中国水产科学  2025, Vol. 32 Issue (03): 362-371  DOI: 10.12264/JFSC2024-0317
0

引用本文 

邱靖媛, 吕丁, 胡玉龙, 王伟继, 吕官正, 单秀娟. 基于分子标记技术的中国对虾放流效果评估[J]. 中国水产科学, 2025, 32(3): 362-371. DOI: 10.12264/JFSC2024-0317.
QIU Jingyuan, LYU Ding, HU Yulong, WANG Weiji, LYU Guanzheng, SHAN Xiujuan. Performance evaluation of Fenneropenaeus chinensis release and enhancement based on molecular marker technology[J]. Journal of Fishery Sciences of China, 2025, 32(3): 362-371. DOI: 10.12264/JFSC2024-0317.

基金项目

农业资源调查与保护利用项目(12530014);崂山实验室科技创新项目(LSKJ202203803).

作者简介

邱靖媛(2000‒),女,硕士,研究方向为渔业资源. E-mail:qjy20000520@163.com

通信作者

王伟继,研究员,研究方向为海水动物遗传育种与增殖放流效果评估. E-mail:wangwj@ysfri.ac.cn
通信作者:单秀娟,研究员,研究方向为渔业资源. E-mail:shanxj@ysfri. ac.cn

文章历史

收稿日期:2024-11-07
修改日期:2025-01-08
基于分子标记技术的中国对虾放流效果评估
邱靖媛1,2,3,吕丁2,3,胡玉龙2,3,王伟继2,3,吕官正1,2,3,单秀娟2,3,     
1. 上海海洋大学海洋生物资源与管理学院,上海 201306
2. 中国水产科学研究院黄海水产研究所,海水养殖生物育种与可持续产出全国重点实验室,农业农村部海洋渔业可持续发展重点实验室,山东 青岛 266071
3. 山东长岛近海渔业资源国家野外科学观测研究站,山东 烟台 265800
摘要:中国对虾(Fenneropenaeus chinensis)是我国黄渤海重要的增殖放流物种,放流效果的精准评估是增殖放流的重要工作内容之一。有鉴于此,本文采用分子标记放流效果评估技术对山东半岛黄海海域中国对虾放流效果进行评估。具体为先后于2023年春汛和秋汛期间,在山东半岛海阳收集放流用中国对虾亲虾404尾,当年9月份于黄岛、海阳和崂山海域,回捕中国对虾个体共计461尾。另于2024年春季,在山东半岛崂山和日照海域,采集中国对虾生殖洄游个体共计509尾。采用微卫星分子标记和线粒体COI基因序列信息相结合的亲子溯源方法,对各批次回捕样本中来自放流的个体进行了鉴别和溯源分析。结果显示,从2023年秋汛及2024年生殖洄游的回捕样本中,共计监测到来自放流的个体112尾,其中秋汛回捕样本和生殖洄游样本中各56尾。上述结果表明,山东半岛黄海海域增殖放流的中国对虾,对当年黄海秋汛产量和翌年生殖洄游的亲虾资源量均有显著贡献。
关键词中国对虾    放流效果评估    分子标记    黄海    
Performance evaluation of Fenneropenaeus chinensis release and enhancement based on molecular marker technology
QIU Jingyuan1,2,3,LYU Ding2,3,HU Yulong2,3,WANG Weiji,2,3,LYU Guanzheng1,2,3,SHAN Xiujuan,2,3    
1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
2. Key Laboratory of Marine Fisheries and Sustainable Development, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
3. National Field Observation and Research Center for Fisheries Resources in Changdao Waters, Yantai 265800, China
Abstract:This study used microsatellite molecular markers and mitochondrial COI gene sequence information to investigate the effects of stock enhancement on Fenneropenaeus chinensis in the southern waters of the Shandong Peninsula, assessing the ecological contribution of the released F. chinensis. This species is an important economic shrimp species in China's Bohai and Yellow Sea regions, playing a key role in fishing and marine aquaculture. However, due to issues such as overfishing, disease, and environmental pollution, there has been a substantial decline in resources since the 1980s. To restore the dwindling resources of F. chinensis, China took the lead in conducting stock enhancement activities in the Bohai Sea. After nearly 40 years of continuous release, F. chinensis resources in the Bohai and Yellow Seas have been restored to some extent. The purpose of this study was to evaluate the effectiveness of stock enhancement of F. chinensis in the southern waters of the Shandong Peninsula using SSR (simple sequence repeats) and mitochondrial COI molecular marker technology. The experimental sample collection was divided into three stages. In the first stage, in May 2023, 404 parental F. chinensis were collected from Haiyang Yellow Sea Aquatic Products Co., Ltd. in the southern part of the Shandong Peninsula after the completion of production of released seedings. In the second stage, during the autumn fishing season of F. chinensis in September 2023, a total of 461 individual F. chinensis were recaptured in the sea areas of Huangdao, Haiyang, and Laoshan. In the third stage, from March to April 2024, 110 and 399 migrating individuals of P. chinensis were collected in the Laoshan and Rizhao sea areas, respectively. All the samples were frozen and transported to the laboratory for storage. Genomic DNA was extracted using the conventional phenol-chloroform isoamyl alcohol method, and DNA quality