中国水产科学  2025, Vol. 32 Issue (03): 333-348  DOI: 10.12264/JFSC2024-0335
0

引用本文 

邹万生, 莫平, 石彭灵, 王智, 罗玉双. 鳙肠道菌株BJ-1体外调控休眠铜绿微囊藻复苏研究[J]. 中国水产科学, 2025, 32(3): 333-348. DOI: 10.12264/JFSC2024-0335.
ZOU Wansheng, MO Ping, SHI Pengling, WANG Zhi, LUO Yushuang. In vitro regulation of intestinal bacteria BJ-1 from Aristichthys nobilis in recruitment of dormant Microcystis aeruginosa cells in pond ecosystem[J]. Journal of Fishery Sciences of China, 2025, 32(3): 333-348. DOI: 10.12264/JFSC2024-0335.

基金项目

国家重点研发计划项目(2023YFD2401604);湖南省教育厅重点项目(24A0492);湖南省自然科学基金(2021JJ50024).

作者简介

邹万生(1975‒),男,博士,副教授,研究方向为养殖水环境调控. E-mail:zwsksy@huas.edu.cn

通信作者

通信作者:邹万生,副教授,研究方向为养殖水环境调控. E-mail:zwsksy@huas.edu.cn

文章历史

收稿日期:2024-11-04
修改日期:2025-12-03
鳙肠道菌株BJ-1体外调控休眠铜绿微囊藻复苏研究
邹万生1,莫平1,石彭灵1,王智2,罗玉双1,     
1. 湖南文理学院生命与环境科学学院,水产生物资源及环境生态湖南省工程研究中心,湖南 常德 415000
2. 湖南师范大学生命科学学院,湖南 长沙 410000
摘要:为探究鳙(Aristichthys nobilis)肠道菌株Pseudomonas lactis BJ-1(菌株BJ-1)体外对休眠铜绿微囊藻(DMCs)复苏的影响及作用机理,将BJ-1菌、DMCs藻泥及池塘沉积物混匀包埋,构建低浓度菌组(G1)、较高浓度菌组(G2)和高浓度菌组(G3),以无菌组为对照,在水温25 ℃、光照强度15 μmol·m–2 s–1和光暗周期比12 h∶12 h条件下进行为期21 d的复苏试验,并依据结果开展机理和野外验证。结果显示,试验开始后0~6 d菌株BJ-1持续增殖,第6~21 d维持稳定且G1、G2和G3菌组平均菌浓度分别为0.99×107 cfu·g–1、3.40×107 cfu·g–1和5.21×107 cfu·g–1。DMCs第6 d启动复苏,相比对照组,G2与G3组DMCs固着性胞外多糖(CPSs)含量显著下降,光合效率与复苏率显著降低(P<0.05),G1组与对照组无显著差异(P>0.05)。同时,菌株BJ-1能泌出代谢产物3-苄基哌嗪-2,5-二酮,其浓度与BJ-1菌浓度呈正向线性关系(R2=0.997),G2与G3组3-苄基哌嗪-2,5-二酮浓度分别为0.95 μg·L–1和1.41 μg·L–1,此浓度下DMCs细胞内活性氧(ROS)水平显著提升(P<0.05),光合效率和复苏率显著下降(P<0.05)。较高菌浓度(G2)下,DMCs编码光合系统PS II基因(psbD1)、DNA修复基因(recA)以及与光合作用关联的固碳功能基因(ntcArbcL)均显著下调。实验结果表明,当菌株BJ-1达到较高浓度(≥3.40×107 cfu·g–1)时,可降低DMCs的CPSs含量,同时其泌出代谢产物3-苄基哌嗪-2,5-二酮导致DMCs的ROS水平显著提升,共同抑制了DMCs的光合效率,最终阻碍DMCs复苏。研究结果补充了“以鳙控藻”的理论基础,也为池塘铜绿微囊藻水华防控提供了新思路。
关键词铜绿微囊藻    代谢物    光合效率    胞外多糖    复苏    
In vitro regulation of intestinal bacteria BJ-1 from Aristichthys nobilis in recruitment of dormant Microcystis aeruginosa cells in pond ecosystem
ZOU Wansheng,1,MO Ping1,SHI Pengling1,WANG Zhi2,LUO Yushuang1    
1. School of life and Environmental Sciences, Hunan University of Arts and Science, Hunan Engineering Research Center for Aquatic Biological Resources and Environmental Ecology, Changde 415000, China
2. School of Life Science, Hunan Normal University, Changsha 410000, China
Abstract:The recruitment of dormant Microcystis aeruginosa (DMCs) is an important phase in the formation of Microcystis aeruginosa blooms in aquaculture ponds. When subjected to external environmental stress, such as low temperature, low light, exogenous allelopathic substances, nutrient deficiency, Microcystis aeruginosa cells form DMCs due to damage to the photosynthetic system, phycobilisomes, ribosomes, and other organelles. These DMCs sink to the surface of the sediment to avoid environmental stress. The DMCs are used as seed sources to restart and recruit (repair damaged organelles) once conditions improve. They enter the overlying water, waiting for another outbreak of algal blooms. A higher recruitment rate of DMCs can significantly enhance the interspecific competitiveness of Microcystis aeruginosa, making it prone to population outbreaks and the formation of algal blooms, and vice versa. Therefore, inhibiting the recruitment of DMCs is an effective method for proactively preventing and controlling the outbreak of Microcystis aeruginosa blooms in aquaculture ponds. In order to investigate the effect and mechanism of Pseudomonas lactis BJ-1, an intestinal bacterial strain of Aristichthys nobilis, on the recruitment of resting DMCs in vitro, BJ-1 bacteria were mixed with DMCs and embedded into pond sediment to construct low-concentration bacterial groups (G1), higher-concentration bacterial groups (G2), and high-concentration bacterial groups (G3). The sterile group was used as a control. The recruitment experiment was conducted for 21 days at a water temperature of 25 ℃, light intensity of 15 μmol·m–2s–1, and light-dark cycle ratio of 12 h∶12 h. Mechanism and field verification experiments were performed based on the experimental results. The experimental results showed that the strain BJ-1 continued to proliferate from the beginning of the experiment to the 6th day. After the 6th day, the bacterial concentrations of the low-concentration bacterial group G1, the higher-concentration bacterial group G2, and the high-concentration bacterial group G3 were maintained at (0.99±0.23)×107 cfu·g–1, (3.40±0.27)×107 cfu·g–1, and (5.21±0.39)×107 cfu·g–1, respectively. DMCs began to recruit from the 6th day, and compared with the control group, the content of capsular extracellular polysaccharides (CPSs) in DMCs in G2 and G3 groups decreased significantly, and the photosynthetic efficiency and recruitment rate of DMCs significantly decreased (P<0.05). In contrast, there was no significant difference between the G1 group and the control group (P>0.05). At the same time, the experiment found that strain BJ-1 can secrete the metabolite 3-benzylpiperazin-2,5-dione, and its concentration shows a positive linear relationship with BJ-1 bacterial concentration (R2=0.997). The minimum effective concentration of metabolite 3-benzylpiperazin-2,5-dione to inhibit the recruitment of DMCs was 0.8 μg·L–1. The concentrations of 3-benzyl piperazine-2,5-dione in group G2 and group G3 were (0.95±0.24) and (1.41±0.19) μg·L–1, respectively. At these concentrations, the intracellular reactive oxygen species (ROS) level of DMCs increased significantly (P<0.05), and the photosynthetic efficiency and recruitment rate of DMCs decreased significantly (P<0.05). An analysis of differentially expressed genes (DEGs) showed that DMCs encoding photosynthetic genes (psbD1), DNA repair genes (recA), and carbon fixation (ntcA and rbcL) functional genes were significantly down-regulated under higher bacterial concentrations (G2 group), confirming at the molecular level that bacteria BJ-1 can inhibit the photosynthetic efficiency of DMCs. Validation experiments showed that strain BJ-1 can effectively reduce the recruitment rate of DMCs in outdoor pond environments. The experimental results showed that BJ-1 bacteria in the gut of Aristichthys nobilis at higher concentrations (≥3.40×107 cfu·g–1) can inhibit the photosynthetic efficiency of DMCs in vitro by reducing the CPSs content of DMCs and secreting the metabolite 3-benzylpiperazin-2,5-dione, ultimately hindering the recruitment of DMCs. The experimental results provide new evidence for "controlling algae with Aristichthys nobilis" and also provide new ideas for preventing and controlling Microcystis aeruginosa blooms in aquaculture ponds.
Key words Microcystis aeruginosa     metabolites    photosynthetic efficiency    extracellular polysaccharides    recruitment    

