2. 中国水产科学研究院黄海水产研究所,海水养殖生物育种与可持续产出全国重点实验室,青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室,山东 青岛 266071
2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
脊尾白虾(Exopalaemon carinicauda)隶属于甲壳纲、十足目、长臂虾科、白虾属,主要分布在我国近岸浅海、河口以及半咸水区域,其中以渤海、黄海的产量最为丰富[1]。脊尾白虾具有养殖周期短、生长速度快、环境适应性广等优点,已经成为池塘单养、混养的重要经济虾类[2]。脊尾白虾味道鲜美、肉质细嫩,除直接作为鲜食外,还可加工成海米,因其呈金黄色,也有“金钩海米”之称,深受消费者喜爱。
我国有盐碱水域面积约4.6×107 hm2,目前处于开发利用的初步阶段,发展盐碱水养殖是拓展水产养殖空间、保障水产品供给的重要途径之一[3]。盐碱地区水体离子组成失衡、环境条件复杂,导致多数水生生物难以生存,环境资源利用率低[4]。目前,凡纳滨对虾(Litopenaeus vannamei)、脊尾白虾和拟穴青蟹(Scylla paramamosain)等已成功在盐碱水域养殖[5-7]。盐碱水体的理化参数是影响养殖物种生长、代谢、肌肉组成和品质的重要因素。通过对比水产物种盐碱水养殖和常规养殖的品质性状,发现盐碱水养殖尼罗罗非鱼(Oreochromis niloticus)肌肉的营养价值和感官特征明显优于淡水养殖群体[8];盐碱水养殖凡纳滨对虾肌肉中氨基酸总量与呈味核苷酸总量高于海水养殖[9];低盐度盐碱水养殖能够显著增加眼斑拟石首鱼(Sciaenops ocellatus)肌肉中风味物质含量[10]。在不同类型的盐碱水养殖环境下,水产动物的营养呈现出不同的变化。滨海型盐碱水主要以含氯化物为主,明确该类型盐碱水养殖对脊尾白虾营养品质的影响对盐碱水养殖的发展具有重要意义。
水产动物选育群体和野生群体间的品质性状存在差异。中国明对虾(Fenneropenaeus chinensis)野生群体肌肉的整体鲜甜滋味要优于选育群体[11],日本沼虾(Macrobrachium nipponense)淀山湖野生群体的营养成分要优于养殖群体[12],罗氏沼虾(Macrobrachium rosenbergii) “南太湖2号”的营养品质明显优于非选育群体[13]。不同遗传背景的虾类其呈现的风味、口感和营养各有不同。因此,比较不同遗传背景的脊尾白虾肌肉品质可为脊尾白虾品质性状的良种选育工作提供理论依据和基础数据,也能为实际生产养殖提供数值参考。
脊尾白虾生长速度快且对盐度、碳酸盐碱度和pH有很强的耐受性,是发展盐碱水养殖的重要潜在经济虾类。本研究围绕盐碱胁迫和遗传背景差异两个方面,对脊尾白虾肌肉的营养品质进行系统的检测与评定。一方面,通过对比野生群体和正常海水养殖“黄育1号”的肌肉成分以明确脊尾白虾“黄育1号”的营养品质;另一方面,判断盐碱水养殖对脊尾白虾“黄育1号”营养品质的影响,旨在为滨海型盐碱水养殖条件下,脊尾白虾的肉质改善及良种选育工作提供科学依据。
1 材料与方法 1.1 实验材料实验所用脊尾白虾野生群体(wild population, WP)取自山东日照近海海域(盐度30,碳酸盐碱度2 mmol/L),海水养殖“黄育1号”群体(“Huangyu No.1” in marine water, HY)取自日照海辰水产有限公司(盐度30,碳酸盐碱度2 mmol/L),盐碱水养殖“黄育1号”群体(“Huangyu No.1” in saline-alkaline water, CHY)取自沧州渤海新区港盛养殖有限公司(盐度15,碳酸盐碱度7.25 mmol/L),其中,人工养殖脊尾白虾投喂不同颗粒大小的凡纳滨对虾配合饲料(粗蛋白≥42%、粗脂肪≥4%、粗纤维≥3%,青岛正大农业发展有限公司),日投饵量为体重的5%~8%。各群体随机挑选活力好、腹肢完整的健康脊尾白虾30尾,取其肌肉组织,放入2 mL冻存管后,迅速置于液氮中速冻,于−80 ℃冰箱保存。
1.2 实验方法 1.2.1 基本营养成分分析依据食品中水分的测定(GB 5009.3—2016)[14],采用直接干燥法测定肌肉中水分含量;依据食品中灰分的测定标准(GB 5009.4—2016)[15],采用高温灰化法测定肌肉灰分含量;依据食品中脂肪的测定标准(GB 5009.6—2016)[16],采用索式抽提法测定肌肉粗脂肪含量;依据食品中蛋白质的测定标准(GB 5009.5—2016)[17],采用凯式定氮法测定肌肉粗蛋白含量;依据食品中氨基酸的测定标准(GB 5009.124—2016)[18],使用氨基酸自动分析仪(日立LA8080)测定肌肉氨基酸含量;依据食品中脂肪酸的测定标准(GB 5009.168—2016)[19],利用气相色谱仪(Agilent 7890A)测定肌肉中脂肪酸的含量;依据食用菌中总糖含量的测定标准(GB/T 15672—2009)[20],制作肌肉待测液和标准曲线,用紫外可见分光光度计(Agilent 8435)测定待测液吸光度,依据标准曲线计算肌肉总糖含量。
1.2.2 营养品质评价依据联合国粮食及农业组织(Food and Agriculture Organization of the United Nations, FAO)、世界卫生组织(World Health Organization, WHO)的氨基酸评分模式[21]和全鸡蛋蛋白质氨基酸模式[22]测定各组虾肉的氨基酸评分(amino acid score, AAS)、化学评分(chemical score, CS)和必需氨基酸指数(essential amino acid index, EAAI)。公式如下:
${\rm{AAS}} = \frac{{待测样品中某氨基酸的含量{\rm{(mg/g}}\;{\rm{N)}}}}{{{\rm{FAO/WHO标准模式中同种氨基酸的含量}}({\rm{mg/g}}\;{\rm{N}})}};$ |
${\rm{CS}} = \frac{{待测样品中某氨基酸的含量{\rm{(mg/g}}\;{\rm{N)}}}}{{全鸡蛋蛋白质中同种氨基酸的含量{\rm{(mg/g}}\;{\rm{N)}}}};$ |
${\rm{EAAI}} = \sqrt[n]{{\left( {\frac{a}{A}} \right){\rm{ \times 100}} \times \left( {\frac{b}{B}} \right) \times {\rm{100}} \times \left( {\frac{c}{C}} \right) \times {\rm{100}} \times \cdots \cdots \times \left( {\frac{f}{F}} \right) \times {\rm{100}}}}{\rm{。Z}}$ |
