中国水产科学  2025, Vol. 32 Issue (04): 478-489  DOI: 10.12264/JFSC2024-0303
0

引用本文 

陈春林, 姚晓丽, 曹元乐, 赵金良. 饥饿与复投对鳜肝脏脂肪酸组成和脂代谢的影响[J]. 中国水产科学, 2025, 32(4): 478-489. DOI: 10.12264/JFSC2024-0303.
CHEN Chunlin, YAO Xiaoli, CAO Yuanle, ZHAO Jinliang. Effects of starvation and re-feeding on hepatic fatty acid composition and lipid metabolism in mandarin fish (Siniperca chuatsi)[J]. Journal of Fishery Sciences of China, 2025, 32(4): 478-489. DOI: 10.12264/JFSC2024-0303.

基金项目

国家现代农业产业技术体系(CARS-46).

作者简介

陈春林(1999–),男,硕士研究生,研究方向为水产养殖. E-mail:1004181525@qq.com

通信作者

通信作者:赵金良,教授,主要从事水产动物遗传育种研究工作. E-mail:jlzhao@shou.edu.cn

文章历史

收稿日期:2024-10-08
修改日期:2024-11-26
饥饿与复投对鳜肝脏脂肪酸组成和脂代谢的影响
陈春林1,2,3,姚晓丽1,2,3,曹元乐4,赵金良1,2,3,     
1. 上海海洋大学,农业农村部淡水水产种质资源重点实验室,上海 201306
2. 上海海洋大学,水产动物遗传育种中心上海市协同创新中心,上海 201306
3. 上海海洋大学,水产科学国家级实验教学示范中心,上海 201306
4. 江苏同氿生态环境科技有限公司,江苏 宜兴 214200
摘要:为探究饥饿与复投对鳜肝脏脂肪酸组成和脂代谢的影响,将体重(5.57±0.57)g的鳜(Siniperca chuatsi)分为3组,每组3个平行,实验周期18 d。 根据饥饿时长进行分组,其中,对照组正常投喂活饵0 d(C0)、3 d(C3)、6 d(C6)、9 d(C9)、18 d(C18);饥饿组禁食3 d(S3)、6 d(S6)、9 d(S9);复投组禁食3 d后正常投喂15 d(S3R15),禁食6 d后正常投喂12 d(S6R12),禁食9 d后正常投喂9 d(S9R9)。对各组分别检测鳜生长指标、肝脏脂肪酸组成与脂代谢基因表达的变化特征,结果显示:(1)随着禁食时间延长,饥饿组体重、肝重、肝指数、肝脏粗脂肪含量均逐渐降低,显著低于同期对照组(P<0.05);S9组肝细胞出现空泡化,细胞界限模糊。复投后,S3R15和S6R12组体重、肝重和肝指数均与C18组间无显著差异(P>0.05),S9R9组体重和肝重显著小于C18组(P<0.05);S3R15组肝脏粗脂肪含量恢复(P<0.05);S9R9组肝细胞仍有少量空泡。(2)随着禁食时间延长,饥饿组肝脏SFA(C16:0、C18:0)、MUFA(C16:1n-7、C18:1n-9)和C20:4n-6相对含量逐渐减少,PUFA(C18:2n-6、C20:5n-3、C22:6n-3)相对含量逐渐增加;复投后,除C20:5n-3和C22:6n-3显著高于C18组,复投组各脂肪酸相对含量均恢复到C18组水平(P<0.05)。(3)随着禁食时间延长,饥饿组脂肪酸合成酶(fasn)、乙酰辅酶A羧化酶(acaca)、过氧化物酶体增殖物激活受体γ(ppar-γ)和脂肪酸延长酶6(elovl6)基因相对表达量显著下降,而肉碱棕榈酰转移酶1Ab(cpt1ab)和酰基辅酶A氧化酶1(acox1)基因的相对表达量显著上升(P<0.05);复投后,复投组fasnppar-γ、S3R15acox1cpt1abelovl6和S6R12acox1基因相对表达量恢复(P<0.05)。结果表明,饥饿条件下,鳜主要动员肝脏MUFA和SFA,复投后,SFA、MUFA和PUFA都得到恢复;饥饿会促进脂肪分解代谢、抑制脂肪合成,复投后能够恢复到正常脂代谢水平。
关键词    饥饿    复投    脂肪酸    脂代谢    
Effects of starvation and re-feeding on hepatic fatty acid composition and lipid metabolism in mandarin fish (Siniperca chuatsi)
CHEN Chunlin1,2,3,YAO Xiaoli1,2,3,CAO Yuanle4,ZHAO Jinliang,1,2,3    
1. Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture and Rural Affairs; Shanghai Ocean University, Shanghai 201306, China
2. Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
4. Jiangsu Tongjiu Ecological Environment Technology Co., Ltd., Yixing 214200, China
Abstract:To investigate the effects of starvation and re-feeding on hepatic fatty acid composition and lipid metabolism in mandarin fish (Siniperca chuatsi), fish with an average body weight of (5.57±0.57) g were divided into three groups with three replicates in each group. The control group was fed live bait normally for 0 days (C0), three days (C3), six days (C6), nine days (C9), and 18 days (C18). The starvation groups were deprived of food for three days (S3), six days (S6), or nine days (S9), whereas the re-feeding groups were