养殖池塘频繁暴发铜绿微囊藻(Microcystis aeruginosa)水华,严重影响池塘生态系统健康和水产生物品质[1-2]。铜绿微囊藻受低温、暗光、外源化感物、营养盐缺乏等不利环境因子胁迫时,因藻细胞光合系统、藻胆体或核糖体等细胞器受损而被迫休眠,形成休眠铜绿微囊藻(dormant Microcystis aeruginosa cells, DMCs)[3]。DMCs下沉至沉积物表层躲避环境胁迫,待条件改善后作为种源重启复苏(修复受损细胞器)进入上覆水体[4]。较高DMCs复苏率可显著提升铜绿微囊藻种间竞争力,容易种群暴发形成水华[5],反之则反[6]。因此,抑制DMCs复苏是防控养殖池塘铜绿微囊藻水华暴发的有效方法。

研究表明,低温与暗光是制约DMCs复苏的重要生态因子,当池塘水温低于7 ℃[7-8]、光照强度低于5 μmol·m–2s–1时,DMCs无法修复受损的光合系统和恢复光合效率,复苏启动受阻[9-10]。另外,降低氮磷营养物浓度[11],尤其高氮磷比,也能一定程度上抑制DMCs复苏[5, 12]。在水产养殖过程中常常放养一定比例鳙(Aristichthys nobilis)以控制铜绿微囊藻种群生物量,然多数学者认为这种“以鳙控藻”是利用鳙的滤食特性[13-15],很少关注鳙是否可以通过其他途径(如抑制DMCs复苏)来实现控藻。2021年7月底,本团队对一正暴发铜绿微囊藻水华的养殖池塘利用戊二醛苯扎溴铵进行消毒杀藻处理,并分隔成三个小池塘分别放养鳙、鲇(Silurus asotus)和青鱼(Mylopharyngodon piceus)。8—9月份原位调查发现,鳙池塘上覆水体中铜绿微囊藻细胞密度显著低于鲇和青鱼池塘,假单胞菌Pseudomonas lactis BJ-1(简称菌株BJ-1)在鳙池塘沉积物中为优势菌,而鲇和青鱼池塘却未检测到此菌株。调查继而发现菌株BJ-1也是鳙肠道优势菌株,其随排泄物排入水体后定植于沉积物表层,并在沉积物表层快速增殖(与DMCs同处一生境)。由此我们推测,鳙池塘中铜绿微囊藻密度低可能是DMCs(杀藻胁迫形成的休眠体)低复苏率导致,而低复苏率可能与菌株BJ-1相关。为检验来源于鳙肠道的假单胞菌株Pseudomonas lactis BJ-1是否影响沉积物表层DMCs复苏,以及探究菌株BJ-1可能的作用机理,本研究设计并开展了室内外复苏试验,以期能发现水产养殖过程中鳙肠道菌与DMCs复苏之间的内在关系,补充丰富“以鳙控藻”的理论基础。

1 材料与方法 1.1 实验材料 1.1.1 休眠铜绿微囊藻(DMCs)

从暴发铜绿微囊藻水华鱼塘中采集表层水样,吸取0.1 mL水样于半固态BG11培养基(中国科学院水生所提供配方)上分离、纯化铜绿微囊藻;将纯化铜绿微囊藻接种于液态BG11培养基中,在温度30 ℃、光照强度25 μEm−2s−1条件下扩培25 d并转移至1000 mL三角瓶中,用微通风膜封口,于4 ℃冰箱中黑暗静置3个月。实验前使用虹吸管(Φ2.0 cm)移除三角瓶中约700 mL上清液,浓缩制备成DMCs藻泥,步骤参考Zou等[16]

1.1.2 菌液

将假单胞菌株Pseudomonas lactis BJ-1接种于琼脂培养基(0.3%牛肉膏、0.8%蛋白胨、1.5%琼脂粉、0.5%葡萄糖、0.5%氯化钠、pH 7.2), 25 ℃条件下培养24 h进行活化。用接种针挑选10个菌落,接种入200 mL液体培养基(0.5%葡萄糖、0.1%磷酸二氢铵、0.02%七水硫酸镁、0.5%氯化钠、0.1%磷酸二氢钾), 25 ℃摇瓶培养72 h至菌浓度1×108 cfu·mL–1,以此为母液继续扩培,菌液扩培按照母液与液体培养基体积1∶9进行。

1.1.3 沉积物

沉积物采样点与水体采样点一致,用柱状KC沉积物采样器(Φ16.5 cm, KC,丹麦)采集鱼塘表层5 cm沉积物,用孔径125 μm不锈钢筛网(NUNC,丹麦)过滤,将预处理沉积物密封于无菌塑料袋(体积10 L)中,冷藏运回实验室进行灭菌(121 ℃, 30 min)处理。

1.1.4 培养液

试验所用培养液为经过处理的富营养化池塘养殖水体:用5 L水样采样器(HYDRO-BIOS,基尔,德国)从西洞庭湖石拱桥生态渔业合作社一鱼塘处采集水样(水面下0.5 m),用不锈钢筛网(Φ10 μm, NUNC,丹麦)对水样过滤预处理,冷藏于聚乙烯水箱中(体积100 L/箱)快速运回实验室进行灭菌(121 ℃, 30 min)处理。

1.2 实验方法 1.2.1 复苏试验设计

将200 mL DMCs藻泥(材料1.1.1)分别与0 mL (对照组CK)、10 mL (G1组)、100 mL (G2组)和300 mL (G3组) BJ-1菌液(材料1.1.2)充分浸润后,各用10 kg沉积物(材料1.1.3)混匀包埋,均匀铺入长、宽和高均为50 cm特制立方体玻璃容器底部,用导杆沿壁向玻璃容器中缓慢加入80 L培养液(材料1.1.4); CK、G1、G2和G3组沉积物中BJ-1菌初始包埋浓度分别为0 cfu·g–1、1×105 cfu·g–1、10×105 cfu·g–1和30×105 cfu·g–1, DMCs初始包埋浓度均为18.00 μg·g–1 (DMCs浓度以叶绿素a浓度表示);将玻璃容器置于温度25 ℃、光强15 μmol·m–2s–1、光暗周期比12 h∶12 h环境中进行21 d复苏试验。取样时间和测定指标如表1