was detected by agarose gel electrophoresis and spectrophotometer. The experiment used parent–offspring tracing methods based on microsatellite molecular markers and mitochondrial COI gene sequence information to evaluate the effectiveness of stock enhancement of F. chinensis in the southern waters of the Shandong Peninsula. Eight polymorphism-rich microsatellite loci were used for PCR amplification and genotyping, combined with mitochondrial COI gene sequence analysis. Gene Mapper software was used to read allele data, and Cervus software was used for statistical analysis to determine potential parent-offspring pairs. The parentage relationship between released individuals and recaptured individuals was further verified using partial mtDNA sequence haplotypes. The results showed that 350 alleles were detected at eight SSR loci, with the number of alleles detected per locus ranging from 7 to 80, and the average number of alleles was 31.8. The observed heterozygosity (Ho) ranged from 0.606 to 0.896, the expected heterozygosity (He) ranged from 0.619 to 0.972, and the average polymorphism information content (PIC) value was 0.856. A total of five SNP polymorphic sites and seven haplotypes were detected in the COI sequence, with Hap01 accounting for 80% as the main type. The haplotype diversity was 0.065, and the nucleotide diversity value was 0.00033. A total of 121 individuals from stock enhancement were monitored in the recaptured samples from the autumn fishing season of 2023 and the migratory recapture samples of 2024. Further verification with mitochondrial COI gene sequences excluded nine unfit individuals. Among 970 recaptured individuals, 112 individuals from stock enhancement were detected, including 56 individuals from stock enhancement out of 461 individuals recaptured during the autumn fishing season of 2023, accounting for 12.4% of the total recaptured individuals. 56 individuals from stock enhancement were detected in the migratory recapture samples of 2024, accounting for 9.2% of the total recaptured individuals. Microsatellite markers showed high levels of genetic diversity, while mitochondrial DNA detected lower haplotype diversity. This is mainly because nuclear genes have higher levels of genetic variation. In the traceability analysis of stock-enhanced F. chinensis, SSR markers provided sufficient individual identification capabilities. However, the lower the number of bases in the repeat unit, the higher the level of simple sequence repeat variation. But dinucleotide repeats can produce rich variability while often causing deviations in allele reading results due to base mismatches and slippages during PCR, which affects the accuracy of parent–offspring tracing results. Therefore, it is necessary to combine it with mitochondrial COI gene sequences that strictly follow maternal inheritance for re-verification to ensure the accuracy of allele reading and correction. This study provides a detailed assessment of the effectiveness of stock enhancement of F. chinensis in the Yellow Sea located on the southern coast of the Shandong Peninsula. This indicates that the enhancement of F. chinensis in the southern waters of the Shandong Peninsula had a significant contribution to the biomass of autumn in the current year and the resources of reproductive migration in the following year. Evaluating the effectiveness of stock enhancement of F. chinensis in the Yellow Sea and the Bohai Sea is not only of considerable importance for the conservation of F. chinensis resources but also makes an important contribution to the local marine ecosystem. This study can provide a scientific reference for the stock enhancement of F. chinensis in the Yellow Sea and the Bohai Sea.
Key words Fenneropenaeus chinensis     release effect evaluation    molecular marker    Yellow Sea    

