2. 长沙学院生物与化学工程学院,湖南省两栖爬行动物资源保护与产品加工工程技术研究中心,湖南 长沙 410022
2. College of Biological and Chemical Engineering, Changsha University; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha 410022, China
近年来,在水产养殖过程中养殖者为了节约饲料中的蛋白质而降低成本,高脂饲料被广泛应用于高密度集约化养殖中[1]。饲料中添加适量的脂肪能提高蛋白质的利用效率,有助于维持鱼类的正常生理功能,促进生长发育。但过量的摄入会导致其体内脂肪过度蓄积,进而引起脂代谢紊乱,最终可能诱发脂肪肝[2]、免疫功能障碍[3]以及增加死亡率等风险,严重威胁其健康,制约了水产养殖业健康可持续发展。通过深入研究鱼类脂质代谢的调控机制并采取相应的管理措施,可以有效降低鱼类脂质摄入过量的风险,对保障鱼类健康具有重要意义。
锌指转录因子Krüppel样因子15 (Krüppel-like factor 15, KLF15)已被证实是调控脂代谢[4]、葡萄糖代谢[5]和氨基酸代谢[6]的重要转录因子,在促进脂肪合成与储存、机体生长和代谢平衡方面发挥着重要作用。Matoba等[7]使用腺病毒敲低KLF15后显著降低了3T3-L1前体脂肪细胞中的脂质含量,过表达KLF15脂肪含量显著增加,表明KLF15通过调节脂肪生成、抑制脂肪分解等过程影响脂代谢。Anzai等[8]通过对肝母细胞和成熟肝细胞中具有差异表达的转录因子进行全面筛选,发现KLF15在肝细胞成熟过程中具有促进作用。研究表明,KLF15在代谢活跃组织(如肝脏、骨骼肌、心脏)中高度表达,由于其在营养代谢中的作用使其成为调节代谢网络的关键角色[9-11]。Mori等[12]在3T3-L1前体脂肪细胞中证实过表达KLF15能够显著促进脂滴的形成,而转染KLF15的负显性失活突变体得到了相反的结果。李青莹[13]在前体脂肪细胞中通过siRNA干扰KLF15后,发现脂滴的形成和TG的含量显著下降。进一步研究认为KLF15作为一个重要的脂质处理整合因子,使其在生理和病理中发挥重要作用。
TWIST相关蛋白2 (twist-related protein 2, TWIST2)是一种保守的碱性螺旋-环-螺旋(b-HLH)转录因子,作为一种分子开关,通过直接或间接机制激活或抑制靶基因[14]。相关研究表明,TWIST2调控的通路涉及炎症[15]、能量稳态和代谢紊乱[16],并且发现TWIST2作为3T3-L1前体脂肪细胞分化的负调节因子发挥作用。TWIST2敲低引起肥胖、胰岛素抵抗和肝脂肪变性,伴有炎症、内质网应激和线粒体功能障碍,而TWIST2的过表达可以改善肝细胞脂肪变性并抑制炎症[17]。ChIP分析表明,KLF15可以直接与TWIST2启动子相互作用并增强TWIST2转录[18]。因此,探索KLF15-TWIST2信号通路在鱼类脂代谢中的作用和可能机制,为鱼类营养调控研究提供新的思路。
目前,关于维持水产动物脂质代谢稳态的研究,主要集中在高脂饲料中添加降脂物质的方式上。Zhao等[19]发现枯草芽孢杆菌(Bacillus subtills)可以通过抑制肝脏脂肪酸的合成和促进β-氧化来降低草鱼(Ctenopharyngodon idellus)肝脂含量,还可以缓解血脂异常和肝脏氧化损伤。除此之外,三丁苷(tributyrin)对幼年大黄鱼(Larimichthys crocea)[20]、葛根素(puerarin)对斑马鱼(Danio rerio)[21]、小檗碱(berberine)对大口黑鲈(Micropterus salmoides)[22]、苦瓜提取物(Bitter melon extract)对鲤(Cyprinus carpio)[23]、槲皮素(Quercetin)对鲈鱼(Lateolabrax maculatus)[24]都可以起到减少组织中脂肪沉淀、提高抗氧化能力、抑制炎症的作用。然而,对于高脂饲料诱导的鱼类脂代谢紊乱及其产生机制尚未完全阐明。斑马鱼由于其产卵量高、发育迅速、在脂质代谢过程中高度保守等特点,被广泛应用于代谢性疾病的研究[25-27]。因此,本研究以斑马鱼为对象,分析高脂饲料对斑马鱼脂代谢的影响及KLF15-TWIST2信号通路的表达特征,初步阐明KLF15-TWIST2信号通路在斑马鱼脂代谢中的调控作用,有助于更好地理解鱼类脂代谢的分子机制,以期为鱼类养殖和营养调控提供理论依据。
1 材料与方法 1.1 实验动物本研究所用野生型(AB系)斑马鱼来自长沙学院水生动物肌肉品质与健康实验室。选择性成熟的雌性与雄性个体作为种鱼,实验所用到的斑马鱼仔鱼通过上述雌雄种鱼交配得到。实验开始前将鱼放入室内循环水系统[水温(28.0±0.5) ℃, pH (7.5±0.2)]中暂养,光周期为14 h,暗周期为10 h。每天定时定量喂食丰年虾和脱壳卵饲料,及时清除食物残渣和粪便。
1.2 实验方法 1.2.1 实验设计将成年雌、雄斑马鱼以2∶2比例放入12个繁殖隔离缸内,次日早上给予光照、抽取隔板使其交配产卵,1 h后收集鱼卵,清除未受精的卵及粪便等杂质。将受精卵置于含海盐培养液(海盐加入量为60 mg/L)的125 mm玻璃培养皿中,28 ℃恒温箱内进行恒温培养。在受精5 d后(5 day post fertilization, 5 dpf)挑选180尾健康状态的斑马鱼仔鱼随机分为正常组(NFD)和高脂组(HFD),将其分别放入90 mm玻璃培养皿中,每组设置3个重复,每个重复30尾,其中NFD组喂食基础饲料,HFD组喂食高脂饲料,两种饲料营养成分详见表1。按照2 mg/尾鱼进行投喂,每日喂食两次(8:30和17:30),每次喂食后2 h更换培养液。实验周期为1周。