表1  实验中取样时间及测定指标 Tab. 1  Sampling time and measurement indicators during the experiment

为确定菌株BJ-1增殖过程中泌出的代谢产物种类,将浓度1×108 cfu·mL–1菌母液1 mL移入500 mL培养液中振荡培养6 d,获得菌株发酵液并与各复苏实验组同时测定代谢产物及浓度。将检出代谢产物及浓度进行验证性复苏实验,以确定纯代谢物对DMCs复苏、胞外多糖EPSs (包括SPSs和CPSs)含量、活性氧(ROS)相对水平及光合效率(Fv/Fm)的影响。同时为探讨菌株BJ-1可能对DMCs复苏产生抑制效应的分子机制,在实验第2、4和6 d对各组采集100 g沉积物浮提出DMCs并存于超低温冰箱(−80 ℃),实验结束后对显著受到复苏抑制的DMCs提取RNA并送北京诺禾致源测序、构建转录文库,并进行基因差异表达分析。

1.2.2 沉积物中DMCs浮提

参照Verspagen等[17]方法提取沉积物中DMCs。使用负压取样器(Φ2.5 cm, KC,丹麦)提取沉积物,将沉积物与适量Percoll硅胶悬浮液(30% Percoll原液,10% NaCl溶液,60%双蒸水,每1 g沉积物4 mL Percoll悬浮液)充分混合,1200×g离心15 min,用醋酸纤维素膜(25 μm)滤掉上清液。将滤膜上的DMCs用15 mL BG11试剂(微囊藻培养基)或蒸馏水洗涤保存,用于测定各项设计参数。

1.2.3 叶绿素a、光合效率和细菌浓度测定

用叶绿素荧光仪(Photo-PAM2500, Walz,德国)直接检测浮提DMCs或已复苏铜绿微囊藻叶绿素a (chl a)浓度和光合效率(Fv/Fm),具体操作步骤参照Hodoki等[18];使用吖啶橙荧光法[19]测定沉积物中BJ-1菌浓度。

1.2.4 胞外多糖(EPSs)检测及对DMCs复苏验证

取40 g沉积物浮提休眠铜绿微囊藻(DMCs),用15 mL蒸馏水洗涤混匀,其中5 mL超声波打散藻细胞团(10 kHz、10 s),取0.1 mL用血细胞计数板(25×16)镜检计数。另10 mL离心15 min (3000×g),纤维素酯滤膜(0.45 μm)抽滤获上清液,参照Nakagawa等[20]测定上清液SPSs含量。抽滤后的DMCs平均分成2份,一份用于复苏验证实验以探讨SPSs去除(不加BJ-1菌)对复苏的影响,一份用蒸馏水复溶至10 mL,用1.0 mol·L–1 NaOH调节溶液pH至10, 30 ℃水浴5 h,离心15 min (7000×g),纤维素酯滤膜(0.45 μm)再抽滤上清液,参照Nakagawa等[20]测定上清液CPSs含量。余下DMCs用于复苏验证实验以探讨SPSs和CPSs均去除对复苏的影响,为满足验证实验对DMCs的需求,上述过程重复5次。单个藻细胞SPSs和CPSs的平均含量为测定的SPSs和CPSs总含量除以藻细胞数。

1.2.5 抗氧化酶活性及ROS浓度的测定

取定量沉积物浮提DMCs并用15 mL BG11试剂洗涤,离心10 min (3000×g),弃上清液,用万分之一电子天平称量DMCs生物量。继续加入3mL生理盐水,用研磨机将DMCs固形物匀浆3 min[17]后,严格按照试剂盒说明书测定SOD (硝基蓝四氮唑光化学还原法)、CAT (愈创木酚法)、POD (NBT光化学还原法)活性及ROS (荧光分光光度法)相对水平。试剂盒均购自中国江苏碧云天(Beyotime)生物技术研究院。检测得到这些生物标记物的活性或含量后,将结果标准化为DMCs生物湿重(FW, fresh weight)[17]

1.2.6 代谢产物测定和验证

取沉积物–水界面水样50 mL,离心15 min (3500×g),用CH2Cl2在pH分别为2.0、7.0和11.0条件下对上清液进行三次提取。代谢产物成分与浓度采用气相色谱-质谱法(GCMS-QP2015,岛津,日本)进行测定,色谱柱为DB-5石英毛细管柱。温度条件:初始柱温60 ℃维持4 min,再以5 ℃ min–1的速率升温至300 ℃,维持该温5 min,进样口温度310 ℃。质谱条件:电子源轰击能量70 EV,离子源温度320 ℃,扫描间隔0.5 s。各峰利用质谱计算机数据系统检索并比对Nist2005和Wiley275标准质谱图,峰面积法测定各代谢产物成分相对质量分数,确定代谢产物分子式、化学结构和浓度[21]。纯代谢物对DMCs复苏验证:依据测定的代谢产物化学结构和分子式(对应CAS号)采购对应化学试剂(Sigma-Aldrich公司),按各组测定的代谢产物浓度进行复苏验证实验,以不添加代谢产物为对照组测量DMCs复苏率、Fv/Fm、EPSs和ROS等指标。设计梯度实验以确定代谢产物最小有效浓度,具体步骤参照Zou等[16]方法进行。

1.2.7 测序与差异表达基因分析

分别使用TRizol R试剂®(Thermo Fisher Scientific, USA)和用于Illumina的NEBNext®Ultra™RNA文库制备试剂盒(NEB, USA)提取DMCs的RNA并构建文库。所有样本均在Illumina测序平台(HiSeqTM 2500)上测序,并通过Trinity组装成转录序列。利用KEGG和Swiss-Prot等数据库对单基因进行功能注释。通过RSEM将所有处理过滤的基因(clean reads)映射到组装好的转录组参考序列上,计算每个基因的读值,然后采用FPKM算法对每个基因的读值进行归化(Normalized)处理。使用基于负二项分布的DESeq软件筛选差异表达基因(DEGs, differentially expressed genes),调整后的P值(q) (<0.05)阈值和差异倍数对数(log2)绝对值(>1)用于确定基因表达的显著差异。采用实时定量聚合酶链反应(RT-qPCR)检测相关基因表达水平。详细步骤参考Livak等[22]

1.2.8 野外试验

将正暴发铜绿微囊藻水华的鱼塘(西洞庭湖石拱桥生态渔业基地)用生石灰(CaO)抑藻处理,4 d后排干鱼塘水并用防水膜和固定桩将其平均分为2个二级塘(a、b塘),每个二级塘均匀分成3个小塘。每小塘均匀喷洒DMCs藻泥5 L,每二级塘的3个小塘喷洒不同体积BJ-1菌液(对照组CK不喷洒,另2个小塘菌浓度分别与室内实验G2和G3组一致,组别为野外FG2和FG3组),再抽取过滤后外池水填充至1.0 m深。测定沉积物表层DMCs的初始浓度和水柱中铜绿微囊藻细胞密度,第21 d再次测定,计算休眠铜绿微囊藻群体复苏率。