中国对虾(Fenneropenaeus chinensis)是我国黄渤海重要经济对虾类,其一生具有显著的洄游习性,包括生殖、索饵和越冬洄游三个阶段。每年冬季,交尾雌虾在黄海中部深海区分散越冬,春季随海水温度回升向北启动生殖洄游。生殖洄游个体约在3月底前后抵达山东半岛东南部海域,大部分继续向北绕过山东半岛东端向西通过渤海海峡进入渤海三大产卵场(辽东湾、渤海湾、莱州湾);少部分向西洄游至山东半岛南部沿岸的青岛到海阳一带[1]。历史上中国对虾资源极为丰富,1979年捕捞产量曾高达4万t[2]。这些洄游习性不仅体现中国对虾的生命周期特征,同时也为后续中国对虾的资源管理和保护提供重要的参考依据。然而,自20世纪80年代以来,由于过度捕捞、病害(例如,对虾白斑综合症,white spot syndrome virus, WSSV)频发,以及环境污染等问题,中国对虾资源量大幅下降[3-4]。为恢复日益衰退的中国对虾资源,我国率先在渤海开展了中国对虾增殖放流活动,经过近40年的持续放流一定程度上增加了黄渤海中国对虾的资源量[5-6]。以黄海调查数据(该区域中国对虾产量占黄渤海总产量的四分之一)为例,近几年黄海秋汛的中国对虾产量已稳步恢复约至1000 t,据估计,其中90%以上来自增殖放流[7]。渔获物中放流个体的鉴别及准确数量统计是放流效果评估的重要内容。近年来,国内外学者利用各种分子标记进行了放流效果评估研究,主要包括微卫星分子标记(microsatellite marker)和线粒体基因序列:冯晓婷[8]基于微卫星标记评估长江江苏段鳙(Aristichthys nobilis)的增殖放流效果;Wang等[9]完成了渤海(莱州湾、渤海湾等)放流中国对虾的迁徙、分布和数量变动,以及放流对中国对虾秋汛产量和翌年资源量补充效果的研究;Knibb等[10]使用DNA微卫星等位基因、mtDNA单倍型变异和基因组SNP 3种不同的方法,评估来自太平洋7个孵化场的凡纳滨对虾(Litopenaeus vannamei)样本的遗传多样性水平。相比物理标记放流的诸多局限,分子标记放流能够实现对任意放流规格个体、任意数量个体以及放流个体完整生活史的精确跟踪且及无伤害操作。因而,分子标记放流已经成为目前放流评估的主流技术。

山东半岛南部黄海海域是中国对虾放流的重要海区之一,尚未有利用分子标记放流技术对黄海放流中国对虾效果开展精准评估的研究。有鉴于此,本研究以山东半岛南部黄海海域为研究区域,采用基于中国对虾微卫星和线粒体DNA (mtDNA)分子标记放流效果评估技术体系,针对放流对当年黄海海域中国对虾秋汛量和翌年生殖洄游亲虾资源量的贡献进行深入研究,为黄海海域中国对虾的增殖放流效果评估提供科学数据,为山东半岛黄海以及整个黄渤海中国对虾资源管理提供科学依据。

1 材料与方法 1.1 样本采集

实验样品的采集分3批进行。第一批:2023年5月,在山东省海阳市黄海水产有限公司(HY1)采集放流中国对虾亲虾(产卵完成后采集) 404尾。第二批:2023年9月中国对虾秋汛期间,从山东半岛南岸的黄岛海域(HD)、崂山海域(LS1)和海阳海域(HY2)合计采集海捕中国对虾461尾个体。第三批:2024年4月至5月,从山东半岛南岸的崂山海域(LS2)及日照海域(RZ)采集509尾中国对虾生殖洄游个体。所有样本冰冻运送至实验室,−80 ℃的超低温冰箱保存备用。样本的采集时间、地点及数量详见表1图1。其中,2023年秋汛回捕样本,用于评估放流对黄海中国对虾秋汛产量的补充效果;2024年回捕的生殖洄游样本,用于评估放流对中国对虾资源量的补充效果。

表1  中国对虾样本采集时间、地点及数量 Tab. 1  Time, place, and number of Fenneropenaeus chinensis samples collected
图1  中国对虾洄游路线图RZ:日照;HD:黄岛;LS:崂山;HY:海阳. 星号表示回捕到中国对虾个体的位置,三角形代表育幼场释放发生的位置. Fig. 1  Map of Fenneropenaeus chinensis migration route map in ChinaRZ: Rizhao; HD: Huangdao; LS: Laoshan; HY: Haiyang. Stars indicate the locations where individuals were captured, while the triangle represents the site where releases into nursery grounds occurred.
1.2 方法

所有样本剪取游泳附肢,取其肌肉,采用常规酚氯仿异戊醇方法提取基因组DNA[11]。分别采用0.8%琼脂糖凝胶电泳及分光光度计检测提取的基因组DNA质量,并用灭菌后的ddH2O调整至50 ng/μL的浓度,−20 ℃保存。在遗传多样性分析中,位点数的多少起着重要作用,适当增加位点数量可以提高检测效率、准确度和精确度,并降低假阳性概率。本实验根据研究目的和已有的资源条件,考虑到样本量、微卫星位点多态性以及环境因素的影响,选用实验室之前开发的8个多态性丰富且PCR扩增稳定的微卫星位点,对样本基因组DNA多态性进行检测[12-14]。每个SSR位点正向引物分别用FAM、TAMRA、ROX和HEX四种荧光染料之一进行标记(表2)。SSR-PCR反应体系为25 μL∶12 μLMix (Monad)、上下游引物各1 μL (10 μmol/L)、1 μL模板DNA (50 ng/μL)和10 μL ddH2O。SSR-PCR反应步骤如下:94 ℃预变性3 min, 94 ℃变性20 s,退火40 s (各位点对应的退火温度见表2), 72 ℃延伸20 s,变性退火延伸循环35次后,72 ℃终延伸5 min,放入4 ℃冰箱保存备用。PCR反应完成后,首先利用1.0%琼脂糖凝胶电泳对PCR产物质量进行抽检,然后委托上海生工生物工程股份有限公司进行SSR-PCR产物基因分型。