deprived of food for three days followed by normal feeding for 15 days (S3R15), six days followed by normal feeding for 12 days (S6R12), or nine days followed by normal feeding for nine days (S9R9). The experiment lasted for 18 days, during which changes in growth indices, hepatic fatty acid composition, and lipid metabolism gene expression were examined. The results showed that: (1) With prolonged starvation, body weight, liver weight, hepatosomatic index, and liver crude fat content in the starvation groups gradually decreased, significantly lower than those in the corresponding control group (P<0.05). In the S9 group, hepatocytes showed vacuolation, and cell boundaries became unclear. After re-feeding, there were no significant differences in body weight, liver weight, and hepatosomatic index (HIS) between the S3R15, S6R12, and C18 groups (P>0.05), whereas body weight and liver weight in the S9R9 group were significantly lower than those in the C18 group (P<0.05). Crude fat content in the S3R15 group recovered (P<0.05), whereas hepatocytes morphology in the S9R9 group was not fully recovered. (2) As starvation progressed, the relative contents of saturated fatty acid (SFA) (C16: 0, C 18: 0), monounsaturated fatty acids (MUFA) (C16: 1n-7, C18: 1n-9), and 20: 4n-6 in the liver of the starvation group gradually decreased, while the relative contents of polyunsaturated fatty acids (PUFA) (C18: 2n-6, C20: 5n-3, C22: 6n-3) gradually increased. In the re-feeding group, the relative contents of all fatty acids were recovered to the levels of the C18 group, except for C20: 5n-3 and C 22: 6n-3, which were significantly higher than those in the C18 group (P<0.05). (3) As the duration of starvation increased, the relative expression levels of fatty acid synthase (fasn), acetyl-CoA carboxylase (acaca), peroxisome proliferator-activated receptor gamma (ppar-γ), and elongation of very long-chain fatty acids protein 6 (elovl6) significantly decreased, whereas the relative expression levels of carnitine palmitoyltransferase 1Ab (cpt1ab) and acyl-CoA oxidase 1 (acox1) significantly increased (P<0.05). After re-feeding, the relative expression levels of fasn and ppar-γ in all re-feeding groups, acox1, cpt1ab, and elovl6 in the S3R15 group, and acox1 in the S6R12 group were recovered (P<0.05). These results indicate that MUFA and SFA are primarily utilized in the liver of mandarin fish under starvation conditions, whereas SFA, MUFA, and PUFA contents could be recovered after re-feeding. Starvation promotes lipolysis and inhibits lipogenesis, whereas re-feeding can recover normal lipid metabolism. This research provides fundamental data on the physiological mechanisms of nutritional regulation during starvation in mandarin fish.
Key words Siniperca chuatsi     starvation    re-feeding    fatty acid    lipid metabolism    