1.2.9 复苏率计算

复苏率计算:R%=(CiCr)/Ci× 100%,其中Ci表示沉积物中DMCS 初始包埋浓度,Cr表示实验结束时沉积物中DMCs浓度[8]

1.2.10 数据处理

试验各组均设3个平行,以平均值±标准差(n=3; $\bar x \pm {\rm{SD}}$)表示每组数据,所有数据用Excel 2016软件进行处理,采用Excel 2016和Powerpoint 2016软件作图,采用双因素方差分析(ANOVA)进行显著性差异分析(P<0.05具显著性差异,P<0.01具极显著性差异)。

2 结果与分析 2.1 BJ-1菌对DMCs胞外多糖(EPSs)含量、光合效率及复苏影响

试验开始后的0~6 d, G1、G2和G3沉积物中BJ-1菌浓度持续上升,第6 d达到峰值并维持稳定,平均浓度分别为0.99×107 cfu·g–1, 3.40×107 cfu·g–1和5.21×107 cfu·g–1(图1a)。对照组CK(无菌组)和G1组DMCs光合效率(Fv/Fm)逐渐提升,后恢复至正常水平,在0.62~0.69之间波动,两组间无显著性差异。G2和G3组DMCs光合效率(分别为0.34和0.26)显著低于CK和G1组(P<0.05)(图1b、1c),这表明菌浓度较高时(≥3.40×107 cfu·g–1)对DMCs光合效率具有抑制作用。第6 d,沉积物中DMCs开始复苏,并逐渐迁移至水柱中,沉积物中DMCs浓度逐渐降低(图1d),水柱中藻浓度逐渐增大(图1e)。CK与G1组之间复苏率无显著性差异(P>0.05),但均显著高于G2和G3组(P<0.05), G2组复苏率又显著高于G3组(图1f)。实验结束后CK、G1、G2和G3组最终DMCs复苏率分别为76.6%、72.3%、29.4%和15.3%。

图1  菌株BJ-1浓度(a)、DMCs光合效率(b‒c)和复苏(d‒f)动态FW:鲜重;CK:对照组(不加菌); G1, G2和G3:从低到高不同菌浓度组;柱形图上方不同字母表示差异显著(P<0.05). Fig. 1  Dynamics of strain BJ-1 concentration (a), photosynthetic efficiency (b‒c) and recruitment rate of DMCs (d‒f)FW: fresh weight. CK: control group; G1, G2 and G3: groups with different bacterial concentration from low to high, respectively. Different letters above the column indicate significant difference (P<0.05).

同时,随着菌株BJ-1浓度增加,G1、G2和G3组DMCs细胞外围EPSs层较CK组变薄,DMCs细胞间距增大,群体松散(图2a~2d)。实验第6 d,各菌组可溶性胞外多糖(SPSs)含量均显著低于CK组(P<0.05),且菌组之间无显著差异(P>0.05)。G1组固着性胞外多糖(CPSs)含量(1.98 pg.cell–1)与CK组(2.11 pg·cell–1)无显著差异,但显著高于G2和G3 组(分别为0.67和0.34 pg·cell–1)(图2e、2f)。这表明低浓度与较高浓度BJ-1菌均可去除SPSs,但只有较高菌浓度能去除CPSs。验证性复苏实验表明去除SPSs不影响DMCs光合效率和复苏率,而去除CPSs后DMCs光合效率和复苏率显著降低(图2g、2h)。实验结果表明较高浓度BJ-1菌可去除DMCs的CPSs、阻碍DMCs光合效率恢复,进而抑制DMCs复苏。

图2  DMCs胞外多糖形态(a‒d)与含量(e‒f)以及对DMCs光合效率(g)和复苏率(h)的影响SPSs:可溶性胞外多糖;CPSs:固着性胞外多糖;FD:第1d. 图2e上方,不同大写字母表示组间SPSs含量差异显著(P<0.05),不同小写字母表示组间CPSs含量差异显著(P<0.05);其他柱形图上方不同字母表示差异显著(P<0.05). Fig. 2  The morphology (a‒d) and content of extracellular polysaccharides (e‒f) in DMCs, and their effects on the photosynthetic efficiency (g) and recruitment rate (h) of DMCsSPSs: soluble extracellular polysaccharides; CPSs: capsule extracellular polysaccharides; FD: first day. Different capital letters above the columns in panel e denote significant difference in SPSs content, and different lowercase letters denote significant difference in CPSs content. Different letters above the columns of other panels indicate significant difference (P<0.05).
2.2 DMCs细胞内活性氧水平及抗氧化酶活性

实验的第4 d和第6 d, G1组DMCs细胞内活性氧(ROS)水平(相对荧光水平)与CK组无显著性差异(P>0.05),均处于1.001~1.005之间。而G2和G3组的ROS水平显著高于CK和G1组(P< 0.05),同时,G3组显著高于G2组(P<0.05)(图3a),这表明较低菌浓度不会对DMCs细胞内活性氧(ROS)水平产生影响,而较高菌浓度导致DMCs细胞内ROS水平显著升高。实验第4 d和第6 d, G1组DMCs抗氧化酶SOD、POD和CAT活性与CK组无显著差异(P>0.05),且G1和CK组第6 d 的SOD、POD、CAT活性与第4 d相比无显著差异(P>0.05)。G2和G3组的SOD、POD和CAT活性显著高于G1和CK组,且第6 d的SOD、POD和CAT活性显著高于第4 d (P<0.05)(图3b~3d)。这些结果表明在较高浓度BJ-1菌条件下不仅DMCs细胞内活性氧(ROS)水平显著提升,其抗氧化酶SOD、POD和CAT活性也显著增强。

图3  休眠铜绿微囊藻细胞内活性氧水平(a)与抗氧化酶活性(b‒d)柱形图上方不同大写字母表示同天不同组之间存在显著性差异,不同小写字母表示同组不同天之间存在显著性差异(P<0.05). Fig. 3  Reactive oxygen species level (a) and activities of antioxidant enzyme (b‒d) of DMCs among different groupsDifferent capital letters on the column denote significant differences among different groups on the same day. Different lowercase letters denote significant differences among different days in the same group (P<0.05).
2.3 菌株BJ-1代谢产物对DMCs复苏的影响

从培养液、对照组(CK)、菌组(G1、G2和G3)及BJ-1发酵液中共提取到17种代谢物,其中6种代谢产物仅从菌组和发酵液中提取到,表明这6种代谢物均由BJ-1菌泌出,分别为鼠李糖脂A(CAS 869062-42-0)、1-氯庚烷(CAS 62016-79-9)、3,4-二氯双环[3.2.1]辛-2-烯(CAS 57615-42-6)、2-碘乙基-苯(CAS 17376-04-4)、3-苄基哌嗪-2,5-二酮(CAS 5037-75-2)和2,4-双(1,1-二甲基乙基)-苯酚(CAS 96-76-4)。G1组6种代谢物浓度分别为0.13、0.56、0.35、0.98、0.26和0.56 μg·L–1, G2组为1.47、0.51、1.12、1.16、0.95和1.23 μg·L–1, G3组为1.66、0.58、1.53、1.08、1.41和1.37 μg·L–1(表2)。