表2  八个微卫星位点的序列信息、退火温度 Tab. 2  Characteristics of eight microsatellite loci

除微卫星位点检测外,还进行中国对虾线粒体COI基因的PCR反应。这一反应体系的设置与SSR-PCR反应类似,但引物和反应条件有所不同。中国对虾线粒体CO I基因PCR反应体系为25 μL∶12 μLMix (Monad)、上下游引物各1 μL (10 pmol/μL)、1 μL模板DNA (50 ng/μL)和10 μL ddH2O。CO I特异性引物信息见表3。PCR反应流程为:94 ℃预变性3 min, 94 ℃变性20 s, 55 ℃退火40 s, 72 ℃延伸20 s,变性退火延伸循环35次后,72 ℃终延伸5 min。CO I基因的PCR产物委托上海生工生物有限公司进行双向测序。线粒体CO I基因测序结果使用DNAman[15]软件校正,截掉两端几十bp杂峰序列后,进行序列比对。微卫星等位基因分型数据通过Gene-Mapper[16]软件进行读取。所有微卫星位点等位基因分型数据利用Cervus[17]软件进行等位基因数(k)、观测杂合度(Ho)、期望杂合度(He)、哈迪-温伯格平衡(H-W)、无效等位基因[F(Null)]以及多态性信息含量(PIC)等参数的统计分析,评估微卫星位点在不同情况下(单亲、双亲等)能够提供的个体累计排除率等参数。使用该软件筛查出亲本和回捕样本之间具有潜在亲子关系的样本对(判定LOD值设定≥3.0),候选亲子关系样本对再利用线粒体CO I基因SNP位点单倍型进一步筛查,最终确定回捕样本中来自放流的个体。

表3  CO I部分序列引物及退火温度 Tab. 3  CO I partial sequence primers and annealing temperature
2 结果与分析 2.1 SSR位点的遗传多样性水平

本研究共计分析2023年度山东半岛南部黄海海域放流中国对虾亲本及2023、2024年度回捕样本1374个。就8个微卫星位点在所有样本中共检测到350个等位基因,每个位点检测到的等位基因数目从7~80不等,平均等位基因数目为31.8。每个位点的观测杂合度Ho为0.606~0.896,平均值为0.771;期望杂合度He为0.619~0.972,平均值为0.872;平均多态信息含量PIC值为0.856。在亲子溯源分析中,在一个亲本已知的条件下,8个位点能够提供的个体累积排除率达到0.999以上(表4)。

表4  8个SSR位点的遗传多样性水平统计 Tab. 4  Statistics on the level of genetic diversity at eight SSR loci
2.2 CO I序列特征

中国对虾线粒体COI基因测序结果经剪切后,总长度为650 bp。利用DnaSP单倍型分析软件在所有1374个中国对虾样本中共检测到5个SNP多态位点,这5个多态位点组成了7种单倍型。其中,单倍型Hap01占97.8%,为主要类型,其余所有单倍型的占比均低于1%,表现为单一单倍型占绝对多数的模式,7种单倍型各自占比见表5。单倍型多样性为0.065,单倍型多样性方差为0.00015、核苷酸多样性Pi值如图2

表5  中国对虾所有样本中检测到的单倍型统计 Tab. 5  Statistics of haplotypes detected in all samples of Fenneropenaeus chinensis
图2  中国对虾样本DNA变异区域的核苷酸多样性(Pi) Fig. 2  Nucleotide diversity (Pi) of DNA variation region of Fenneropenaeus chinensis samples
2.3 回捕样本中放流个体检出情况

利用8个多态性丰富的SSR位点等位基因信息,从970尾回捕个体中检测到121尾放流个体与对应的87尾亲本间存在亲子关系。结合候选亲子对个体之间的线粒体COI基因SNP单倍型验证,剔除掉其中9个单倍型不相符的亲子对(包括2023年HD 1尾、LS 4尾;2024年LS 1尾、RZ 3尾),最终确定回捕样本中112尾是来自2023年在山东半岛南岸放流的个体。其中,2023年黄海秋汛期间回捕的461尾个体中,有56尾是来自于山东半岛南岸海域放流的个体,所对应的亲本数量为50尾;2024年509尾生殖洄游样本中检测到56尾来自于头年山东半岛南岸放流的个体,这56尾个体对应的亲本数量为37尾,放流个体检出情况见表6