由于自然环境中食物分布不均、季节变化和环境改变等诸多因素,大部分野生鱼类在其生命周期中都会经历饥饿或营养不足的阶段。在饥饿条件下,鱼体产生的直接反应包括生长表型、代谢活跃的组织结构和功能的改变;间接反应则表现在能量代谢、鱼体组成成分、酶活性及免疫反应等方面的变化[1-2]。其中,能量供给对鱼类维持生命和抵抗饥饿胁迫具有重要意义。鱼类会动用体内储存的能源物质来维持能量代谢需求。肝脏通常在调节内源性储备物质的代谢变化中起主导作用,通过消耗能量储备来维持饥饿鱼类的能量稳态[3]。大多数鱼类在遭遇饥饿后,会将高能量的脂肪作为持久的能量来源。杂交条纹鲈(Morone chrysops ♀× M. saxatilis ♂)经2周禁食后,肝重减少了4~5倍,肝脏脂肪含量显著降低[4]。多佛鳎(Solea solea)幼鱼短期饥饿后,脂质储存分解情况和脂肪酸组成快速变化,脂质含量明显下降[1]。鳡(Elopichthys bambusa)在经历短期饥饿(8 d)和长期饥饿(28 d)后均出现肝重显著降低,脂肪酸生物合成减少,降解上调,脂肪动员显著增加[5]

饥饿会改变鱼类组织脂肪酸组成,当脂肪储备被动员时,脂肪酸会被氧化以供能[6]。Xu等[7]通过研究大菱鲆(Scophthalmus maximus)脂肪酸组成对饥饿的响应,发现肝脏、肌肉、鳍周围皮下组织中脂肪酸的动员存在差异,肌肉单不饱和脂肪酸(monounsaturated fatty acids, MUFA)(C16: 1n-7、C18: 1n-9)、肝脏饱和脂肪酸(saturated fatty acid, SFA)(C14: 0、C16: 0)、MUFA (C16: 1n-7、C18: 1n-9和C20: 1n-9)和多不饱和脂肪酸(polyunsaturated fatty acids, PUFA)(C18: 2n-6、C18: 3n-3)以及鳍周围皮下组织n-3 PUFA (C18: 3n-3、EPA和DHA)均作为能量底物被消耗。细点牙鲷(Dentex dentex)受到禁食影响,肌肉脂肪含量急剧下降,SFA和MUFA出现不同程度的消耗[8]。Ölmez等[9]发现斑马鱼(Danio rerio)在70 d的禁食中发现:C18: 2n-6水平显著降低,长链多不饱和脂肪酸(LC-PUFA)水平显著升高,参与脂肪酸代谢的基因elovl5fads2cpt1-βacox1fabp7a的表达水平受到长期禁食的影响均明显下调。Luo等[10]研究表明,禁食导致斑点叉尾鮰(Ictalurus punctatus)肝脏脂肪酸快速变化,肝脏总MUFA的相对增加,n-3脂肪酸含量的相对减少。综上,脂质被认为是肝脏中可分解代谢能量的重要来源。

不同鱼类响应饥饿胁迫时对脂肪酸的利用顺序不尽相同。Sun等[11]发现草鱼(Ctenopharyngodon idella)在禁食期间,SFA和MUFA优先氧化,PUFA次之,在肝脏和脂肪组织中SFA消耗大,而肌肉中MUFA消耗大。Barreto-Curiel等[12]的研究表明,黄条鰤(Seriola lalandi)在经历35 d禁食后,肝脏和肌肉组织中的SFA及MUFA被优先动员作为能量来源,同时部分PUFA(C18: 2n-6、C20: 5n-3)也出现减少。总体来看,肝脏和肌肉组织中的SFA和MUFA在饥饿过程中显著消耗,而PUFA,尤其是LC-PUFA,在大多数情况下表现出优先保存的趋势。彭泽鲫(Carassius auratus var. Pengze)幼鱼同样表现出对脂肪酸氧化利用的高度选择性,其中SFA和MUFA更易通过线粒体β-氧化为机体供能,通常被优先动员利用[13]