表2  各组(含培养液)代谢产物成分及浓度 Tab. 2  Composition and concentration (μg·L–1) of metabolites extracted from each group, culture solution and broth n=3; $\bar x \pm {\rm{SD}}$

验证性复苏实验(纯代谢物替代菌株BJ-1,验证浓度为各组对应检出浓度)发现仅G2和G3组3-苄基哌嗪-2,5-二酮(浓度分别0.95 μg·L–1和1.41 μg·L–1)显著降低了DMCs复苏率(分别为40.6%和29.5%), G1组(浓度0.26 μg·L–1)对DMCs复苏无显著影响(图4a~4f),这表明一定浓度的3-苄基哌嗪-2,5-二酮具有抑制DMCs复苏的能力,且浓度越高,抑制效果越强。实验进一步发现3-苄基哌嗪-2,5-二酮浓度与菌BJ-1浓度呈正向线性关系(R2=0.997)(图4g),抑制DMCs复苏的最低有效浓度为0.80 μg·L–1 (表3),对应的菌浓度为2.97×107 cfu·g–1。实验按照G2组中检出的6种代谢产物浓度再次进行验证试验,6种代谢物均未对DMCs的EPSs浓度(包括SPSs和CPSs)产生显著影响(图4h),仅3-苄基哌嗪-2,5-二酮(0.95 μg·L–1)显著提高了DMCs的ROS水平,抑制了DMCs的光合效率(图4i~4j)。这说明BJ-1菌通过泌出较高浓度的3-苄基哌嗪-2,5-二酮提高DMCs的ROS水平以抑制DMCs的光合效率,实现抑制DMCs复苏。另外,尽管G2组对应的纯3-苄基哌嗪-2,5-二酮与菌株BJ-1组泌出的3-苄基哌嗪-2,5-二酮浓度均为0.95 μg·L–1,但前者DMCs光合效率和复苏率显著高于后者(P<0.05), G3组(3-苄基哌嗪-2,5-二酮浓度1.41μg·L–1)类同(图4k~4l)。这表明菌株BJ-1通过泌出3-苄基哌嗪-2,5-二酮和去除DMCs胞外多糖共同抑制了DMCs光合效率和复苏。

图4  纯代谢产物暴露下DMCs复苏率(a‒f)、代谢产物与对应菌浓度(g)、胞外多糖浓度(h)、活性氧水平(i)和光合效率(j),以及与菌株对比的光合效率和复苏率(k‒l)柱状图h上方不同大、小写字母分别表示组间SPSs和CPSs具显著差异;柱状图k与l上方不同大写字母表示组内显著差异,不同小写字母表示组间显著差异;其他柱状图上方不同字母表示显著差异(P<0.05). Fig. 4  Recruitment rate (a‒f), corresponding bacterial concentration (g), EPSs concentration (h), ROS level (i), and photosynthetic efficiency (j) of each group under pure metabolite exposure, and which were compared with bacterial strains (k‒l)Different capital and lowercase letters above the columns in panel h indicate significant differences in SPSs and CPSs among groups, respectively; Different capital letters above the columns in panels k and l indicate significant differences within groups, while different lowercase letters indicate significant differences between groups; Different letters above the columns of other panels indicate significant difference (P<0.05).
表3  代谢产物3-苄基哌嗪-2,5-二酮对休眠体复苏的影响 Tab. 3  Effects of metabolites 3-Benzylpiperazine-2,5-Dione on the recovery of DMCs n=3; $\bar x \pm {\rm{SD}}$
2.4 DMCs测序建库及基因差异表达

通过对G2组(复苏显著受抑组)DMCs测序、建库分析,共获得5803803个单基因,平均长度404 bp。功能注释结果显示基因占比较高的代谢通路31类(涉及基因719314个),主要包括运输和分解代谢、细胞生长和死亡、信号转导、碳水化合物代谢和翻译(图5)。比较G2组(处理组,TR)和CK组DMCs在复苏早期的基因表达状况,实验第2 d, G2和CK组之间有21个差异表达基因(DEGs),第4 d,存在420467个DEGs,与CK组对比G2组中有126279个基因上调,294188个基因下调(图6a, 6c),第6 d, G2组212573个DEGs中的118448个表达显著下调(图6b~6c)。第4 d与第6 d, G2组中recA、psbD1、rbcLntcA基因的相对表达水平较CK组显著下调,尤其与光合作用相关基因rbcLpsbD1 (图6d~6g)。这表明较高浓度BJ-1菌对复苏早期DMCs基因表达产生影响,同时证实了BJ-1菌可以抑制复苏期DMCs的光合效率。

图5  菌株BJ-1暴露下铜绿微囊藻休眠体注释基因富集的KEEG代谢途径A‒E分别表示细胞过程、环境信息处理、遗传信息处理、新陈代谢和有机系统. Fig. 5  KEGG metabolic pathways of the DMCs, which exposed strain BJ-1A‒E represent cellular processes, environmental information processing, genetic information processing, metabolism and organic systems, respectively.
图6  第2, 4和6 d休眠铜绿微囊藻基因表达(G2组与CK组比对)a. 实验第4 d 的DMCs基因表达情况;b. 实验第6 d的DMCs基因表达情况. CK2, CK4和CK6:对照组(无菌组)的第2, 4和6 d; TR2, TR4和TR6: G2菌组的第2, 4和6 d. 柱状图上方不同大写字母表示处理组与对照组之间基因的相对表达水平差异显著,不同小写字母表示同一基因在不同时间相对表达水平差异显著(P<0.05). Fig. 6  Gene expression of DMCs on the 2nd, 4th, and 6th days during recruitment experiment (G2 group was compared with CK group)a. gene expression of DMCs on the 4th day of the experiment; b. gene expression of DMCs on the 6th day of the experiment. CK2, CK4, and CK6: the 2nd, 4th, and 6th day of the control group; TR2, TR4, and TR6: the 2nd, 4th, and 6th day of the bacterial group G2. Different capital letters on the panels indicated significant differences in relative expression level of the same gene between the G2 and CK group on the same day, and different lowercase letters indicated significant differences in relative expression level of the same gene at different times (P<0.05).
2.5 菌株BJ-1野外对DMCs复苏影响

在a塘中,FG2、FG3组沉积物中DMCs复苏率分别为39.2%和22.7%,显著低于对照组复苏率(68.7%), FG3组复苏率显著低于FG2组(P< 0.05)。在b塘中,FG2、FG3组沉积物中DMCs复苏率分别为38.6%和23.2%,显著低于对照组复苏率(66.9%), FG3组复苏率也显著低于FG2组(P<0.05)。a和b池塘各对应小塘(对照组、FG2或FG3)的DMCs复苏率没有显著差异(图7a)。上覆水柱中已复苏铜绿微囊藻细胞密度差异与沉积物中DMCs复苏率差异基本一致(图7b)。野外试验结果表明,在池塘水体中一定浓度BJ-1菌可以抑制DMCs复苏,且浓度越高,抑制能力越强。