表6  回捕样本中放流个体检出情况统计 Tab. 6  Statistics on the detection of released individuals in recaptured samples
3 讨论 3.1 中国对虾放流群体遗传多样性

在以往的研究中,研究者多选用来源于核基因的微卫星和来源于线粒体基因的SNP标记开展中国对虾群体遗传多样性及亲子溯源分析,这两种分子标记的遗传特征和反映出的遗传多样性水平各异。本研究在检测完所有中国对虾样本的线粒体COI基因序列后,发现其单倍型多样性和核苷酸多样性分别仅为0.065和0.00033,显示出较低的遗传多样性,具体表现为单一单倍型类型在所有类型中占据绝对多数(表5)。Sun等[18]利用SSR和mtDNA分析中国对虾放流群体对补充群体的贡献及该群体的遗传多样性发现,使用线粒体DNA (mtDNA)得到的单倍型多样性和核苷酸多样性分别为0.265和0.00058,显示出遗传多样性水平较低,证实本研究结果。与来源于线粒体COI基因的SNP位点多态性相比,来源于核基因的微卫星标记则提供了更为丰富的遗传变异水平(表4)。杂合度作为衡量群体遗传多样性的重要指标,反应基因位点在群体中的多态性情况[19]。本研究中,8个SSR位点均显示出较高水平的HoHe,表明山东半岛黄海海域中国对虾野生群体具有较高水平的遗传多样性,且放流群体观测杂合度与期望杂合度比较接近,说明放流群体处于遗传平衡状态[20]。Wang等[12]利用SSR分子标记分析了渤海湾中国对虾的生殖洄游群体和秋汛回捕群体的遗传多样性,发现其放流群体HoHe均超过0.5,表明其群体同样具有丰富的遗传多样性,与本实验结果相同。

在亲子溯源分析中,选用分子标记遗传多样性水平的高低直接决定了该标记能够提供的个体分辨能力的水平。本研究中,选用8个多态性丰富(PIC值从0.543到0.971不等)的微卫星位点,在单亲已知的情况下,能够提供的个体分辨率达到0.9999以上水平(表4)。在中国对虾已有研究中,线粒体基因SNP位点处于较低的遗传多样性水平已经得到广泛验证,杨爽[21]对1个增殖放流亲虾群体和4个中国对虾回捕群体的线粒体DNA控制区序列进行比较分析发现,研究群体拥有低核苷酸多样度的遗传多样性模式。本研究中,所有样本线粒体COI基因序列分析后,共检测到7种单倍型,所能提供的个体排除率仅为7.43 %。中国对虾线粒体COI基因SNP位点多态性水平较低,在之前Liu等[22]和Yang等[23]的研究中也可得到验证。

3.2 中国对虾放流个体溯源分析

鉴于物理标记放流的诸多局限,采用分子标记进行中国对虾放流效果已经在近年来得到广泛开展,王陌桑等[1]利用SSR分子标记分析了渤海莱州湾中国对虾放流群体的迁徙及数量变动;Wang等[12]利用SSR分子标记研究渤海湾放流中国对虾的迁徙分布;Sun等[18]结合SSR和mtDNA两种分子标记对渤海放流中国对虾对渤海秋汛生物量及翌年生殖洄游亲虾资源量的贡献进行了分析。SSR分子标记的重要特点之一在于其核心重复序列能够产生丰富等位基因变异,因而能够在亲子溯源分析中提供足够高的个体识别能力,因而一直以来被作为亲子溯源分析的主要分子标记。一般来说,重复单元的碱基数目越少,其简单重复序列变异水平越高(比如2碱基重复序列的变异水平相较3、4、5碱基的变异水平高)。但两碱基重复序列在产生丰富变异性的同时,往往会由于SSR-PCR过程中的碱基错配、滑动等导致在基因分型结果中等位基因判读时产生偏差,影响亲子溯源结果的准确性;相比两碱基重复,3、4、5碱基虽然遗传多态性稍有降低,但等位基因的判读和校正更为准确,这是本研究选择8个SSR位点核心重复序列类型多为3、4和5碱基为主的原因。