![]() |
表1 实验用饲料营养成分(干物质) Tab. 1 Nutritional composition of experimental diet (dry matter) |
5 dpf斑马鱼仔鱼在连续喂养7 d后收样,按照1尾仔鱼重量1 mg进行计算[28],重量∶体积=1∶9加入生理盐水,将其机械匀浆,2500 r/min条件下离心10 min,取其上清液进行总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)测定。在测定之前,先用总蛋白定量测试盒(BCA法)检测各样品总蛋白量,用于生理指标的标准化。实验所用试剂盒均购于南京建成生物工程研究所有限公司。
1.2.3 组织学观察5 dpf斑马鱼仔鱼在连续喂养7 d后收样,样本在4%多聚甲醛中固定24 h,常规石蜡包埋、切片,经HE和油红O染色。利用显微镜观察脂滴(染色红色)并拍照,分析其组织学特征。
1.2.4 抗氧化酶活性测定5 dpf斑马鱼仔鱼在连续喂养7 d后收样,组织样本的处理方法参考试剂盒内的说明书进行制备。使用到的超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)试剂盒均购自于南京建成生物工程研究所有限公司。
1.2.5 实时荧光定量PCR按照Total-RNA试剂盒(Omega)说明书提取总RNA, RNA的完整性通过琼脂糖凝胶电泳进行检测,浓度通过超微量分光光度计(NanoPhotometer-NP80, implen,德国)进行测定。取1 μg所提取的RNA按照TaKaRa公司的PrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real Time)试剂盒进行逆转录合成cDNA,将收集得到的cDNA稀释10倍并于−40 ℃保存。采用实时荧光定量PCR技术检测相关基因(KLF15、TWIST2、SREBP、FASN、ACC1、DGAT2、CEBPα、CPT1、ATGL、LPL、SCD、HSL等)的表达量。反应总体系为12.5 μL,包括SYBR Premix Ex TaqTM II 6 μL,逆转录合成的cDNA模板0.5 μL,无酶水5 μL,上游引物和下游引物各0.5 μL。反应条件为95 ℃预变性3 min, 95 ℃变性5 s, 60 ℃退火30 s, 40个循环。每个样品3次技术重复,反应结束后统计Ct值,采用2−ΔΔCt法计算各待测基因的相对表达量[29]。所有基因引物通过Primer Premier 5.0软件设计,待测基因引物序列详见表2,以GAPDH作为内参基因,引物由北京擎科生物科技公司合成。
![]() |
表2 实时荧光定量PCR引物序列 Tab. 2 Quantitative real-time PCR primers |
将实验所得数据利用Excel软件进行整理分析,使用SPSS 27.0软件对数据进行独立样本T检验(T-test)与显著性检验。所得结果以平均值±标准差(mean±SD)表示,当P<0.05时认为两组数据之间具有显著性差异。使用GraphPad Prism 8软件进行图片绘制,不同的*表示两组之间的差异(*: P<0.05, **: P<0.01, ***: P<0.001)
2 结果与分析 2.1 高脂饲料对斑马鱼生理指标的影响通过高脂饲养斑马鱼仔鱼7 d后,分析其体内生理指标变化。结果发现,与正常饲料组相比,高脂饲料组斑马鱼仔鱼体内总胆固醇(TC)、甘油三酯(TG)和低密度脂蛋白胆固醇(LDL-C)含量均呈现显著升高趋势(P<0.01)(图1)。
![]() |
图1 高脂饲料对斑马鱼生化指标的影响NFD为正常组,HFD为高脂组,柱形图上方星号表示差异显著(**: P<0.01, ***: P<0.001). Fig. 1 The effect of a high-fat diet on the biochemical indices of Danio rerioNFD is the normal-fat diet group, HFD is the high-fat diet group. An asterisk above the bar graph indicates a significant difference (**: P<0.01, ***: P<0.001). |
通过HE和油红O染色观察斑马鱼仔鱼组织形态变化和脂质蓄积情况。结果发现,与正常饲料组相比,高脂饲料组斑马鱼仔鱼出现脊索弯曲,细胞排列疏松,间隙增大,造成机体损伤(图2a、2b),同时还观察到斑马鱼仔鱼体内蓄积大量脂滴(图2c、2d)。
![]() |
图2 高脂饲料对斑马鱼组织形态及脂质蓄积的影响a. NFD组HE染色;b. HFD组HE染色;c. NFD组油红O染色;d. HFD组油红O染色. Fig. 2 The effect of a high-fat diet on tissue morphology and lipid accumulation in Danio rerioa. HE staining of NFD group;b. HE staining of HFD group;c. NFD group oil red O staining;d. HFD group oil red O staining. |
通过分析高脂饲料条件下斑马鱼抗氧化酶活性的变化,结果发现,与正常饲料组相比,高脂饲料组斑马鱼仔鱼超氧化物歧化酶(SOD)活性显著升高(P<0.05),谷胱甘肽过氧化物酶(GSH-PX)活性呈现显著降低(P<0.001)(图3)。
![]() |