图7  野外实验休眠铜绿微囊藻群体复苏率CK:对照组;FG2和FG3:野外试验池塘沉积物中BJ-1菌浓度与室内实验组G2和G3一致的组. 不同大写字母代表同一池塘不同组之间的复苏率或叶绿素a浓度存在显著性差异,不同小写字母不同池塘对应组之间的复苏率或叶绿素a浓度存在显著性差异(P<0.05). Fig. 7  Recruitment rate of DMCs population in field experimentsCK: control group; FG2: group with the concentration of strain BJ-1 on the sediment surface consistent with the G2 group; FG3: group with the concentration of strain BJ-1 on the sediment surface consistent with the G3 group. Different capital letters above the columns indicate significant differences in the recruitment rate of DMCs or algal density between different groups in the same pond, and different lowercase letters indicate significant differences in the same group (P<0.05).
3 讨论 3.1 菌株BJ-1对DMCs复苏影响

本研究发现源自鳙肠道排泄物中的假单胞菌株Pseudomonas lactis BJ-1在较高浓度下显著抑制了DMCs复苏(DMCs复苏率显著下降)。DMCs复苏是水产养殖水域铜绿微囊藻水华暴发的关键环节,也是铜绿微囊藻重要的生活史特征之一[3-4],挖掘直接或间接抑制DMCs复苏的水生微生物菌群,对从前端防控铜绿微囊藻水华暴发具有重要意义。目前关于水生微生物菌群影响DMCs复苏的报道并不多见,已有报道也主要集中在水生菌株促进DMCs复苏领域,如Zou等[16]从西洞庭冲天湖水域筛选出了2株能促进DMCs复苏的芽孢杆菌(Bacillus),随后Wang等[23]对2菌株促进DMCs复苏的机理进行了深入研究;邹万生等[24]从鲇和青鱼排泄物中分离出3株肠道菌(分别为假单胞菌Pseudomonas、芽孢杆菌Bacillus和厚壁菌Firmicutes), 3菌株在较低温度下(10和15 ℃)均具有显著提升DMCs光合效率并促进DMCs复苏的能力。目前暂未见关于水生菌株抑制DMCs复苏的相关报道。

菌株BJ-1能抑制DMCs复苏可能是鳙养殖池塘极少暴发水华的重要原因。有研究表明水产养殖过程中搭配放养一定数量的鳙(非经典生物操纵)可以有效防控铜绿微囊藻水华[13, 15],然“以鳙控藻”机理目前尚不完全清晰,有研究认为它利用了滤食性生物可以直接摄食并消化铜绿微囊藻细胞的特性[13-14];而又有研究发现,对于外围包裹着胞外多糖(EPSs)层的团体藻细胞,鳙摄食并不会对铜绿微囊藻细胞构成完全损伤,群体藻细胞被吞食后进入休眠状态(形成DMCs)而不会被消化,并最终以肠道排泄物方式排出体外,DMCs仍保持活性并在短期内复苏[15]。本研究中当鳙肠道中分离的菌株BJ-1包埋浓度(接种)为10×105 cfu·g–1时,6 d后BJ-1菌浓度达3.4×107 cfu·g–1, DMCs复苏率显著下降,这表明菌株BJ-1在沉积物中具有较强的增殖能力(活性),当增殖到一定浓度后便可以显著抑制DMCs复苏(本实验证实了抑制DMCs复苏的最低有效菌浓度为2.97×107 cfu·g–1),而DMCs低复苏率直接影响铜绿微囊藻水华的形成[6]。同时,本团队前期在对野外鳙养殖塘(水深1.5 m)原位调查中发现适温条件下(25 ℃)鳙肠道排泄物中菌株BJ-1浓度为7.5×108 cfu·g–1,池塘表层沉积物中菌浓度达3.2×107 cfu·g–1(按照鳙放养密度1.5 kg/m3、日排泄物量2~3 g/kg及本实验沉积物中菌株BJ-1接种浓度10×105 cfu·g–1推算,约9 d后达到该浓度),上覆水体却未检出该菌株,且上覆水体铜绿微囊藻细胞密度显著低于鲇和青鱼池(对照组),这表明菌株BJ-1随鳙肠道排泄物排入水体后定殖于表层沉积物中,通过增殖对处于同一生境的DMCs产生了复苏抑制,这也间接佐证了DMCs即使不被鳙肠道消化,其复苏也将面临菌株BJ-1抑制。本研究中野外试验也证实菌株BJ-1可以在池塘生态系统中降低DMCs复苏率。为此,鳙肠道假单胞菌株Pseudomonas lactis BJ-1可能在“以鳙控藻”过程中发挥积极作用。

3.2 胞外多糖对DMCs光合效率及复苏影响

本研究中菌株BJ-1显著降低了DMCs的胞外多糖(EPSs)含量,表明BJ-1菌株具有去除或降解DMCs胞外多糖的能力。尽管有研究发现铜绿微囊藻在遭遇环境胁迫时EPSs可以抵御或减轻浮游生物对藻细胞的伤害[25],甚至具有一定防御溶藻细菌的能力[26]。然更多研究表明水域生态系统中存在一些可直接接触降解铜绿微囊藻EPSs层菌株,可使铜绿微囊藻细胞丧失保护屏障,光合效率下降、光合作用减弱[27-28],有些菌株还能分泌代谢产物氧化损伤EPSs间接影响铜绿微囊藻细胞的光合效率和活性[29],甚至少数菌株可同时利用这两种途径诱导铜绿微囊藻细胞光合效率下降,导致藻细胞凋亡[30]。然而,本研究发现低浓度BJ-1菌虽然导致了DMCs的可溶性胞外多糖(SPSs)含量降低(EPSs总含量也相应降低),但没有导致DMCs光合效率下降,也不影响DMCs复苏,这表明即使EPSs总含量降低,但仅仅只去除或破坏了SPSs,则对DMCs的光合效率和复苏率没有显著影响,DMCs细胞仍维持正常生理活性,这似乎与上述已报道的研究结果相悖。但本研究进一步发现在较高BJ-1菌浓度(≥3.40×107 cfu·g–1)条件下,DMCs可溶性胞外多糖(SPSs)和固着性胞外多糖(CPSs)含量均显著降低,DMCs光合效率和复苏率也显著下降,说明去除或破坏CPSs才是抑制DMCs光合效率和复苏率的决定性因素,本研究首次探讨了CPSs与DMCs复苏之间的内在关系。

另外,本研究中较高浓度BJ-1菌条件下DMCs一些与氧化磷酸化相关的基因显著下调。前期研究表明DMCs在复苏期泌出EPSs,可以增加铜绿微囊藻细胞在水中的浮力并垂直迁移到水面,从而获得足够光能[31-32]。然而,EPSs的体内合成和向体表转运都需要大量的三磷酸腺苷(ATP),而ATP受到氧化磷酸化限制[33]。因此,与氧化磷酸化相关基因显著下调表明DMCs的氧化磷酸化进程受阻,影响了EPSs的合成和转运,阻断EPSs的补偿机制,这也可能是BJ-1菌条件下EPSs含量较低的原因之一。