式中,n为比较的氨基酸个数;a, b, c, …, f代表待测样品中氨基酸的含量(mg/g N); A, B, C, …, F代表全鸡蛋蛋白质中对应氨基酸的含量(mg/g N)。
1.2.3 抗氧化能力测定总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)采用江苏艾迪生生物科技有限公司出售的对应检测试剂盒,依据说明书步骤在冰上操作,每组20个生物学重复。
1.3 数据处理本实验所得数据均以平均值±标准差($\bar{x}\pm \text{SD}$)表示。用SPSS 22.0软件进行单因素方差分析,Tukey多重比较检验,P<0.05为差异显著。
2 结果与分析 2.1 主要营养成分3组脊尾白虾肌肉的主要营养成分含量测定结果如表1所示,海水养殖“黄育1号”总糖含量显著低于野生群体(P<0.05),其余的营养成分含量与野生群体无显著性差异(P>0.05)。
![]() |
表1 不同养殖环境的脊尾白虾肌肉组织中主要营养成分含量(湿重基础) Tab. 1 General nutritional composition in muscle of Exopalaemon carinicauda in different environments (wet weight basis) n=30; $\bar{x}\pm \text{SD}$; g/100 g |
盐碱水养殖“黄育1号”与海水养殖“黄育1号”的粗脂肪和总糖含量无显著性差异(P>0.05),水分含量显著高于海水养殖“黄育1号”(P<0.05),粗灰分、粗蛋白的含量显著低于海水养殖“黄育1号”(P<0.05)。
2.2 氨基酸组成及评价3组脊尾白虾肌肉氨基酸组成及含量测定结果见表2所示。3组脊尾白虾肌肉中均检测出17种氨基酸,其中必需氨基酸(EAA) 7种、鲜味氨基酸(DAA) 4种。所测的氨基酸中,谷氨酸(Glu)含量最高,其次为天冬氨酸(Asp),半胱氨酸(Cys)含量最低。
![]() |
表2 不同养殖环境的脊尾白虾肌肉氨基酸组成及含量(湿重基础) Tab. 2 Amino acid composition in muscles of Exopalaemon carinicauda in different environments (wet weight basis) n=30; $\bar{x}\pm \text{SD}$; g/100 g |
海水养殖“黄育1号”肌肉中的异亮氨酸(Ile)、亮氨酸(Leu)、赖氨酸(Lys)、甘氨酸(Gly)和脯氨酸(Pro)含量显著高于野生群体(P<0.05),其余12种氨基酸含量、TAA、EAA及DAA含量与野生群体无显著性差异(P>0.05)。
除甲硫氨酸(Met)和Cys外,盐碱水养殖“黄育1号”余下15种氨基酸以及TAA、EAA、NEAA、DAA的含量均显著低于海水养殖“黄育1号” (P< 0.05);盐碱水养殖“黄育1号”的EAA/TAA和EAA/NEAA值显著高于海水养殖“黄育1号”(P< 0.05), DAA/TAA值与海水养殖“黄育1号”无显著差异(P>0.05)。
3组脊尾白虾肌肉必需氨基酸营养价值评价如表3所示。根据AAS评价标准,海水养殖“黄育1号”和野生群体的第一限制氨基酸为甲硫氨酸+半胱氨酸(Met+Cys),第二限制氨基酸为缬氨酸(Val);盐碱水养殖“黄育1号”的第一限制氨基酸为苏氨酸(Thr),第二限制氨基酸为Met+Cys;根据CS评价标准,3个养殖群体的脊尾白虾第一限制氨基酸为Met+Cys、第二限制氨基酸为Val。盐碱水养殖“黄育1号”的必需氨基酸指数(EAAI)高于海水养殖“黄育1号”和野生群体。总体上看,Met和Cys在脊尾白虾体内含量较少,其余氨基酸含量接近或高于FAO/WHO模式和鸡蛋蛋白模式标准。
![]() |
表3 不同养殖环境的脊尾白虾肌肉必需氨基酸营养价值评价 Tab. 3 Nutritional value evaluation for essential amino acids in muscles of Exopalaemon carinicauda in different environments |
3组脊尾白虾肌肉脂肪酸组成及含量见表4。盐碱水养殖“黄育1号”肌肉中共检测出15种脂肪酸,包括5种饱和脂肪酸(SFA)、4种单不饱和脂肪酸(MUFA)、6种多不饱和脂肪酸(PUFA),野生群体和海水养殖“黄育1号”仅检测出12种脂肪酸。棕榈酸、油酸、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)在3组中含量丰富。
![]() |
表4 不同养殖环境的脊尾白虾肌肉脂肪酸组成及含量(湿重基础) Tab. 4 Fatty acids composition in muscles of Exopalaemon carinicauda in different environments (wet weight basis) n=30; $\bar{x}\pm \text{SD}$; mg/g |
海水养殖“黄育1号”肌肉的棕榈油酸、油酸及二十碳一烯酸含量显著高于野生群体(P<0.05),亚油酸(C18 : 2n-6c)、α-亚麻酸(C18 : 3n-3)的含量显著低于野生群体(P<0.05),余下检出的脂肪酸含量无显著性差异(P>0.05)。
十五烷酸(C15 : 0)、十七烷酸(C17 : 0)及花生二烯酸(C20 : 2)仅在盐碱水养殖“黄育1号”中检出。盐碱水养殖“黄育1号”的二十碳一烯酸含量显著低于海水养殖“黄育1号”(P<0.05),油酸、SFA含量与海水养殖“黄育1号”无显著差异(P> 0.05),余下检出的脂肪酸含量及MUFA、PUFA、n-6 PUFAs、n-3 PUFAs和n-6 PUFAs/n-3 PUFAs均显著高于海水养殖“黄育1号”(P<0.05)。
2.4 不同群体间抗氧化能力比较3组脊尾白虾肌肉总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性如图1所示。海水养殖“黄育1号”肌肉的T-AOC显著高于野生群体(P<0.05), SOD和CAT活性与野生群体无显著性差异(P>0.05)。盐碱水养殖“黄育1号”肌肉T-AOC、SOD和CAT活性均显著低于海水养殖“黄育1号”(P<0.05)。
![]() |
图1 脊尾白虾不同群体的抗氧化能力不同小写字母标注表示差异显著(P<0.05). Fig. 1 Antioxidant capacity of different populations in Exopalaemon carinicaudaDifferent lowercase letters mean significant difference (P<0.05). |