图3 高脂饲料对斑马鱼抗氧化酶活性的影响NFD为正常组,HFD为高脂组,柱形图上方星号表示差异显著(*: P<0.05, ***: P<0.001). Fig. 3 Effect of high-fat diet on antioxidant enzyme activities in Danio rerioNFD is the normal-fat diet group, HFD is the high-fat diet group. An asterisk above the bar graph indicates significant difference (*: P<0.05, ***: P<0.001). |
通过测定高脂饲料条件下斑马鱼KLF15-TWIST2信号通路及脂代谢相关基因表达的变化,初步分析KLF15-TWIST2信号通路在斑马鱼脂代谢中的作用。结果发现,与正常饲料相比,高脂饲料显著上调斑马鱼仔鱼KLF15的mRNA表达(P<0.001),而TWIST2则表现出显著下调趋势(P<0.05)(图4);脂肪合成相关基因SREBP、FASN、ACC1、DGAT2、CEBPα和PPARγ的mRNA表达显著升高(图5a),而脂肪分解相关基因ATGL表现出显著降低趋势(P<0.05),脂肪酸氧化相关基因PPARα、CPT1、LPL、LXPα的表达显著升高(图5b),脂滴包被蛋白PLIN1表达增加(图5c)。相关性分析发现,KLF15与脂代谢相关基因SREBP、FASN、ACC1、DGAT2、CEBPα、PPARα、LPL、LXPα、PPARγ、PLIN1和UCP1表达呈正相关,与PLIN2呈负相关;TWIST2与ATGL、PLIN2表达呈正相关,而与FASN、CEBPα、CPT1、LPL、LXPα、UCP1呈负相关(图6)。
![]() |
图4 高脂饲料对斑马鱼KLF15-TWIST2信号通路基因表达的影响NFD为正常组,HFD为高脂组,柱形图上方星号表示差异显著(*: P<0.05, ***: P<0.001). Fig. 4 Effect of high-fat diet on gene expression of KLF15-TWIST2 signaling pathway in Danio rerioNFD is the normal-fat diet group, HFD is the high-fat diet group. An asterisk above the bar graph indicates a significant difference (*: P<0.05, ***: P<0.001). |
![]() |
图5 高脂饲料对斑马鱼脂代谢相关基因表达的影响a:脂肪合成相关基因表达;b:脂肪酸氧化相关基因表达;c:其他脂质代谢相关基因表达;NFD为正常组,HFD为高脂组,柱形图上方星号表示差异显著(*: P<0.05, **: P<0.01, ***: P<0.001). Fig. 5 Effects of high-fat diet on the expression of lipid metabolism-related genes in Danio rerioa: Lipid synthesis-related gene expression; b: Fatty acid oxidation-related gene expression; c: Other lipid metabolism-related gene expression; NFD is the normal-fat diet group, HFD is the high-fat diet group. An asterisk above the bar graph indicates a significant difference (*: P<0.05, **: P<0.01, ***: P<0.001). |
![]() |
图6 KLF15-TWIST2信号通路与脂代谢相关基因表达相关性分析 Fig. 6 Correlation analysis between the KLF15-TWIST2 signaling pathway and the expression of lipid metabolism related genes |
脂肪在新陈代谢中起着关键作用,能够为鱼类提供必需的能量和营养。饲料中增加适量脂肪含量可以提高其利用效率和蛋白质沉积[24]。然而,过量地摄入脂质可能导致鱼类肝脏、腹部脂肪组织和肌肉中脂质异常积累[30]。TG和TC的含量是反映机体脂代谢的重要生理指标,LDL-C作为TG的主要载体之一,其在鱼体中的作用主要是将肝脏中过多的脂肪转运到外周组织[31]。本研究结果显示,脂肪水平增加促使斑马鱼TG、TC和LDL-C水平升高,并引起脂质蓄积,与星斑篮子鱼(Siganus guttatus)[32]、黄鳝(Monopterus albus)[33]、大菱鲆(Scophthalmus maximus)[34]等水生动物的研究报道结果一致。表明机体摄入的能量超过维持正常代谢所需要的能量时,将影响脂质转运、代谢等过程,可能出现脂代谢紊乱、肝脏病变等问题。
3.2 高脂饲料对斑马鱼抗氧化酶活性的影响机体的酶系统主要含有过氧化氢酶(CAT)、SOD以及GSH-PX等。SOD可清除机体内的超氧自由基,CAT和GSH-PX可清除机体内的过氧化氢,其活性高低可以反映机体清除活性氧自由基能力的大小[35]。在本研究中,高脂饲料喂养后斑马鱼幼鱼SOD活性显著升高,这一结果与Liang等[36]对大口黑鲈抗氧化能力的研究结果具有不同的变化趋势,可能是因为饲料脂肪含量增加,加快机体内防御系统运行用以修复氧化损伤。这种差异的产生可能与鱼的种类、饲养环境、脂肪来源等因素有关。本研究发现GSH-PX活性极显著降低,表明体内过氧化氢自由基大量积累,造成肝脏氧化损伤。结合油红O染色观察的结果分析,在高脂胁迫条件下,斑马鱼体内氧化体系与抗氧化体系的平衡状态受到破坏,从而降低斑马鱼抗氧化应激能力,引起氧化还原失衡进而造成肝脏损伤。