除SSR分子标记外,线粒体序列严格遵循母系遗传规律[24],同样也是适合进行溯源分析的分子标记之一,也已经被应用于中国对虾增殖放流效果评估[22]。但线粒体序列遗传变异水平较低,能够提供的个体分辨率相对较低。同时,由于其严格的母系遗传特征,本研究选用其与SSR标记结合进行亲子溯源分析。在2023年秋汛回捕个体中,通过8个SSR位点等位基因信息检测到了61对亲子关系,经过亲子关系间线粒体COI基因SNP位点单倍型验证,其中56对亲子对间的COI基因SNP位点单倍型一致,有5对候选亲子对间的COI基因SNP位点单倍型不一致被排除;同样,利用8个微卫星位点,从2024年生殖洄游回捕样本中检测到60对候选亲子关系,其中有4对候选亲子对间的COI序列SNP位点单倍型不一致而被排除。这说明,尽管8个SSR位点的基因分型信息为亲子溯源提供了足够高的精确的判别结果,但仍无法完全排除偶发的假阳性[25-26]结果。此前有研究者曾采用SNP分子标记基因芯片技术,进行大黄鱼(Larimichthys crocea)亲子溯源分析,相比SSR-PCR等位基因判读过程中可能的误差,SNP位点判读不会产生误差,单从准确性来讲,比SSR分析更具优势。但现阶段,其高成本仍旧成为限制它应用于大规模样本的主要因素[20]。为确保亲子溯源结果的准确性以及成本等多方因素,现阶段采用多态性丰富且分型结果理想的SSR标记进行亲子溯源,线粒体COI基因SNP位点单倍型组成作为辅助监测技术,对SSR标记结果进行再验证。两种分子标记结合识别回捕个体中放流个体,从而确保放流个体精准识别。

3.3 山东半岛黄海海域中国对虾放流效果评估

本研究采集的2023年度中国对虾放流亲虾样本仅为该年度山东半岛南部海域所有放流亲虾中的部分个体,因而2023年度秋汛461尾回捕个体中,除去已经监测到的61尾放流个体外,其余400尾个体中应该还包含有其他放流亲本所生产的个体。具体到黄海中国对虾放流回捕率的数据评估,需结合2023年黄海放流中国对虾亲虾数量、放流中国对虾数量、秋汛期间中国对虾的产量(近10年一直稳定在1000 t左右水平[27])才能够得出。

在以往放流效果评估中,研究学者多重点关注放流中国对虾对当年黄渤海秋汛产量的贡献效果,受技术条件限制,较少关注放流对翌年中国对虾生殖洄游群体资源量的贡献。本研究回捕的亲虾样本来自黄海2023年秋季汛期和2024年春季生殖洄游,黄海秋汛回捕样本用于分析放流对当年秋汛产量的贡献,生殖洄游亲虾样本则用来分析放流对翌年中国对虾生殖群体资源量的补充效果。本研究结果证实了在山东半岛黄海海域放流的中国对虾不仅能够对当年黄海中国对虾秋汛产量作出贡献,同时能够完成索饵、越冬以及生殖洄游,进而对翌年生殖洄游亲虾资源量产生补充效果。结合以往的研究[12, 18],本研究再一次证实了,放流的中国对虾与黄渤海中国对虾自然群体都具有相同的洄游习性,无论渤海湾、莱州湾还是山东半岛南部放流的中国对虾,都能够完成索饵和越冬洄游,并且在翌年春季完成生殖洄游。由此可以看出,人工放流在洄游习性上未对整个群体造成影响。近十余年,黄渤海中国对虾秋汛产量已经恢复到4000 t左右的水平,其中黄海占1/4~1/3[9],这个产量距最盛期的年产4万t还有很大差距。因此,黄渤海中国对虾人工放流仍具有较大潜力,除去进一步改善人工放流效果外,还可从整个黄渤海生态系统水平层面尝试改进放流效果,提高生态效益。未来,期望探索更先进的分子标记技术以提升检测效率和准确度。随着分子生物学的发展,新的分子标记技术不断涌现,具有更高的分辨率和广泛的应用范围,为中国对虾增殖放流效果评估提供更多选择。此外,结合生态学、海洋学等多学科知识和方法,深入研究中国对虾的栖息环境和食物链关系,为养护和管理中国对虾资源提供科学依据。