本研究发现,海水养殖“黄育1号”肌肉的氨基酸含量丰富,Lys、Leu和Ile等必需氨基酸含量显著高于野生群体。Lys是人体第一限制性氨基酸,具有参与能量代谢,促进矿物质吸收,提高免疫力等重要功能[23]。海水养殖“黄育1号”的Lys含量高于FAO/WHO标准,可以作为补充Lys的优选食品。Lys在谷物食品中含量较少,不能满足人体需求,虾肉中丰富的Lys含量能够弥补日常膳食中的不足。Leu和Ile同为人体必需氨基酸,在保证机体健康、维持生理功能方面发挥重要作用。必需氨基酸指数(EAAI)是评价蛋白质营养价值的常用指标之一,EAAI越高,氨基酸组成越均衡。海水养殖“黄育1号”的EAAI为66.11,高于野生群体(57.75)。综上,从氨基酸品质方面进行评价,海水养殖“黄育1号”优于野生群体。
受环境及饵料组成影响,人工养殖水产品的营养品质不稳定,多项营养指标不如野生群体[24-25]。为提高人工养殖水产品质量,营养品质一直以来都是培育新品种的重要目标性状。高蛋白质、低脂肪通常被认定为优质水产品。“豫选黄河鲤2号”(Cyprinus carpio)肌肉蛋白质含量较“豫选黄河鲤”明显提高[26];大口黑鲈(Micropterus salmoides)“优鲈1号”肌肉粗脂肪含量低于未选育组[27]。虾类肉质遗传较为稳定,需通过多代选育才能有明显的改善[13],相较于野生群体,海水养殖“黄育1号”的粗蛋白和粗脂肪含量均衡,氨基酸品质更加优秀,这表明在正常海水养殖条件下,选育的“黄育1号”的营养品质得到了有效且稳定地提高。
3.2 盐碱水养殖对“黄育1号”营养品质的影响 3.2.1 盐碱水养殖对“黄育1号”主要营养成分的影响肌肉中水分、灰分、粗蛋白和粗脂肪的含量是评价营养品质的重要指标。盐碱水养殖“黄育1号”肌肉中水分含量高于海水养殖“黄育1号”。水生生物体内的水分含量与环境胁迫密切相关。周伟等[28]发现随着养殖水体盐度降低,斑节对虾(Penaeus monodon)肌肉中水分含量升高;李明栋等[29]发现,水体碳酸盐碱度能够影响脊尾白虾体内离子积累,进而影响虾体与外界的水体交换。本研究中,脊尾白虾受到低盐度和高碱度的双重胁迫,虾体会吸收更多水分来维持体内渗透压平衡,导致肌肉含水量增加。通常情况下,含水量较低的肌肉具有更高含量的蛋白质和脂质[30-31],推测盐碱水养殖会降低脊尾白虾的口感和部分营养品质。
盐碱水养殖和海水养殖“黄育1号”肌肉粗蛋白含量分别为14.07 g/100 g和19.47 g/100 g,粗脂肪含量分别为0.97 g/100 g和1.13 g/100 g,与克氏原螯虾(Procambarus clarkii)、罗氏沼虾等相仿[32-33],属于高蛋白质低脂肪肉类。盐碱水养殖对水生动物体内的粗蛋白量有一定影响。黄艳青等[34]发现,盐碱水养殖的凡纳滨对虾肌肉粗蛋白质含量低于低盐海水养殖组;樊英等[35]研究发现,长期盐度胁迫会降低斑节对虾胃蛋白酶活性,或将阻碍虾体内蛋白质的积累;高、低盐碱胁迫均抑制了中华绒螯蟹(Eriocheir sinensis)蛋白质代谢[36]。本研究中,盐碱水养殖“黄育1号”粗蛋白含量低于海水养殖“黄育1号”。由此可见,水生生物体内蛋白质积累可能受到盐度、碱度等因素影响。
3.2.2 盐碱水养殖对“黄育1号”氨基酸组成和含量的影响肌肉中氨基酸的比例、含量都是评价食物蛋白质营养价值的重要指标。世界卫生组织和联合国粮农组织对优质蛋白的判定标准是EAA/TAA数值在0.40左右,EAA/NEAA数值在0.60以上[37]。本研究中,3组的EAA/TAA数值皆在0.40左右,EAA/NEAA值超过0.60,均符合WHO/FAO推荐的蛋白质营养的理想模式,属于优质蛋白来源。
Asp、Glu是特征性鲜味氨基酸;Gly、Ala呈甜味,其含量对改善食品风味具有重要作用[38-39]。肉质的鲜美程度与DAA (Asp, Glu, Gly, Ala)含量呈现一定的正相关性,3组脊尾白虾肌肉中DAA约为氨基酸总量的40%,故脊尾白虾的肉质较为鲜美。海水养殖“黄育1号”肌肉的DAA含量高于盐碱水养殖“黄育1号”,表明盐碱水养殖会降低脊尾白虾的滋味品质。Jiang等[40]认为,盐度对脊尾白虾氨基酸总量和必需氨基酸含量无明显的影响,但低盐会降低脊尾白虾的鲜味,这与本研究结果相符。
水体的盐度和碱度会对氨基酸组成及含量产生影响。处于胁迫环境时,水生动物体内多种游离氨基酸能够参与机体渗透压调节,并且肌肉中的Gly、Ser等生糖氨基酸通过糖异生作用被消耗为机体供能[41-42]。盐碱水养殖的鲤、鲫(Carassius auratus)和草鱼(Ctenopharyngodon idella)肌肉中Pro含量较淡水养殖更高[43];高碳酸盐碱度养殖会显著增加凡纳滨对虾肌肉中EAA和DAA的含量[44];高盐度海水养殖会增加三疣梭子蟹(Portunus trituberculatus)肌肉中游离氨基酸的含量[45]。本研究中,除Met和Cys外,盐碱水养殖“黄育1号”的其余15种氨基酸含量均低于海水养殖“黄育1号”,推测脊尾白虾肌肉中的氨基酸在维持渗透压平衡和应对环境胁迫方面发挥重要作用。
3.2.3 盐碱水养殖对“黄育1号”脂肪酸组成和含量的影响脂肪酸是脂类的主要组分,能够为所有营养水平的代谢提供能量,在生命体中发挥着重要作用。盐碱水养殖“黄育1号”肌肉检测出15种脂肪酸,海水养殖“黄育1号”检测出12种脂肪酸,棕榈酸和油酸占据脊尾白虾肌肉脂肪酸含量的前两位。盐碱水养殖“黄育1号”肌肉中棕榈酸含量高于海水养殖“黄育1号”,在罗非鱼相关研究中,得到了与此相反的结果[8],表明盐碱水养殖会影响水生动物体内脂肪酸的含量,在不同物种中呈现出不同的作用效果。
由于人体缺乏n-3脱饱和酶,n-3系列与n-6系列多不饱和脂肪酸(PUFA)无法相互转换,只能从食物中获取。《中国居民膳食营养素参考摄入量》(2023版)中指出,我国成年人摄入n-6 PUFAs和n-3 PUFAs的中位数的均值分别为13.8 g/标准人日和1.6 g/标准人日[46]。合理搭配膳食中的n-6 PUFAs与n-3 PUFAs有利于消除炎症性疾病、预防癌症[47]。盐碱水养殖和海水养殖“黄育1号”n-6 PUFAs/n-3 PUFAs值分别为0.37和0.16,长期摄入能平衡人们膳食n-6 PUFAs/n-3 PUFAs值,有利于人体健康。
α-亚麻酸、亚油酸、EPA、DHA和花生四烯酸为必需脂肪酸,对人和动物的正常发育及维持生理功能极为重要[48]。盐碱水养殖“黄育1号”肌肉中5种必需脂肪酸含量均高于海水养殖“黄育1号”,说明盐碱水养殖“黄育1号”具有更优质且均衡的脂肪酸,能够满足人体的需求。
3.2.4 盐碱水养殖对“黄育1号”抗氧化能力的影响抗氧化系统对甲壳动物免疫功能及健康状况十分重要,抗氧化酶能够清除体内自由基,保护机体免受过量活性氧的损伤[49]。已有研究表明,盐碱胁迫会导致水生动物体内产生活性自由基,在短期低盐碱胁迫时,耐盐碱物种通过增强抗氧化酶的活性来维持自由基含量的动态平衡,而长期处于高盐碱胁迫下,水生动物体内抗氧化酶的活性呈现先上升后下降的趋势,伴随着免疫器官损伤与免疫能力下降[50-51]。本研究观察到,盐碱水养殖“黄育1号”肌肉中T-AOC、SOD和CAT活性均低于海水养殖“黄育1号”,与前人研究结论相符合,这表明长期处于盐碱环境损伤了脊尾白虾的抗氧化能力。抗氧化能力下降造成机体器官损伤,不利于脊尾白虾维持正常的生理代谢,对其营养品质可能产生不利影响。