3.3 高脂饲料对斑马鱼KLF15-TWIST2信号通路及脂代谢相关基因表达的影响通常,脂质积累取决于脂肪酸从头合成和脂肪β-氧化分解的平衡,这一过程涉及多种酶和转录因子[37]。为了进一步揭示KLF15-TWIST2信号轴是否影响斑马鱼脂代谢,本研究分析了KLF15、TWIST2与脂代谢相关基因的表达。结果发现,高脂饲喂后KLF15表达显著增加,TWIST2表达显著减少,这与邓玉春[38]和Zhang等[39]的研究相同。SREBP、FASN、ACC1是参与脂肪酸合成的主要蛋白质[25]。Wu等[40]发现高脂可以显著提高鲤SREBP、FASN、ACC1基因的表达水平,这与本研究结果是一致的。ATGL是参与脂肪分解的关键酶,能够调节脂肪体大小,在能量代谢中起着重要作用[41]。相关研究显示,饲料中脂肪含量的增加能够引起幼年黑鲷(Acanthopagrus schlegelii) ATGL表达量降低[42]。在本研究中,高脂饲喂后ATGL表达量呈现显著下降趋势,这可能是由于脂肪摄入过量,导致体内无法及时将脂肪分解产物完全氧化利用,进而影响脂代谢过程。
PPARα作为最重要的调节脂肪酸氧化分解代谢的一种核转录因子,通过促进脂肪酸氧化和酮体合成,调节脂质的水平[43]。CPT1被认为是控制脂肪酸氧化与运输的重要调控点[44]。当PPARα被激活后,可上调CPT1与LPL的活性,促进β-氧化的发生[45]。在珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)[46]的研究中认为高脂饲料摄入对PPARα、CPT1和LPL基因起上调影响,而在钝吻鲷(Megalobrama amblycephala)[47]中却得到了不一样的结果。在本研究中,所得到的结果为高脂胁迫下PPARα、CPT1与LPL的表达显著升高,与另一项在斑马鱼中的研究相似[48]。这表明机体内脂肪酸摄入过多时,其分解代谢过程加快。高脂饲料摄入后,对PPARα、CPT1和LPL基因水平所产生的不同结果,这可能与脂肪的种类和添加量、鱼的类型和实验条件等有关。
在本研究中,基因表达和皮尔逊相关性分析结果均表明KLF15-TWIST2信号通路对脂代谢的调控作用。饲料中脂肪含量增加后,KLF15-TWIST2信号通路与SREBP、FASN、ACC1、DGAT2、CEBPα、CPT1、ATGL、PPARα、PPARγ、LPL、LXPα、PLIN1、PLIN2、UCP1等脂代谢基因表现出相关性,但还有一些基因例如SCD、HSL、PGC1、SCAD、UCP2、UCP3没有显示出相关性,可能是因为本研究周期仅为一周,KLF15-TWIST2信号通路与其相关性没有充分体现。
4 结论本研究发现高脂饲料导致斑马鱼体内出现过量的脂质蓄积,并造成组织损伤及脂代谢紊乱,KLF15基因表达显著升高,而TWIST2明显降低,并且与SREBP、FASN、ACC1、ATGL、DGAT2、CEBPα、PPARα、LPL等基因都具有显著相关性;综上所述,KLF15-TWIST2信号通路可能通过参与脂肪酸合成、运输、β-氧化、分解、脂蛋白合成等过程调控脂代谢,其分子机制有待进一步研究。
[1] |
Naiel M A E, Negm S S, Ghazanfar S, et al. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: A review[J]. Journal of Animal Physiology and Animal Nutrition, 2023, 107(3): 948-969..》Google Scholar
|
[2] |
Ma J R, Kong L M, Zhou S S, et al. Effect of supplementation of chlorogenic acid to high-fat diet on growth, lipid metabolism, intestinal and hepatic histology, and gut microbiota of spotted sea bass (Lateolabrax maculatus)[J]. Metabolites, 2023, 13(10): 1067..》Google Scholar
|
[3] |
Yin P, Xie S W, Zhuang Z X, et al. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2021, 531: 735864..》Google Scholar
|
[4] |
Prosdocimo D A, John J E, Zhang L L, et al. KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation[J]. PPAR Research, 2015, 2015: 201625..》Google Scholar
|
[5] |
Takashima M, Ogawa W, Hayashi K, et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action[J]. Diabetes, 2010, 59(7): 1608-1615..》Google Scholar
|
[6] |