肉食性鱼类肠道较短,消化系统较为简单,食物中有较高的营养素,体脂储备较高,但由于捕食机会性,摄食存在不确定性;而非肉食性鱼类能连续频繁摄食,肠道相对较长,肠酶、转运体和微生物群有利于消化大量的纤维食物[14-15]。相对而言,肉食性鱼类在生理适应和生态行为上更容易忍受较长时间的禁食。鳜(Siniperca chuatsi)是我国典型的肉食性鱼类,终身以活鱼饵为食。自然条件下,由于水域饵料生物不足以及捕食不确定性,野生鳜常发生饥饿现象;在人工养殖中,鳜幼鱼也会因为饵料鱼不足、不适口等情况造成饥饿,甚至自相残食。前期研究表明,饥饿能够诱导鳜肌肉脂肪酸组成的改变[16],但有关饥饿条件下鳜营养生理调控机制尚不清楚。本研究通过比较在饥饿和复投条件下鳜生长性能、肝脏脂肪酸组成、脂代谢相关基因表达变化,阐明在饥饿和复投期间鳜肝脏脂肪酸动员与脂代谢特征,为其饥饿营养生理调控机制研究提供基础资料。

1 材料与方法 1.1 实验材料

实验用鱼来自江苏同氿生态环境科技有限公司宜兴实验基地,选择健康活泼,体表无损伤的个体。实验在江苏同氿生态环境科技有限公司宜兴实验基地进行,将鳜放入9个规格为1 m×1 m× 1 m的网箱中,每个网箱50尾,挂箱暂养7 d,每天投喂2次(7: 00和18: 00),每次投喂足量适口鲫鱼苗直至饱食。养殖期间24 h增氧,溶解氧不低于6 mg/L, pH为6.8~8.0,氨氮低于0.4 mg/L,亚硝酸盐低于0.05 mg/L。

开始正式养殖实验前饥饿24 h,然后称量鱼体体重(5.57±0.57) g、体长(6.15±0.26) cm作为初始对照值。实验共分为3组,每组3个平行,分别为对照组(control group):正常投喂活饵18 d (C0、C3、C6、C9、C18)。饥饿组(starvation group):禁食3 d (S3)、禁食6 d (S6)、禁食9 d (S9)。复投组(re-feeding group):禁食3 d后,正常投喂15 d (S3R15);禁食6 d后,正常投喂12 d (S6R12);禁食9 d后,正常投喂9 d (S9R9)。并在每个时间节点结束后采样,实验周期为18 d。每组取8尾,用MS-222麻醉液(200 mg/L)进行麻醉,擦干水分,测定体长、体重,解剖后,取出肝脏,去除残留血液后称重。液氮保存,运回实验室于‒80 ℃保存。

1.2 实验方法 1.2.1 生长性能测定

根据所测得的体长、体重和肝重,分别计算体重增重率(weight gain, WG, %)、肝重增重率(hepatic liver gain, HLG, %)和肝指数(hepatosomatic index, HSI, %)。计算公式如下:

WG=(WtW0)/W0×100%

HLG=(WLtWL0)/WL0×100%

HSI=WLt/Wt×100%

式中,W0为初始体重(g), WL0为初始肝重(g), Wt为实际投喂或禁食天数的体重(g), WLt为实际投喂或禁食天数的肝重(g)。

1.2.2 石蜡切片

单独取对照组(C18)、饥饿组(S9)、复投组(S9R9)各3尾鱼的肝脏,用Bouinʼs固定液固定24 h, 70%~100%梯度乙醇逐级脱水,二甲苯透明,石蜡包埋。使用常规石蜡切片法,切片厚6 μm。经HE染色后,组织切片置于显微镜(尼康ECLIPES 80i)下观察并拍照。