4 结论(1) 海水养殖“黄育1号”肌肉的粗蛋白、粗脂肪等营养物质的含量与野生群体相似,在氨基酸品质方面要优于野生群体。(2) 盐碱水养殖会减少脊尾白虾肌肉的氨基酸的含量,影响口感和风味,但仍然符合WHO/FAO推荐的蛋白质营养的理想模式,并且脂肪酸的品质得到提升。因此,盐碱水养殖脊尾白虾可以作为重要的优良氨基酸和脂肪酸的膳食来源。(3) 盐碱水环境会降低脊尾白虾的抗氧化能力,不利于生长发育和营养物质的积累。增强脊尾白虾对盐碱水环境的适应性有助于提升脊尾白虾肌肉的营养品质。
[1] |
Wang J J, Tang S, Ge Q Q, et al. Genome-wide identification of vitellogenin gene family and comparative analysis of their involvement in ovarian maturation in Exopalaemon carinicauda[J]. International Journal of Molecular Sciences, 2024, 25(2): 1089..》Google Scholar
|
[2] |
Liu X, Gao J Y, Zhang P, et al. De novo transcriptional analysis of the response to starvation stress in the white ridgetail prawn, Exopalaemon carinicauda[J]. Genomics, 2023, 115(6): 110746..》Google Scholar
|
[3] |
Qin Z, Ge Q Q, Wang J J, et al. Metabolomic responses based on transcriptome of the hepatopancreas in Exopalaemon carinicauda under carbonate alkalinity stress[J]. Ecotoxicology and Environmental Safety, 2023, 268: 115723..》Google Scholar
|
[4] |
Li M S, Wang S H, Zhao Z G, et al. Effects of alkalinity on the antioxidant capacity, nonspecific immune response and tissue structure of Chinese mitten crab Eriocheir sinensis[J]. Fishes, 2022, 7(4): 206..》Google Scholar
|
[5] |
Li K, Zhao S, Guan W, et al. Planktonic bacteria in white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) aquaculture ponds in a salt-alkaline region[J]. Letters in Applied Microbiology, 2022, 74(2): 212-219..》Google Scholar
|
[6] |
Ge Q Q, Li J, Wang J J, et al. Characterization, functional analysis, and expression levels of three carbonic anhydrases in response to pH and saline-alkaline stresses in the ridgetail white prawn Exopalaemon carinicauda[J]. Cell Stress and Chaperones, 2019, 24(3): 503-515..》Google Scholar
|
[7] |
Fang W, Liu L, Chang W, et al. Comparative analysis of growth and nutritional components of Scylla paramamosain cultured in saline-alkali water and marine water[J]. Journal of Fisheries of China, 2022, 46(11): 2143-2157. [方伟,刘磊,常雯,等. 盐碱水和海水养殖条件下的拟穴青蟹生长和营养成分比较分析[J]. 水产学报,2022, 46(11): 2143-2157.].》Google Scholar
|
[8] |
Cheng Y M, Zhao J L, Tang S J, et al. Comparison on meat quality of Nile Tilapia cultured in saline-alkaline water and freshwater culture modes[J]. Journal of Henan Agricultural Sciences, 2019, 48(4): 125-134. [程亚美,赵金良,唐首杰,等. 盐碱水和淡水养殖模式下尼罗罗非鱼肌肉品质比较[J]. 河南农业科学,2019, 48(4): 125-134.].》Google Scholar
|
[9] |
Qin K X, Feng W H, Ji Z X, et al. Shrimp cultured in low-salt saline-alkali water has a better amino acid nutrition and umami-comparison of flavors between saline-alkali water- and seawater-cultured Litopenaeus vannamei[J]. Journal of Agricultural and Food Chemistry, 2024, 72(12): 6585-6592..》Google Scholar
|
[10] |
Jiang X S, Niu M M, Qin K X, et al. Enhancement of nutrient composition and non-volatile flavor substances in muscle tissue of red drum (Sciaenops ocellatus) through inland low salinity saline-alkaline water culture[J]. Journal of Agricultural and Food Chemistry, 2024, 72(13): 7326-7335..》Google Scholar