Zhu X, Liu J J, Cai M L, et al. The circadian rhythm regulates branched-chain amino acids metabolism in fast muscle of Chinese perch (Siniperca chuatsi) during short-term fasting by Clock-KLF15-Bcat2 pathway[J]. The British Journal of Nutrition, 2022, 130(4): 604-615..》Google Scholar
|
[7] |
Matoba K, Lu Y, Zhang R L, et al. Adipose KLF15 controls lipid handling to adapt to nutrient availability[J]. Cell Reports, 2017, 21(11): 3129-3140..》Google Scholar
|
[8] |
Anzai K, Tsuruya K, Ida K, et al. Kruppel-like factor 15 induces the development of mature hepatocyte-like cells from hepatoblasts[J]. Scientific Reports, 2021, 11(1): Article No.18551..》Google Scholar
|
[9] |
Prosdocimo D A, Anand P, Liao X D, et al. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism[J]. The Journal of Biological Chemistry, 2014, 289(9): 5914-5924..》Google Scholar
|
[10] |
Asada M, Rauch A, Shimizu H, et al. DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Krüppel-like factor 15 gene expression[J]. Laboratory Investigation, 2011, 91(2): 203-215..》Google Scholar
|
[11] |
Wu Z N, Wang S Q. Role of kruppel-like transcription factors in adipogenesis[J]. Developmental Biology, 2013, 373(2): 235-243..》Google Scholar
|
[12] |
Mori T, Maeda N, Inoue K, et al. A novel role for adipose ephrin-B1 in inflammatory response[J]. PLoS One, 2013, 8(10): e76199..》Google Scholar
|
[13] |
Li Q Y. Research on effects of KLF15 in porcine preadipocytes differentiation and prediction of fat deposition capacity[D]. Changchun: Jilin University, 2015. [李青莹. KLF15对猪前体脂肪细胞分化及通过其含量预测脂肪沉积能力的研究[D]. 长春:吉林大学,2015.].》Google Scholar
|
[14] |
Franco H L, Casasnovas J, Rodríguez-Medina J R, et al. Redundant or separate entities?—Roles of Twist1 and Twist2 as molecular switches during gene transcription[J]. Nucleic Acids Research, 2011, 39(4): 1177-1186..》Google Scholar
|
[15] |
Pettersson A T, Laurencikiene J, Mejhert N, et al. A possible inflammatory role of twist1 in human white adipocytes[J]. Diabetes, 2010, 59(3): 564-571..》Google Scholar
|
[16] |
Ren R, Chen Z F, Zhao X, et al. A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes[J]. Lipids in Health and Disease, 2016, 15(1): Article No.189..》Google Scholar
|
[17] |
Dutta A B, Lank D S, Przanowska R K, et al. Kinetic networks identify TWIST2 as a key regulatory node in adipogenesis[J]. Genome Research, 2023, 33(3): 314-331..》Google Scholar
|
[18] |
Zhou L L, Li Q J, Chen A, et al. KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-κB-FGF21 or SREBP1c-FGF21 pathway[J]. The FASEB Journal, 2019, 33(12): 14254-14269..》Google Scholar