1.2.3 粗脂肪和脂肪酸含量测定

每组在每个时间节点取3尾冻存的鳜的肝脏,置于‒45 ℃冷冻干燥机脱水后称取0.2 g样品,粗脂肪采用氯仿甲醇法进行测定。脂肪酸测定方法参照国家标准GB 5009.168—2016第一法(内标法)[17]。采用上述所得的粗脂肪,经过1 mL正己烷溶解,加入1 mL未甲酯化C19真空干燥。随后,加入2 mL BF3-甲醇至带帽试剂管中,溶解脂肪,并置于100 ℃恒温水浴25 min。反应后,加入苯和甲醇各2 mL,再置于100 ℃恒温水浴25 min,转移至10 mL离心管中,并加入2 mL蒸馏水,2 mL正己烷,震荡混匀后以3000 r/min离心5 min,取上清。最后,加0.5 mL正己烷再离心5 min,取上清至进样瓶。在气相色谱仪(GC-2010 型,日本岛津)中检测,并用校正峰面积归一化法计算各脂肪酸百分含量。

1.2.4 脂代谢基因表达

每组在每个时间节点取3尾冻存肝脏,采用TRIzol法提取肝组织总RNA,并测定RNA质量和完整性。使用艾科瑞反转录试剂盒(AG11705)反转录合成cDNA,在Primer-BLAST程序中设计引物,由上海金唯智生物公司进行引物合成,引物序列见表1。实时荧光定量PCR反应体系20.0 µL: 2×SYBR Green Pro Taq HS Premix 10µL; cDNA 1 µL;上下游引物各0.4 µL; RNase-free water 8.2 µL。反应程序:95 ℃, 30 s; 95 ℃, 8 s, 58.6 ℃, 30 s, 40个循环;随后95 ℃, 15 s; 65 ℃, 1 min; 95 ℃, 30 s并结束程序。每个RNA样品一式三份进行。以β-actin为内参基因[18],采用${2^{ - \Delta \Delta {C_{\rm{t}}}}}$法换算目的基因的相对表达量。

表1  实时荧光定量PCR扩增引物序列 Tab. 1  Primer sequences of real-time fluorescence quantitative PCR amplification
1.3 数据分析

结果以平均值±标准差($\bar x \pm {\rm{SD}}$)表示,使用SPSS26.0软件进行t检验、单因素方差分析,P<0.05表明差异显著。图表均使用Origin 2022软件绘制。

2 结果与分析 2.1 饥饿、复投对鳜生长指标的影响

正常投喂条件下,对照组体重、肝重和肝脏粗脂肪含量呈显著上升趋势(P<0.05)。随禁食时间延长,饥饿组体重、肝重和肝脏粗脂肪含量下降,均显著低于同时期对照组(P<0.05),其中,S9组体重、肝重和肝脏粗脂肪含量分别下降了26.93%、50%和36.88% (P<0.05)。复投后,S3R15、S6R12组体重、肝重恢复到C18组水平,S3R15组肝脏粗脂肪含量恢复。

对照组肝指数在2.15~2.38波动。随禁食时间延长,饥饿组肝指数下降,在S9组下降了31.63% (P<0.05),复投后,各组肝指数恢复到C18组水平。所有实验组,肝重增重率(损失率)大于体重增重率(损失率)(表2)。

表2 饥饿、复投对鳜生长指标的影响注:同一行不同小写字母表示差异显著(P<0.0S). Tab. 2 Effects of starvation and re-feeding on growth indexes of Siniperca chuatsi $\bar x \pm {\rm{SD}}$Note: Different lowercase letters in the same line indicate significant differences (P<0.05).
2.2 饥饿、复投对鳜肝组织学的影响

对照组(C18组)肝细胞大小形态正常,排列紧密,细胞核大而圆,位于细胞中央,肝血窦清晰可见。饥饿组S9组肝细胞出现空泡,细胞核发生偏移,细胞界限模糊不清,且细胞形状不规则。复投后,肝组织学变化得到恢复,S9R9组中仍有少量空泡(图1)。

图1  饥饿、复投下鳜肝组织学比较a. 对照组(C18);b. 饥饿组(S9);c. 复投组(S9R9). 箭头示空泡化. Fig. 1  Comparison of liver histology in Siniperca chuatsi after starvation and re-feedinga. Contfol group (C18); b. Starvation group (S9); c. Re-feeding group (S9R9). Arrow shows vacuolization.
2.3 饥饿、复投对鳜肝脏脂肪酸组成的影响