|
[11] |
Guo J G, He Y Y, Wang Q, et al. Comparative analysis for taste substances in wild and selected populations muscle of the Fenneropenaeus chinensis[J]. Chinese Fishery Quality and Standards, 2022, 12(3): 9-16. [郭建港,何玉英,王琼,等. 中国明对虾野生群体与选育群体肌肉中滋味物质的比较分析[J]. 中国渔业质量与标准,2022, 12(3): 9-16.].》Google Scholar
|
[12] |
Fan W J, Su M, Li X S, et al. Analysis of nutritive components of wild and breeding Macrobrachium nipponensis muscle in Dianshan Lake[J]. Fisheries Science & Technology Information, 2019, 46(4): 181-186. [范武江,苏明,李雪松,等. 日本沼虾淀山湖野生群体和养殖群体肌肉营养成分分析[J]. 水产科技情报,2019, 46(4): 181-186.].》Google Scholar
|
[13] |
Gao Q, Yang G L, Wang J Y, et al. Analysis on muscle nutritive quality of a selected strain of Macrobrachium rosenbergii, “South Tailake No.2”[J]. Journal of Fisheries of China, 2011, 35(1): 116-123. [高强,杨国梁,王军毅,等. 罗氏沼虾“南太湖2号”选育群体肌肉营养品质分析[J]. 水产学报,2011, 35(1): 116-123.].》Google Scholar
|
[14] |
National Health and Family Planning Commission of the People's Republic of China. National food safety standard determination of moisture in food: GB 5009.3—2016[S]. Beijing: Standards Press of China, 2016. [中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定:GB 5009.3—2016[S]. 北京:中国标准出版社,2016.].》Google Scholar
|
[15] |
National Health and Family Planning Commission of the People's Republic of China. Determination of ash content in food according to the national food safety standard: GB 5009.4—2016[S]. Beijing: Standards Press of China, 2016. [中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中灰分的测定:GB 5009.4—2016[S]. 北京:中国标准出版社,2016.].》Google Scholar
|
[16] |
National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. National food safety standard determination of fat in food: GB 5009.6—2016[S]. Beijing: Standards Press of China, 2016. [中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中脂肪的测定:GB 5009.6—2016[S]. 北京:中国标准出版社,2016.].》Google Scholar
|
[17] |
National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. National food safety standard Determination of protein in food: GB 5009.5—2016[S]. Beijing: Standards Press of China, 2016. [中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中蛋白质的测定:GB 5009.5—2016[S]. 北京:中国标准出版社,2016.].》Google Scholar
|
[18] |
National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. Determination of amino acids in food safety national standards: GB 5009.124—2016[S]. Beijing: Standards Press of China, 2016. [中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中氨基酸的测定:GB 5009.124—2016[S]. 北京:中国标准出版社,2016.].》Google Scholar
|
[19] |
National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. National food safety standards determination of fatty acids in food: GB 5009.168—2016[S]. Beijing: Standards Press of China, 2016. [中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中脂肪酸的测定:GB 5009.168—2016[S]. 北京:中国标准出版社,2016.].》Google Scholar
|