3.3 菌株BJ-1代谢产物对DMCs光合效率和复苏的影响

本研究中菌株BJ-1在较高浓度下(G2与G3组)可泌出代谢产物3-苄基哌嗪-2,5-二酮,在浓度高于0.80 μg·L–1时显著提高DMCs体内活性氧(ROS)水平,虽该代谢产物不影响DMCs的胞外多糖(EPSs)含量,但显著降低了DMCs复苏率,这表明菌株BJ-1不仅通过破坏EPSs结构,而且还通过泌出代谢产物3-苄基哌嗪-2,5-二酮共同抑制DMCs复苏。目前关于菌株代谢产物抑制DMCs复苏的研究甚少,但类似于溶藻菌株泌出的外源代谢物用于治理各类藻类水华的报道并不鲜见[34]。菌株Bacillus sp.Lzh-5可泌出3-异丙基-六氢吡咯[1,2-a]吡嗪-1,4-二酮代谢产物,该物质对处于细胞增殖期的铜绿微囊藻具有较强的溶解能力,菌株Aeromonas sp.GLY-2107能分泌3-甲基吲哚使铜绿微囊藻细胞凋零失活[35],而菌株Paucibacter aquatile DH15可分泌一种Paucibatin A的代谢产物以抑制铜绿微囊藻细胞的分裂增殖[36]。少数研究还进一步探索代谢产物的抑藻机理,新鞘氨醇瘤菌Novosphingobium sp. ERW19通过分泌新鞘氨醇瘤素类(novosphingonodin I和II类)化合物,诱导藻细胞内ROS浓度显著增加,ROS的过度累积破坏了藻类细胞的膜系统,从而有效抑制了铜绿微囊藻的生长[37]。代谢物N-苯基-2-萘胺和乙酰丙酮可诱导铜绿微囊藻细胞内产生过量的ROS,同时伴随着细胞内SOD、POD和CAT活性的显著增强[38]。本研究中,3-苄基哌嗪-2,5-二酮对复苏期DMCs的作用机理与上述代谢产物具有类似性。

本研究中代谢产物3-苄基哌嗪-2,5-二酮暴露下DMCs细胞内ROS的相对水平显著升高,光合效率显著下降。有研究表明藻类细胞的抗氧化系统虽可以清除一定浓度水平的ROS,然过量ROS会干扰藻类细胞的光合系统II (PSII)并降低其光合效率[39]。还有研究报道菌株Hahella sp. KA22能泌出一种通过质膜转运的Tripyrrole R代谢物质,可导致藻类细胞ROS水平急剧上升,通过损伤藻类细胞膜系统、质膜及类囊体膜,使藻细胞光合效率下降直至凋亡[40]。这表明3-苄基哌嗪-2,5-二酮可能通过诱导DMCs过量ROS产生而抑制DMCs光合效率,最终导致DMCs复苏率下降。然而,过量的ROS不仅会抑制藻细胞光合效率,还会导致细胞膜脂质体、核糖体、细胞核(DNA)和藻蛋白的氧化损伤[41],代谢产物3-苄基哌嗪-2,5-二酮诱导产生的ROS是否也通过类似途径抑制DMCs复苏还有待进一步研究。

另外,从DEGs的表达分析看,本研究中编码DNA修复酶基因recA基因[42]表达的显著下调表明DMCs的自我修复能力显著降低,psbD1基因(编码蛋白D2)是与光合系统II (PS II)相关的重要蛋白基因[43],这些基因相对表达显著下调,说明PS II在DMCs中的修复被阻断,导致DMCs的光合效率下降。同时,与催化固定、碳化和氮代谢相关的ntcArbcL基因相对表达水平显著降低,而这些基因与DMCs光合效率及光合作用间接相关[41]。这些结果进一步证实BJ-1菌株通过泌出代谢产物3-苄基哌嗪-2,5-二酮抑制DMCs光合效率和复苏。

4 结论

沉积物中假单胞菌株Pseudomonas lactis BJ-1浓度较高(≥3.40×107 cfu·g–1)时可显著降低DMCs复苏率,而其浓度较低(≤0.99×107 cfu·g–1)对DMCs复苏率无显著影响。较高浓度BJ-1菌降低了DMCs的EPSs (主要是CPSs)含量,抑制了DMCs的光合效率和复苏。同时,菌株BJ-1通过分泌代谢物3-苄基哌嗪-2,5-二酮抑制了DMCs光合效率(有效浓度0.80 μg·L–1),进一步阻碍DMCs复苏。较高浓度BJ-1菌处理(暴露)后,与DMCs光合作用相关的光合基因(psbD1)、DNA修复酶基因(recA)和固碳基因(ntcArbcL)等显著下调。这些实验结果表明菌株BJ-1通过抑制DMCs 的光合效率而阻碍了DMCs复苏。