参考文献
[1]
Liu Y C, Gao Y F. A preliminary study on migration and distribution patterns of released prawn in the coastal water of central Yellow Sea[J]. Journal of Fisheries of China, 1990, 14(2): 120-128. [刘永昌,高永福. 黄海中部沿海放流增殖对虾秋汛洄游和分布的初步研究[J]. 水产学报,1990, 14(2): 120-128.].》Google Scholar
[2]
Wang W J, Shan X J, Jin X S, et al. Evaluation of shrimp enhancement and release effect and ecological security in China[M]. Beijing: China Agriculture Press, 2020: 45-56. [王伟继,单秀娟,金显仕,等. 中国对虾增殖放流效果评估与生态安全[M]. 北京:中国农业出版社,2020: 45-56.].》Google Scholar
[3]
Ye C C, Lin Y, Yang W. The glory and decline of Chinese prawns[J]. The World of Feed, 2004(5): 68-70. [叶昌臣,林源,杨威. 中国对虾的辉煌与没落[J]. 饲料世界,2004(5): 68-70.].》Google Scholar
[4]
Deng J Y, Zhuang Z M. The cause of recruitment variation of Penaeus chinensis in the Bohai Sea[J]. Journal of Fishery Sciences of China, 2000, 7(4): 125-128. [邓景耀,庄志猛. 渤海对虾补充量变动原因的分析及对策研究[J]. 中国水产科学,2000, 7(4): 125-128.].》Google Scholar
[5]
Tang Q S. Research on the strategy of fishery resource enhancement in China's exclusive economic zone[M]. Beijing: Ocean Press, 2019: 146-168. [唐启升. 我国专属经济区渔业资源增殖战略研究[M]. 北京:海洋出版社,2019: 146-168.].》Google Scholar
[6]
Zhang Y T, Lou F R, Zhao G Q, et al. Spatial and temporal variability of fenneropenaeus chinensis resources in South of Shandong Peninsula[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2023, 36(3): 299-306. [张艺腾,娄方瑞,赵国庆,等. 山东半岛南部中国对虾资源时空变异特征[J]. 烟台大学学报(自然科学与工程版), 2023, 36(3): 299-306.].》Google Scholar
[7]
Li K Z, Wang C G, Liang H Y, et al. Research on contribution rate of resources on proliferation and releasing of Penaeus chinensis in southern Shandong Peninsula[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2019, 32(2): 165-170. [李科震,王承国,梁海永,等. 增殖放流对山东半岛南部中国对虾资源贡献率的研究[J]. 烟台大学学报(自然科学与工程版), 2019, 32(2): 165-170.].》Google Scholar
[8]
Feng X T. Microsatellite method assessment of the effects of stock enhancement of bighead carp (Aristichthys nobilis) in Jiangsu reaches of the Changjiang River[D]. Shanghai: Shanghai Ocean University, 2020: 1-14. [冯晓婷. 基于微卫星标记的长江江苏段鳙(Aristichthys nobilis)增殖放流效果评估[D]. 上海:上海海洋大学,2020: 1-14.].》Google Scholar
[9]
Wang Q Y, Zhuang Z M, Deng J Y, et al. Stock enhancement and translocation of the shrimp Penaeus chinensis in China[J]. Fisheries Research, 2006, 80(1): 67-79..》Google Scholar
[10]
Knibb W, Giang C T, Premachandra H K A, et al. Feasible options to restore genetic variation in hatchery stocks of the globally important farmed shrimp species, Litopenaeus vannamei [J]. Aquaculture, 2020, 518: 734823..》Google Scholar
[11]
Wang L W, Xu K Q, Luo S Q. Methods and progress of genomic DNA extraction[J]. Shanghai Journal of Medical Laboratory Sciences, 2002, 17(6): 379-381. [王龙武,徐克前,罗识奇. 基因组DNA提取方法及进展[J]. 上海医学检验杂志,2002, 17(6): 379-381.].》Google Scholar
[12]
Wang W J, Lyu D, Wang M S, et al. Research in migration route of hatchery released Chinese shrimp (Fenneropenaeus chinensis) in the Bohai Bay using method of SSR marker[J]. Acta Oceanologica Sinica, 2020, 39(12): 76-81..》Google Scholar
[13]
Zhang K, Xiao G X, Wang W J, et al. Genetic variation analysis across six life periods in a natural population of the Chinese shrimp “Fenneropenaeus chinensis” in Bohai bay using SSR markers[J]. Russian Journal of Marine Biology, 2015, 41(1): 10-16..》Google Scholar
[14]
Wang M S, Wang W J, Xiao G X, et al. Genetic diversity analysis of spawner and recaptured populations of Chinese shrimp (Fenneropenaeus chinensis) during stock enhancement in the Bohai Bay based on an SSR marker[J]. Acta Oceanologica Sinica, 2016, 35(8): 51-56..》Google Scholar
[15]
Huang Y, Zhang L. Rapid and sensitive dot-matrix methods for genome analysis[J]. Bioinformatics, 2004, 20(4): 460-446..》Google Scholar
[16]
Sun S. Family tracing and genetic parameter estimation based on microsatellite markers in turbot[D]. Shanghai: Shanghai Ocean University, 2020: 6-28. [孙松. 大菱鲆家系的微卫星溯源和遗传参数评估[D]. 上海:上海海洋大学,2020: 6-28.].》Google Scholar