[20] |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of total saccharide in edible mushroom: GB/T 15672—2009[S]. Beijing: Standards Press of China, 2009. [中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 食用菌中总糖含量的测:GB/T 15672—2009[S]. 北京:中国标准出版社,2009.].》Google Scholar
|
[21] |
Pellett P L, Yong V R. Nutrition evaluation of protein foods[M]. Tokyo: United National University, 1980..》Google Scholar
|
[22] |
National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention. China food composition[M]. Beijing: Peking University Medical Press, 2004. [中国疾病预防控制中心营养与食品安全所. 中国食物成分表[M]. 北京:北京大学医学出版社,2004.].》Google Scholar
|
[23] |
Zhang Y F, Xu Y, Hu L Y, et al. Research progress on the interaction effect and mechanism of arginine and lysine in animal body[J]. Chinese Journal of Animal Science, 2022, 58(6): 105-110, 116. [张益凡,徐颖,胡良宇,等. 动物机体精氨酸和赖氨酸功能互作效应与机制的研究进展[J]. 中国畜牧杂志,2022, 58(6): 105-110, 116].》Google Scholar
|
[24] |
Gao X, Shi L D, Ren T J, et al. A review of research advances on nutrition and quality differences between wild and cultured fishes[J]. Chinese Journal of Fisheries, 2023, 36(1): 108-117. [高欣,石立冬,任同军,等. 野生与养殖鱼类营养与品质差异研究进展[J]. 水产学杂志,2023, 36(1): 108-117.].》Google Scholar
|
[25] |
Zuo P X, Jin F P, Leng Y, et al. Comparative analysis and nutritional value evaluation of muscle nutrient composition between wild and cultured Schizothorax chongi[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023(18): 126- 132. [左鹏翔,金方彭,冷云,等. 野生与养殖细鳞裂腹鱼肌肉营养成分比较分析及营养价值评价[J]. 黑龙江畜牧兽医,2023(18): 126-132.].》Google Scholar
|
[26] |
Shi Y, Liu K F, Pang J C, et al. Comparison of growth performance, muscle nutritional composition and antioxidant properties between the juveniles of Yuxuan Cyprinus carpio haematoperus and Yuxuan Cyprinus carpio haematoperus II[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(20): 133-139, 146. [石英,刘开放,庞纪彩,等. 豫选黄河鲤与豫选黄河鲤2号幼鱼生长性能、肌肉营养成分及抗氧化性能的比较[J]. 黑龙江畜牧兽医,2022(20): 133- 139, 146.].》Google Scholar
|
[27] |
Fan J J, Bai J J, Li S J, et al. Nutrient composition and nutritive quality of the muscle of Micropterus salmoides, “Youlu No.1”[J]. Journal of Fishery Sciences of China, 2012, 19(3): 423-429. [樊佳佳,白俊杰,李胜杰,等. 大口黑鲈“优鲈1号”选育群体肌肉营养成分和品质评价[J]. 中国水产科学,2012, 19(3): 423-429.].》Google Scholar
|
[28] |
Zhou W, Wang Y, Sun X L, et al. Effect of stocking salinity on muscle quality of Penaeus monodon[J]. Food Research and Development, 2018, 39(22): 7-14. [周伟,王洋,孙学亮,等. 养殖盐度对斑节对虾肌肉品质的影响[J]. 食品研究与开发,2018, 39(22): 7-14.].》Google Scholar
|
[29] |
Li M D, Wang J J, Ge Q Q, et al. The roles of aquaporin gene 4 and 11 of Exopalaemon carinicauda under alkalinity stress[J]. Progress in Fishery Sciences, 2022, 43(4): 51-60. [李明栋,王佳佳,葛倩倩,等. 脊尾白虾水通道蛋白基因4和11在碱度胁迫过程中的作用[J]. 渔业科学进展,2022, 43(4): 51-60.].》Google Scholar
|
[30] |
Li X Q, Li B A, Chen N S, et al. A comparison study on flesh quality of large yellow croaker (Larimichthys croceus) cultured with three different modes[J]. Journal of Ocean University of China, 2017, 16(6): 1187-1194..》Google Scholar
|
[31] |