|
[19] |
Zhao H, Luo Y E, Zhang Y A, et al. Effects of Bacillus subtilis on hepatic lipid metabolism and oxidative stress response in grass carp (Ctenopharyngodon idellus) fed a high-fat diet[J]. Marine Life Science & Technology, 2020, 2(1): 50-59..》Google Scholar
|
[20] |
Xu N, Ding T, Liu Y T, et al. Effects of dietary tributyrin on growth performance, body composition, serum biochemical indexes and lipid metabolism-related genes expression of juvenile large yellow croaker (Larimichthys crocea) fed with high level soybean oil diets[J]. Aquaculture Nutrition, 2020, 27(2): 395-406..》Google Scholar
|
[21] |
Liu Y S, Yuan M H, Zhang C Y, et al. Puerariae lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111121..》Google Scholar
|
[22] |
Gong Y L, Lu Q S, Liu Y L, et al. Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides)[J]. Frontiers in Nutrition, 2022, 9: 1010859..》Google Scholar
|
[23] |
Qin C B, Wang J L, Zhao W L, et al. Effects of dietary bitter melon extract on growth performance, antioxidant capacity, inflammatory cytokines expression, and intestinal microbiota in common carp (Cyprinus carpio L.)[J]. Aquaculture Nutrition, 2022, 2022: 3705943..》Google Scholar
|
[24] |
Dong Y Z, Xia T, Lin J B, et al. Quercetin attenuates high-fat diet-induced excessive fat deposition of spotted seabass (Lateolabrax maculatus) through the regulatory for mitochondria and endoplasmic reticulum[J]. Frontiers in Marine Science, 2021, 8: 746811..》Google Scholar
|
[25] |
Oka T, Nishimura Y, Zang L Q, et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity[J]. BMC Physiology, 2010, 10(1): Article No.21..》Google Scholar
|
[26] |
Wang C, Zhang C, Yu H B, et al. Glycerol monolaurate and triglycerol monolaurate alleviated high-fat diet induced lipid accumulation and damage of liver in zebrafish (Danio rerio)[J]. Aquaculture, 2022, 561: 738616..》Google Scholar
|
[27] |
Han J C, Zhang R, Zhang X F, et al. Zebrafish model for screening antiatherosclerosis drugs[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 9995401..》Google Scholar
|
[28] |
Wu L, Chen Z, Yu C, et al. Effects of high cholesterol diet on the lipid metabolism in zebrafish larvae[J]. Journal of Nanjing Medical University (Natural Sciences), 2019, 39(7): 978-982. [武琳,陈忠,余翠,等. 高胆固醇饮食对斑马鱼脂代谢的影响[J]. 南京医科大学学报(自然科学版), 2019, 39(7): 978-982.].》Google Scholar
|
[29] |