[17]
Slate J, Marshall T, Pemberton J. A retrospective assessment of the accuracy of the paternity inference program CERVUS [J]. Molecular Ecology, 2000, 9(6): 801-808..》Google Scholar
[18]
Sun S, Lyu D, Jin X S, et al. Parent-offspring relationship recognition based on SSR and mtDNA confirmed resource supplement effect of Fenneropenaeus chinensis release[J]. Acta Oceanologica Sinica, 2024, 43(2): 156-160..》Google Scholar
[19]
Cui T X, Liu H Y, Zhang J, et al. Genetic structure and diversity analysis of seven wild populations of Channa maculata based on SNP markers[J]. Journal of Fishery Sciences of China, 2024, 31(7): 829-838. [崔同心,刘海洋,张晋,等. 基于单核苷酸多态性标记的7个斑鳢野生群体的遗传结构和遗传多样性分析[J]. 中国水产科学,2024, 31(7): 829-838.].》Google Scholar
[20]
Vaseeharan B, Rajakamaran P, Jayaseelan D, et al. Molecular markers and their application in genetic diversity of penaeid shrimp[J]. Aquaculture International, 2013, 21(2): 219-241..》Google Scholar
[21]
Yang S. Effect evaluation on stock enhancement of Portunus trituberculatus and Fenneropenaeus chinensis based on mtDNA control region[D]. Qingdao: Ocean University of China, 2014: 1-10. [杨爽. 基于线粒体DNA控制区标记的三疣梭子蟹和中国对虾增殖放流效果评价研究[D]. 青岛:中国海洋大学,2014: 1-10.].》Google Scholar
[22]
Liu Q, Li C J, Li W Y, et al. Genetic identification of Chinese shrimp Fenneropenaeus chinensis post-release in Jiaozhou Bay: Implications for management of stock enhancement[J]. Regional Studies in Marine Science, 2022, 53: 102425..》Google Scholar
[23]
Yang T Y, Yang S, Meng W, et al. Genetic evaluation of Chinese shrimp (Fenneropenaeus chinensis) stock enhancement in the Yellow Sea and Bohai Sea based on mitochondrial DNA control region[J]. Aquaculture International: Journal of the European Aquaculture Society, 2020, 28(2): 603-614..》Google Scholar
[24]
Avise J C, Arnold J, Ball R M, et al. Intraspecific phylogeography: The mitochondrial-DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Systematics, 1987, 18: 489-522..》Google Scholar
[25]
Karaket T, Poompuang S. CERVUS vs. COLONY for successful parentage and sibship determinations in freshwater prawn Macrobrachium rosenbergii de Man[J]. Aquaculture, 2012, 324: 307-311..》Google Scholar
[26]
van Ba N, Nam L Q, Do D N, et al. An assessment of genetic diversity and population structures of fifteen Vietnamese indigenous pig breeds for supporting the decision making on conservation strategies[J]. Tropical Animal Health and Production, 2020, 52(3): 1033-1041..》Google Scholar
[27]
Fu H P. Resource dynamics of enhanced Fenneropenaeus chinensis in the Southern Shangdong Peninsula during 2010-2016[D]. Yantai: Yantai University, 2017: 5-27. [付海鹏. 2010-2016年山东半岛南部中国对虾增殖放流资源动态研究[D]. 烟台:烟台大学,2017: 5-27.].》Google Scholar
表1  中国对虾样本采集时间、地点及数量 Tab. 1  Time, place, and number of Fenneropenaeus chinensis samples collected
图1  中国对虾洄游路线图RZ:日照;HD:黄岛;LS:崂山;HY:海阳. 星号表示回捕到中国对虾个体的位置,三角形代表育幼场释放发生的位置. Fig. 1  Map of Fenneropenaeus chinensis migration route map in ChinaRZ: Rizhao; HD: Huangdao; LS: Laoshan; HY: Haiyang. Stars indicate the locations where individuals were captured, while the triangle represents the site where releases into nursery grounds occurred.
表2  八个微卫星位点的序列信息、退火温度 Tab. 2  Characteristics of eight microsatellite loci
表3  CO I部分序列引物及退火温度 Tab. 3  CO I partial sequence primers and annealing temperature
表4  8个SSR位点的遗传多样性水平统计 Tab. 4  Statistics on the level of genetic diversity at eight SSR loci
表5  中国对虾所有样本中检测到的单倍型统计 Tab. 5  Statistics of haplotypes detected in all samples of Fenneropenaeus chinensis
图2  中国对虾样本DNA变异区域的核苷酸多样性(Pi) Fig. 2  Nucleotide diversity (Pi) of DNA variation region of Fenneropenaeus chinensis samples
表6  回捕样本中放流个体检出情况统计 Tab. 6  Statistics on the detection of released individuals in recaptured samples
基于分子标记技术的中国对虾放流效果评估
邱靖媛,吕丁,胡玉龙,王伟继,吕官正,单秀娟,