Zhang Y, Chen X X, Zeng J J, et al. Nutrient composition analysis and muscle quality evaluation of three economic shrimp species[J]. Journal of Zhejiang Ocean University (Natural Science), 2022, 41(6): 508-515. [张祎,陈霞霞,曾军杰,等. 3种经济虾营养成分分析及肌肉品质评价[J]. 浙江海洋大学学报(自然科学版), 2022, 41(6): 508-515.].》Google Scholar
|
[32] |
Yao H X, Cheng X R, Yun H W, et al. Effects of fermented feed on growth performance, muscle quality, antioxidant capacity and intestinal microflora of red swamp crayfish (Procambarus clarkii)[J]. Journal of Fisheries of China, 2023, 47(12): 129610. [姚海行,陈效儒,袁汉文,等. 发酵饲料对克氏原螯虾生长性能、肌肉品质、抗氧化能力和肠道微生物群落的影响[J]. 水产学报,2023, 47(12): 129610.].》Google Scholar
|
[33] |
Zhou D, Liu M, Fang W P, et al. Comparative study on nutritional quality of Macrobrachium rosenbergii under mixed culture and exclusive culture conditions[J]. Journal of Shanghai Ocean University, 2024, 33(3): 581-589. [周聃,刘梅,房伟平,等. 池塘混养和专养条件下罗氏沼虾营养品质的比较[J]. 上海海洋大学学报,2024, 33(3): 581-589.].》Google Scholar
|
[34] |
Huang Y Q, Yang X, Wang Y J, et al. Analysis and quality evaluation of nutrient components in muscle of Litopenaeus vannamei of two saline-alkali aquaculture and mariculture[J]. Fishery Information & Strategy, 2023, 38(1): 60-66. [黄艳青,杨絮,王怡菊,等. 西北硫酸盐型盐碱水与低盐度海水养殖凡纳滨对虾营养成分及品质评价[J]. 渔业信息与战略,2023, 38(1): 60-66.].》Google Scholar
|
[35] |
Fan Y, Wang X L, Liu J D, et al. Effects of salinity stress on physiological characteristics of Penaeus monodon[J]. Journal of Guangxi Academy of Sciences, 2021, 37(2): 123-132. [樊英,王晓璐,刘吉丹,等. 盐度胁迫对非洲斑节对虾生理特征的影响[J]. 广西科学院学报,2021, 37(2): 123-132.].》Google Scholar
|
[36] |
Zhang R, Zhao Z G, Li M S, et al. Effects of saline-alkali stress on the tissue structure, antioxidation, immunocompetence and metabolomics of Eriocheir sinensis[J]. Science of the Total Environment, 2023, 871: 162109..》Google Scholar
|
[37] |
The World Health Organization. Protein and amino acid requirements in human nutrition: Report of a joint FAO/WHO/UNU expert consultation[R]. Geneva: World Health Organization, 2007..》Google Scholar
|
[38] |
Yun S Y, Qiu W Q, Jiang C Y, et al. Comparison of flavor compounds in meat and head of Litopenaeus vannamei[J]. Journal of Fisheries of China, 2017, 41(6): 907-918. [贠三月,邱伟强,蒋晨毓,等. 凡纳滨对虾虾肉和虾头中风味物质的比较[J]. 水产学报,2017, 41(6): 907-918.].》Google Scholar
|
[39] |
Cao Y N, Li H, Yang C, et al. Study of the changes of nutrition and flavor quality of grass carp (Ctenopharyngodon idellus) during lean culture[J]. Journal of Fishery Sciences of China, 2023, 30(2): 178-193. [曹英楠,李虹,杨超,等. 草鱼瘦身养殖过程中营养与风味品质变化规律研究[J]. 中国水产科学,2023, 30(2): 178-193.].》Google Scholar
|
[40] |
Jiang J F, Wu H M, Guo H, et al. Effects of salinities on growth and nutrientional composition in the muscle of Exopalaemon carinicauda[J]. Marine Science Bulletin, 2016, 18(1): 81-92..》Google Scholar
|
[41] |
Jiang A P, Zhang K, Hong M L, et al. Effect of acute salinity stress on free amino acids in the red-eared slider (Trachemys scripta elegans)[J]. Chinese Journal of Zoology, 2017, 52(3): 485-496. [江爱萍,张珂,洪美玲,等. 急性盐度胁迫对红耳龟肌肉中游离氨基酸水平的影响[J]. 动物学杂志,2017, 52(3): 485-496.].》Google Scholar