Livak K J, Schmittgen D T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
|
[30] |
Xie S W, Yin P, Tian L X, et al. Dietary supplementation of astaxanthin improved the growth performance, antioxidant ability and immune response of juvenile largemouth bass (Micropterus salmoides) fed high-fat diet[J]. Marine Drugs, 2020, 18(12): 642..》Google Scholar
|
[31] |
Cheng H L, Xia D Q, Wu T T. Fatty liver and regulation of lipids metabolism in fish[J]. Chinese Journal of Animal Nutrition, 2006, 18(4): 294-298. [程汉良,夏德全,吴婷婷. 鱼类脂类代谢调控与脂肪肝[J]. 动物营养学报,2006, 18(4): 294-298.].》Google Scholar
|
[32] |
Zhu W. Effects of dietary lipid levels on growth performance, nutritional components and activities of digestive enzymes of Siganus guttatus[D]. Shanghai: Shanghai Ocean University, 2013. [朱卫. 饲料脂肪水平对点篮子鱼生长性能、营养成分及消化酶活性的影响[D]. 上海:上海海洋大学,2013.].》Google Scholar
|
[33] |
Zhang Y Z, Guo F, Yang X, et al. Insights into the mechanism of growth and fat deposition by feeding different levels of lipid provided by transcriptome analysis of swamp eel (Monopterus albus, Zuiew 1793) liver[J]. Frontiers in Immunology, 2023, 14: 1118198..》Google Scholar
|
[34] |
Niu H X, Lei J L, Chang J, et al. Effect of a vitamin E-supplemented high-fat diet on the growth, lipid metabolism and antioxidant function of turbot (Scophthalmus maximus L.)[J]. Journal of Fishery Sciences of China, 2014, 21(2): 291-299. [牛化欣,雷霁霖,常杰,等. 维生素E对高脂饲料养殖大菱鲆生长、脂类代谢和抗氧化性能的影响[J]. 中国水产科学,2014, 21(2): 291-299.].》Google Scholar
|
[35] |
Sailaja Rao P, Kalva S, Yerramilli A, et al. Free radicals and tissue damage: Role of antioxidants[J]. Free Radicals and Antioxidants, 2011, 1(4): 2-7..》Google Scholar
|
[36] |
Liang C, Jiao L F, Zhou Q C. Effects of choline on the growth performance, antioxidant function and lipid metabolism in juvenile largemouth bass fed with high-fat diet[J]. Aquaculture Reports, 2023, 30: 101605..》Google Scholar
|
[37] |
Xia X J. Effects of polysaccharides on muscle quality, lipid metabolism and expression of heat shock protein 70 gene of Schizothorax prenanti Tchang[D]. Yaan: Sichuan Agricultural University, 2015. [夏晓杰. 多糖对齐口裂腹鱼肌肉品质、脂质代谢及HSP70基因表达的影响[D]. 雅安:四川农业大学,2015.].》Google Scholar
|
[38] |
Deng Y C. Role and mechanism of free fatty acid inhibit the expression of KLF15 by GPR40/GPR120[D]. Shihezi: Shihezi University, 2020. [邓玉春. 游离脂肪酸通过GPR40/GPR120抑制KLF15表达的作用及机制研究[D]. 石河子:石河子大学,2020.].》Google Scholar
|
[39] |