随禁食时间延长,饥饿组SFA和MUFA相对含量下降,且显著低于对照组(P<0.05),包括肉豆蔻酸(C14: 0)、棕榈酸(C16: 0)、硬脂酸(C18: 0)、棕榈油酸(C16: 1n-7)、油酸(C18: 1n-9)。随禁食时间延长,饥饿组PUFA相对含量增加且显著高于对照组(P<0.05),包括亚油酸(C18: 2n-6)、EPA (20: 5n-3)和DHA (22: 6n-3) (表3)。

表3 饥饿、复投对鳜肝脏脂肪酸组成的影响注:表中数字为脂肪酸相对含量;同一行不同小写字母表示差异显著(P<0.05). Tab. 3 Effects of starvation and re-feeding on fatty acid composition in Siniperca chuatsi liver n=3; $\bar x \pm {\rm{SD}}$; %Note: Figures in the table are relative content. Different lowercase letters in the same line indicate significant difference (P<0.05).

与饥饿组相比,复投组SFA (C14: 0、C16: 0和C18: 0)、MUFA (C16: 1n-7)和PUFA (C20: 4n-6)相对含量显著增加(P<0.05),但PUFA (C18: 2n-6、n-3 PUFA)相对含量显著降低(P<0.05)(表3)。与C18组比较,复投组SFA、MUFA和PUFA都恢复至C18组水平,但从单个脂肪酸来看,复投组EPA和DHA仍显著高于C18组(P<0.05)(图2表3)。

图2  饥饿、复投下鳜肝脏SFA、MUFA和PUFA含量的变化 Fig. 2  Changes of SFA, MUFA and PUFA in the liver of Siniperca chuatsi after starvation and re-feeding
2.4 饥饿、复投对肝脏脂代谢基因表达水平的影响

图3 显示,与对照组相比,饥饿组中fasnacacappar-γelovl6相对表达量均显著降低(P<0.05)。复投后,fasnppar-γ相对表达量显著升高,均能恢复到对照组C18水平(P<0.05); acacaelovl6都显著上升,仅S3R15elovl6相对表达量与对照组C18无显著差异(P>0.05)。

图3  饥饿、复投对鳜肝脂代谢相关基因相对表达量的影响不同字母表示各实验组之间存在显著性差异(P<0.05). Fig. 3  Effects of starvation and re-feeding on relative expression of lipid metabolism-related genes in liver of Siniperca chuatsiDifferent letters indicated significant difference between groups (P<0.05).

随禁食时间延长,饥饿组acox1cpt1ab相对表达量均显著升高(P<0.05)。复投后,acox1cpt1ab相对表达量均显著降低(P<0.05),其中,S3R15acox1cpt1ab、S6R12acox1与C18组间无显著差异(P>0.05)。

3 讨论 3.1 饥饿、复投对鳜肝脏脂肪的影响

已有研究证明,鱼类对碳水化合物的利用效率不高,而以脂肪作为主要能量来源能够更有效地维持机体的能量平衡和稳定状态[19]。本研究中,禁食3 d时,鳜肝脏粗脂肪含量开始下降,肝指数显著降低,表明脂肪酸分解代谢开始发生;禁食6 d和9 d时,粗脂肪含量和肝指数均显著降低,内源性脂肪快速动员;体重和肝重在禁食9 d后,也分别降低了26.93%和50.00%。随禁食时间的延长,肝细胞出现空泡化现象,这是肝细胞对外部应激暂时的适应性反应,旨在维持细胞内的稳态。它可能是一种与脂代谢相关的变化,并存在可逆性,当胁迫恢复后,肝细胞的空泡得到改善。这种因环境胁迫而出现的肝细胞空泡现象,在低氧胁迫下的青海湖裸鲤(Gymnocypris przewalskii)中也被发现[20],但恢复溶氧后的肝细胞变化不得而知。