|
[42] |
Deng M, Liu R Q, Yang D, et al. Effect of proline on high salt tolerance of razor clam[J]. Journal of Shanghai Ocean University, 2024, 33(1): 77-85. [邓敏,刘瑞琦,杨栋,等. 脯氨酸对缢蛏高盐耐受性的影响[J]. 上海海洋大学学报,2024, 33(1): 77-85.].》Google Scholar
|
[43] |
Ge J M, Zi F Z, Wang X Y, et al. A comparative study on fish growth and nutritional composition under pond ecological farming in Xinjiang[J]. Journal of Fishery Sciences of China, 2023, 30(5): 559-572. [葛建民,訾方泽,王新月,等. 新疆盐碱水湖塘生态养殖模式下鱼类生长及肌肉营养品质[J]. 中国水产科学,2023, 30(5): 559-572.].》Google Scholar
|
[44] |
Huang Y Q, Yang X, Zhou K, et al. Effects of two culture carbonate alkalinities on nutrient components and free amino acids in muscle of Litopenaeus vannamei[J]. Fishery Information & Strategy, 2023, 38(3): 213-221. [黄艳青,杨絮,周凯,等. 2种不同碳酸盐碱度养殖的凡纳滨对虾(Litopenaeus vannamei)肌肉营养组成及游离氨基酸组成分析[J]. 渔业信息与战略,2023, 38(3): 213-221.].》Google Scholar
|
[45] |
Fu P, Lyu J J, Liu P, et al. Effects of different salinity level on free amino acid composition in muscle and hemolymph of the swimming crab Portunus trituberculatus[J]. Journal of Fisheries of China, 2017, 41(3): 374-381. [付萍,吕建建,刘萍,等. 盐度胁迫对三疣梭子蟹肌肉和血淋巴中游离氨基酸含量的影响[J]. 水产学报,2017, 41(3): 374-381.].》Google Scholar
|
[46] |
Chinese Nutrition Society. Dietary Reference Intakes for China[M]. Beijing: The Peoples Medical Publishing House, 2023. [中国营养学会. 中国居民膳食营养素参考摄入量[M]. 北京:人民卫生出版社,2023.].》Google Scholar
|
[47] |
Liput K P, Lepczyński A, Ogłuszka M, et al. Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis[J]. International Journal of Molecular Sciences, 2021, 22(13): 6965..》Google Scholar
|
[48] |
Wang H, Ding J. Mechanism of polyunsaturated fatty acids biosynthesis and metabolism in marine invertebrates: A review[J]. Journal of Agricultural Science and Technology, 2021, 23(10): 181-191. [王姮,丁君. 海洋无脊椎动物多不饱和脂肪酸合成代谢机理研究进展[J]. 中国农业科技导报,2021, 23(10): 181-191.].》Google Scholar
|
[49] |
Jiang M M, Ye J Y, Shao X P, et al. Effects of yeast hydrolysate on growth performance, muscle quality, hepatopancreases antioxidant indexes and tissue morphology of juvenile black carp (Mylopharyngodon piceus)[J]. Chinese Journal of Animal Nutrition, 2020, 32(5): 2326-2341. [蒋敏敏,叶金云,邵仙萍,等. 酵母水解物对青鱼幼鱼生长性能、肌肉品质及肝胰脏抗氧化指标和组织形态的影响[J]. 动物营养学报,2020, 32(5): 2326-2341.].》Google Scholar
|
[50] |
Zhao Y C, Wang R J, Shen M, et al. Effects of high-salt stress on daily weight gain, osmoregulation and immune related enzyme activities in Litopenaeus vannamei postlarvae[J]. Journal of Fisheries of China, 2019, 43(4): 833-840. [赵玉超,王仁杰,沈敏,等. 高盐对凡纳滨对虾仔虾生长、渗透调节及免疫相关酶活性的影响[J]. 水产学报,2019, 43(4): 833-840.].》Google Scholar
|
[51] |
Zhao L, Long X W, Wu X G, et al. Effects of water salinity on osmoregulation and physiological metabolism of adult male Chinese mitten crab Eriocheir sinensis[J]. Acta Hydrobiologica Sinica, 2016, 40(1): 27-34. [赵磊,龙晓文,吴旭干,等. 水体盐度对中华绒螯蟹成体雄蟹渗透压调节和生理代谢的影响[J]. 水生生物学报,2016, 40(1): 27-34.].》Google Scholar
|