Zhang Y M, Ge X X, Li Y Q, et al. TWIST2 and the PPAR signaling pathway are important in the progression of nonalcoholic steatohepatitis[J]. Lipids in Health and Disease, 2021, 20(1): Article No.39..》Google Scholar
|
[40] |
Wu D, Li J N, Fan Z, et al. Dietary Lycium barbarum polysaccharide modulates growth performance, antioxidant capacity, and lipid metabolism in common carp (Cyprinus carpio) fed with high-fat diet[J]. Antioxidants, 2024, 13(5): 540..》Google Scholar
|
[41] |
Smirnova E, Goldberg E B, Makarova K S, et al. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells[J]. EMBO Reports, 2006, 7(1): 106-113..》Google Scholar
|
[42] |
Yang B Q, Shen Y D, Monroig Ó, et al. The ameliorative role of methionine in hepatic steatosis and stress response in juvenile black seabream (Acanthopagrus schlegelii) fed with a high-fat diet[J]. Aquaculture, 2024, 580: 740306..》Google Scholar
|
[43] |
Xiang S Q. The effects of RS4-type resistant starch on growth performance, meat quality and lipid metabolism of Schizothorax prenanti[D]. Yaan: Sichuan Agricultural University, 2014. [向世琼. RS4型抗性淀粉对齐口裂腹鱼生长性能、肉品质及脂肪代谢的影响[D]. 雅安:四川农业大学,2014.].》Google Scholar
|
[44] |
Bruce C R, Brolin C, Turner N, et al. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification[J]. American Journal of Physiology-Endocrinology and Metabolism, 2007, 292(4): E1231-E1237..》Google Scholar
|
[45] |
Wang J L, Yuan T T, Liu X X, et al. Regulatory effects of high-fat diet supplemented with rehmannia or yam on the growth, blood index, and lipid metabolism of Cyprinus carpio haematopterus[J]. Journal of Fishery Sciences of China, 2023, 30(1): 48-59. [王俊丽,苑婷婷,刘欣欣,等. 高脂饲料添加地黄或山药对黄河鲤生长、血清生化指标和脂代谢的调节作用[J]. 中国水产科学,2023, 30(1): 48-59.].》Google Scholar
|
[46] |
Liao C Y, Gao W H, Li J H, et al. Effects of short-term high-fat stress on growth performance, liver health, and lipid metabolism genes in Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂[J]. Journal of Fishery Sciences of China, 2023, 30(9): 1080-1092. [廖春燕,高文浩,李嘉辉,等. 短期高脂应激对珍珠龙胆石斑鱼幼鱼生长性能、肝脏健康和脂代谢基因的影响[J]. 中国水产科学,2023, 30(9): 1080-1092.].》Google Scholar
|
[47] |
Lu K L, Xu W N, Wang L N, et al. Hepatic β-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet[J]. PLoS One, 2014, 9(3): e93135..》Google Scholar
|
[48] |
Wu S, Huang C, Chen Y R, et al. Momordica charantia leaf extract reduces hepatic lipid accumulation and diet-induced dyslipidemia in zebrafish through lipogenesis and beta-oxidation[J]. Journal of Functional Foods, 2021, 87: 104857..》Google Scholar
|