肝指数下降是饥饿最明显的标志之一。在为期30 d的饥饿与复投实验中,许氏平鲉(Sebastes schlegelii)经历3、6、9和12 d禁食后,肝指数在禁食第9 d时,最多下降了64.85%,复投后肝指数恢复与对照组无显著差异的水平[21]。尼罗罗非鱼(Oreochromis niloticus)禁食28 d后,发现肝指数随禁食时间延长显著降低了56.44%,复投后有所提高,但低于实验初水平[22]。本研究发现,鳜禁食9 d后,肝指数下降了31.63%,复投后,肝指数恢复到对照组水平,表明营养恢复后,能够使鳜肝重和体重快速恢复。值得注意的是,在饥饿、复投过程中,肝重增重率(损失率)始终是大于体重增重率,表明不管是禁食还是恢复阶段,肝脏作为活跃的代谢组织,在脂代谢、营养分配和能量物质储存等方面发挥关键调节作用。

3.2 饥饿、复投对鳜肝脏脂肪酸组成的影响

本研究中,饥饿组SFA和MUFA相对含量均降低,且MUFA含量下降更明显,PUFA相对含量增加,表明鳜在饥饿生理下,肝脏主要动员MUFA和SFA,且MUFA消耗量更大。虹鳟(Oncorhynchus mykiss)和瓦氏黄颡鱼(Pelteobagrus vachelli)在禁食期间都观察到肝脏和肌肉以SFA或MUFA供能为主[23-24]。因此,在禁食期间,鳜优先利用SFA和MUFA来快速供能,而n-3 PUFA (DHA和EPA等)不能从头合成,必须通过外源性营养获得或由必须脂肪酸α-亚麻酸(C18: 3n-3)代谢转化合成,在鱼类神经发育过程、参与细胞膜的构建和调节炎症反应等生理功能中具有重要意义[25-26],推迟或减少利用这些底物来提高生存率和适应环境变化,可能更符合鳜对营养变化的适应性反应。徐杭忠等[16]研究了鳜在短期饥饿下肌肉脂肪酸的组成,背肌中SFA和MUFA含量显著上升,PUFA含量显著降低,说明主要动员PUFA来供能。肝脏和背肌分别作为代谢中心和主要运动组织,在生理功能上存在差异,高能量需求的背肌可能需要更容易被氧化和动员的PUFA来快速供能。复投后,鳜会迅速补充能量储备,以适应恢复投喂的环境。SFA不仅可以通过膳食摄入获得,还能在体内合成。棕榈酸C16: 0是从头脂肪合成的主要产物,且C16: 0和C18: 0广泛存在动物产品中[27]。在鳜重新摄食后,SFA通过内源性合成和外源性补充得以循环利用并储存,其相对含量显著增加。MUFA相对含量先稳定后增加,这类脂肪酸在elovl6和硬脂酰辅酶A去饱和酶(scd)作用下,可由SFA转化而来[28]。本研究中发现,复投后elovl6的表达水平显著上调,将C16: 0延长为C18: 0,为scd提供底物,参与后续的去饱和反应,可能与MUFA含量增加有关,但需进一步研究scd表达水平的变化以验证这一机制。在饥饿营养生理下,鳜大量消耗SFA和MUFA供能。在短期恢复阶段,SFA和MUFA相对含量可能优先快速上升,导致PUFA相对含量减少。SFA与不饱和脂肪酸(unsaturated fatty acids, UFA)之间的平衡对细胞功能、代谢调节和健康维持起关键作用。鳜通过膳食摄入补充这些脂肪酸,并重新平衡代谢,恢复各脂肪酸比例至对照组水平,是其应对营养波动的重要适应策略。