参考文献
[1]
Huo D, Gan N Q, Geng R Z, et al. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins[J]. Harmful Algae, 2021, 109: 102106..》Google Scholar
[2]
Su F W, Gao P C, Lai Q F, et al. Effects of Microcystis aeruginosa and Chlorella pyrenoidosa on water environment pH[J]. Journal of Fishery Sciences of China, 2016, 23(6): 1380-1388. [苏发文,高鹏程,来琦芳,等. 铜绿微囊藻和小球藻对水环境pH的影响[J]. 中国水产科学,2016, 23(6): 1380-1388.].》Google Scholar
[3]
Preston T, Stewart W D P, Reynods C S. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface[J]. Nature, 1980, 288: 365-367..》Google Scholar
[4]
Chen Q W, Wang M, Zhang J Y, et al. Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: Implication for nitrogen mitigation[J]. Water Research, 2019, 163: 114890..》Google Scholar
[5]
Coyne K J, Wang Y F, Johnson G. Algicidal bacteria: A review of current knowledge and applications to control harmful algal blooms[J]. Frontiers in Microbiology, 2022, 13: 871177..》Google Scholar
[6]
Ma J R, Qin B Q, Paerl H W, et al. The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China[J]. Limnology and Oceanography, 2016, 61(2): 711-722..》Google Scholar
[7]
Misson B, Latour D. Influence of light, sediment mixing, temperature and duration of the benthic life phase on the benthic recruitment of Microcystis[J]. Journal of Plankton Research, 2012, 34(2): 113-119..》Google Scholar
[8]
Tang J, Song L R, Sun S S, et al. Recruitment ability of Microcystis aeruginosa under low light-low temperature combination[J]. Environmental Science, 2010, 31(12): 2932-2937. [汤俊,宋立荣,孙松松,等. 低光低温联合作用对铜绿微囊藻复苏能力的影响[J]. 环境科学,2010, 31(12): 2932-2937.].》Google Scholar
[9]
Wang X Y, Zhao Y, Jiang X X, et al. The growth and physiological activity of Microcystis aeruginosa after flocculation using modified tannin[J]. International Biodeterioration & Biodegradation, 2018, 133: 180-186..》Google Scholar
[10]
Zhang M, Shi X L, Yu Y, et al. The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa[J]. Journal of Phycology, 2011, 47(3): 524-532..》Google Scholar
[11]
Yang Z, Zhang M, Shi X L, et al. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China)[J]. Water Research, 2016, 103: 302-310..》Google Scholar
[12]
Duan Z P, Tan X, Parajuli K, et al. Colony formation in two Microcystis morphotypes: Effects of temperature and nutrient availability[J]. Harmful Algae, 2018, 72: 14-24..》Google Scholar
[13]
Sierp M T, Qin J G, Recknagel F. Biomanipulation: A review of biological control measures in eutrophic waters and the potential for Murray cod Maccullochella peelii peelii to promote water quality in temperate Australia[J]. Reviews in Fish Biology and Fisheries, 2009, 19(2): 143-165..》Google Scholar
[14]
Xie P, Liu J K. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: A synthesis of decades of research and application in a subtropical hypereutrophic lake[J]. The Scientific World Journal, 2001, 1: 337-356..》Google Scholar
[15]
Wang S, Wang Q S, Zhang L B, et al. Large enclosures experimental study on algal control by silver carp and bighead[J]. China Environmental Science, 2009, 29(11): 1190-1195. [王嵩,王启山,张丽彬,等. 水库大型围隔放养鲢鱼、鳙鱼控藻的研究[J]. 中国环境科学,2009, 29(11): 1190-1195.].》Google Scholar
[16]
Zou W S, Wang Z, Song Q S, et al. Recruitment-promoting of dormant Microcystis aeruginosa by three benthic bacterial species[J]. Harmful Algae, 2018, 77: 18-28..》Google Scholar
[17]
Verspagen J M H, Sneldere O F, Visser P M, et al. Recruitment of benthic Microcystis (Cyanophyceae) to the water column: Internal buoyancy changes or resuspension[J]. Journal of Phycology, 2004, 40(2): 260-270..》Google Scholar
[18]
Hodoki Y, Ohbayashi K, Kobayashi Y, et al. Temporal variation in cyanobacteria species composition and photosynthetic activity in experimentally induced blooms[J]. Journal of Plankton Research, 2011, 33(9): 1410-1416..》Google Scholar
[19]
Liu C H, Sahoo S L, Tao M H. Acridine orange coated magnetic nanoparticles for nucleus labeling and DNA adsorption[J]. Colloids and Surfaces B: Biointerfaces, 2014, 115: 150-156..》Google Scholar
[20]
Nakagawa M, Takamura Y, Yagi O. Isolation and characterization of the slime from a Cyanobacterium, Microcystis aeruginosa K-3A[J]. Agricultural Biological Chemistry, 1987, 51(2): 329-337..》Google Scholar
[21]
Pautova A K, Sobolev P D, Revelsky A I. Analysis of phenylcarboxylic acid-type microbial metabolites by microextraction by packed sorbent from blood serum followed by GC-MS detection[J]. Clinical Mass Spectrometry, 2019, 14: 46-53..》Google Scholar
[22]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25(4): 402-408..》Google Scholar
[23]
Wang J, Peng Y D, Wang Z, et al. Transcriptional response of Microcystis aeruginosa to the recruitment promoting-benthic bacteria[J]. Journal of Oceanology and Limnology, 2022, 40(1): 153-162..》Google Scholar
[24]
Zou W S, Wang Z, Song Q S, et al. Effect and track of Mylopharyngodon piceus and Silurus asotus intestinal excreta on the recruitment of dormant Microcystis aeruginosa in aquaculture water[J]. Journal of Fisheries of China, 2021, 45(4): 563-577. [邹万生,王智,宋齐生,等. 青鱼和鲇肠道排泄物对养殖水体铜绿微囊藻休眠体复苏的影响及作用途径[J]. 水产学报,2021, 45(4): 563-577.].》Google Scholar
[25]
He Y L, Ji L, Yuan Y C, et al. Recent advances in polysaccharide-dominated extracellular polymeric substances from microalgae: A review[J]. International Journal of Biological Macromolecules, 2025: 140572..》Google Scholar
[26]
Wang X Y, Xie M J, Wu W, et al. Differential sensitivity of colonial and unicellular Microcystis strains to an algicidal bacterium Pseudomonas aeruginosa[J]. Journal of Plankton Research, 2013, 35(5): 1172-1176..》Google Scholar
[27]
Park B S, Park C S, Shin Y, et al. Different algicidal modes of the two bacteria Aeromonas bestiarum HYD0802-MK36 and Pseudomonas syringae KACC10292T against harmful cyanobacteria Microcystis aeruginosa[J]. Toxins, 2022, 14(2): 128..》Google Scholar
[28]
Zeng Y D, Wang J Y, Yang C Y, et al. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact[J]. Science of the Total Environment, 2021, 769: 144489..》Google Scholar
[29]
van Le V, Kang M, Ko S R, et al. Dynamic response of bacterial communities to Microcystis blooms: A three-year study[J]. Science of the Total Environment, 2023, 902: 165888..》Google Scholar
[30]
Yu Y, Zeng Y D, Li J, et al. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously[J]. Science of the Total Environment, 2019, 650: 34-43..》Google Scholar
[31]
Tan X, Shu X Q, Duan Z P, et al. Two types of bound extracellular polysaccharides and their roles in shaping the size and tightness of Microcystis colonies[J]. Journal of Applied Phycology, 2020, 32(1): 255-262..》Google Scholar
[32]
Liu L Z, Huang Q, Qin B Q. Characteristics and roles of Microcystis extracellular polymeric substances (EPS) in cyanobacterial blooms: A short review[J]. Journal of Freshwater Ecology, 2018, 33(1): 183-193..》Google Scholar
[33]
Chrismas N A M, Barker G, Anesio A M, et al. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401[J]. BMC Genomics, 2016, 17(1): Article No.533..》Google Scholar
[34]
Li H Y, Barber M, Lu J R, et al. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake[J]. Water Research, 2020, 185: 116292..》Google Scholar
[35]
Li Z H, Geng M X, Yang H. Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa[J]. Applied Microbiology and Biotechnology, 2015, 99(2): 981-990..》Google Scholar
[36]
Guo X L, Liu X L, Wu L S, et al. The algicidal activity of Aeromonas sp. strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing[J]. Environmental Microbiology, 2016, 18(11): 3867-3883..》Google Scholar
[37]
van Le V, Ko S R, Kang M, et al. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15[J]. Journal of Cleaner Production, 2023, 383: 135408..》Google Scholar
[38]
Wang X M, Luo Y X, Zhang S J, et al. Acetylacetone effectively controlled the secondary metabolites of Microcystis aeruginosa under simulated sunlight irradiation[J]. Journal of Environmental Sciences, 2024, 135: 285-295..》Google Scholar
[39]
Zeng Y H, Cai Z H, Cheng K, et al. Naturally occurring lasso peptides as algicidal agents against Microcystis aeruginosa[J]. Journal of Cleaner Production, 2022, 381: 135136..》Google Scholar
[40]
Ding H, Ding J, Liu Q N, et al. Mesenchymal stem cells encapsulated in a reactive oxygen species-scavenging and O2-generating injectable hydrogel for myocardial infarction treatment[J]. Chemical Engineering Journal, 2022, 433(2): 133511..》Google Scholar
[41]
Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515..》Google Scholar
[42]
Qian H F, Pan X J, Chen J, et al. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants[J]. Ecotoxicology, 2012, 21(3): 847-859..》Google Scholar
[43]
de Morais P, Stoichev T, Basto M C P, et al. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris[J]. Water Research, 2014, 52: 63-72..》Google Scholar