects of different feed on digestive tract index and amylase activity of Micropterus salmoides[J]. Journal of Shanghai Ocean University, 2018, 27(5): 674-682. [欧红霞,王广军,谢骏,等. 摄食不同饲料对大口黑鲈消化道指数和淀粉酶活性的影响[J]. 上海海洋大学学报,2018, 27(5): 674-682.].》Google Scholar
[26]
Tian X X, Huang W, Xie C Y, et al. Effects of fermented soybean meal replacing of fish meal on the growth, feed utilization and digestive enzyme activity of juvenile largemouth bass (Micropterus salmoides)[J]. Journal of Shanghai Ocean University, 2022, 31(2): 355-364. [田鑫鑫,黄卫,谢春元,等. 发酵豆粕替代鱼粉对大口黑鲈幼鱼生长、饲料利用和消化酶活力的影响[J]. 上海海洋大学学报,2022, 31(2): 355-364.].》Google Scholar
[27]
Che M X, Yao C F, Lu Z Y, et al. Effects of different amylose/amylopectin on diet processing characteristics, nutrient apparent digestibility and digestive enzyme activities of largemouth bass (Micropterus salmoides)[J]. Chinese Journal of Animal Nutrition, 2022, 34(5): 3220-3232. [车明晓,姚春凤,陆梓晔,等. 不同直链淀粉/支链淀粉对大口黑鲈饲料加工特性、营养物质表观消化率和肠道消化酶活性的影响[J]. 动物营养学报,2022, 34(5): 3220-3232.].》Google Scholar
[28]
He K. Study on liver transcriptome and intestinal microbes during the weaning of largemouth bass in pond[D]. Ya’an: Sichuan Agricultural University, 2020: 15-16. [何阔. 大口黑鲈池塘转食过程中肝脏转录组与肠道微生物研究[D]. 雅安:四川农业大学,2020: 15-16.].》Google Scholar
[29]
Li M X, Qiang J, Xu G C, et al. Comparison of gut structure and microbial composition changes in largemouth bass (Micropterus salmoides) at different breeding stages[J]. Chinese Journal of Animal Nutrition, 2023, 35(9): 5886- 5903. [李鸣宵,强俊,徐钢春,等. 不同养殖阶段的大口黑鲈肠道结构和肠道微生物组成变化的比较[J]. 动物营养学报,2023, 35(9): 5886-5903.].》Google Scholar
[30]
Xiong J B, Dai W F, Zhu J Y, et al. The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp[J]. Microbial Ecology, 2017, 73(4): 988-999..》Google Scholar
[31]
Ramakrishna B S. Role of the gut microbiota in human nutrition and metabolism[J]. Journal of Gastroenterology and Hepatology, 2013, 28(S4): 9-17..》Google Scholar
[32]
Ray A K, Ghosh K, Ringø E. Enzyme-producing bacteria isolated from fish gut: A review[J]. Aquaculture Nutrition, 2012, 18(5): 465-492..》Google Scholar
[33]
Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon- source utilisation profiles-a critique[J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14..》Google Scholar
[34]
Meng X L, Li W J, Nie G X. Effect of different factors on the fish intestinal microbiota[J]. Journal of Fisheries of China, 2019, 43(1): 143-155. [孟晓林,李文均,聂国兴. 鱼类肠道菌群影响因子研究进展[J]. 水产学报,2019, 43(1): 143-155.].》Google Scholar
[35]
Wang A R, Chao R, Ringø E, et al. Progress in fish gastrointestinal microbiota research[J]. Reviews in Aquaculture, 2018, 10(3): 624-640..》Google Scholar
[36]
Zhao L L, He K, Luo J, et al. Co-modulation of liver genes and intestinal microbiome of largemouth bass larvae (Micropterus salmoides) during weaning[J]. Frontiers in Microbiology, 2020, 11: 1332..》Google Scholar
[37]
Gajardo K, Rodiles A, Kortner T M, et al. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research[J]. Scientific Reports, 2016, 6: 30893..》Google Scholar
[38]
Ingerslev H C, von Gersdorff Jørgensen L, Strube M L, et al. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type[J]. Aquaculture, 2014, 424-425: 24-34..》Google Scholar
[39]
Liu H, Guo X W, Gooneratne R, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels[J]. Scientific Reports, 2016, 6: 24340..》Google Scholar
[40]
Guo Z, Zhong L Q, Jiang H C, et al. Effects of adding Bacillus and Lactobacillus into diets on immunity, digestion, and antioxidant function of channel catfish[J]. Jiangsu Agricultural Sciences, 2022, 50(6): 149-153. [郭志,钟立强,姜虎成,等. 饲料中添加芽孢杆菌和乳杆菌对斑点叉尾鮰免疫、消化和抗氧化功能的影响[J]. 江苏农业科学,2022, 50(6): 149-153.].》Google Scholar
[41]
Liu Y. Effect of Lactobacillus fermentum in the diet on growth performance, functions of digestion, absorption and immune of juvenile Jian carp (Cyprinus carpio var. Jian)[D]. Ya’an: Sichuan Agricultural University, 2011: 46-49. [刘羽. 饲粮中添加乳酸杆菌对幼建鲤生长性能、消化吸收功能和免疫功能的影响[D]. 雅安:四川农业大学,2011: 46-49.].》Google Scholar
[42]
Wang J G. Ichthyopathology[M]. Beijing: China Agriculture Press, 2013: 334-340. [汪建国. 鱼病学[M]. 北京:中国农业出版社,2013: 334-340.].》Google Scholar
[43]
Behera B K, Bera A K, Paria P, et al. Identification and pathogenicity of Plesiomonas shigelloides in silver carp[J]. Aquaculture, 2018, 493: 314-318..》Google Scholar