脂质作为能量的利用导致肝脏组织中的脂肪酸组成发生重大变化。从单个脂肪酸水平看,肝脏中SFA (C16: 0、C18:0), MUFA (C16: 1n-7、C18: 1n-9), PUFA(C20: 4n-6)在禁食9 d后都显著降低,不同类型的脂肪酸都会被显著消耗,表明鳜肝脏脂肪酸β-氧化的实际程度是复杂的。鳜肝脏组织具有较高的C16: 0和C18: 1n-9含量,分别占22.6%和29.09%,是三酰甘油合成的主要底物和β-氧化的首选底物之一[29],在储存能量和调动方面都发生显著变化,表明脂肪酸动员可能与每种脂肪酸的相对丰度存在关联。在瓦氏黄颡鱼[24][30](Miichthys miiuy)和鲤[31](Cyprinus carpio)中均发现高含量的脂肪酸被显著氧化供能。部分PUFA也作为能量底物被显著消耗,C20: 4n-6是主要的n-6 PUFA之一,是多种生物活性分子的前提,在炎症反应、免疫调节和细胞信号传导中起作用[32]。饥饿条件下,鳜动员C20: 4n-6不仅作为能量供给,还可以调节这些信号通路,作为生理调节所需的重要前提分子。同时PUFA包含多个双键使其更容易氧化,提供能量的效率更高[33]

总的来说,鳜在饥饿状态下,主要动员和消耗SFA和MUFA以满足能量需求,同时通过合理调配PUFA,维持细胞结构和功能的稳定性,以及参与代谢和免疫调节。这种动态平衡帮助鳜在饥饿状态下生存和适应环境变化。

3.3 饥饿、复投对鳜肝脏脂代谢的影响

在鱼体中,体内的脂质主要来自食物摄入和体内生物合成等途径[34]。食物摄入减少或停止会导致脂质代谢平衡受到破坏,此时恢复到正常的外部环境,可使机体的脂质代谢恢复到一个新的平衡。在本研究中,鳜脂肪酸生成和脂肪积累相关基因ppar-γfasnacaca在饥饿组的肝脏中显著下调,禁食导致合成脂肪酸和脂质积累所需的反应底物减少,脂肪酸合成代谢减弱,脂肪生成受到了抑制;而与脂肪酸β-氧化和脂解相关基因cpt1ab、acox1表达显著上调,表明在禁食9 d后,为维持机体在禁食期间的能量供应和生理功能,通过肝脏中线粒体和过氧化物酶体的β-氧化途径,增加脂肪酸的氧化代谢,以应对能量缺口。在禁食期间,脂肪分解与脂肪生成之间的平衡发生了变化,进而影响了脂肪酸的供应与肝脏对脂肪酸的吸收与利用,肝指数和脂肪含量随之下降。此外,ppar-γ可能还参与n-3 PUFA的代谢调控。Sun等[35]研究黄斑蓝子鱼(Siganus canaliculatus)发现,ppar-γ可以抑制n-3 PUFA的合成,当ppar-γ的表达被抑制时,Δ6Δ5脂肪酰基去饱和酶的表达增强,从而促进n-3 PUFA的合成。这与本研究中饥饿胁迫下鳜肝脏ppar-γ相对表达量减少以促进n-3 PUFA的合成的现象相似,但这种相关性与机制在不同鱼类中的适应性仍需进一步研究。

复投后,鳜肝脏fasnppar-γ的相对表达水平逐渐恢复,表明鳜重新从外界获取能量后,脂质合成代谢增加,部分合成的脂肪酸用于维持正常的生命活动,剩余脂肪酸主要用于脂质的积累。这与Tian等[36]对尼罗罗非鱼的饥饿再投喂研究结果相似。acaca表达水平尽管都有上调,但仍未完全恢复,可能是在短期的复投中,并不能使acaca完全恢复。S3R15组的cpt1ab、acox1和S6R12组的acox1表达水平恢复至对照组水平,表明在重新获得食物后,减少了脂肪酸的分解代谢,避免产生过量的过氧化物和氧化应激,有助于维持体内代谢的平衡。然而,S6R12组的cpt1ab和S9R9组的cpt1ab、acox1仍显著高于对照组,一方面可能是因为复投时间较短,鱼体尚需时间重新积累能量储备,脂肪酸的氧化水平保持在较高状态,以确保能量平衡逐步恢复。另一方面,可能是鳜在经历补偿生长效应,即饥饿后的快速生长,以弥补禁食期间的生长停滞,这一过程需要大量能量,cpt1abacox1的高表达有助于满足这种高代谢需求[37]

elovl6是脂肪酸延伸的关键酶,参与将C16: 0或C16: 1n-7延伸为C18: 0的过程[38]。通过18 d投喂发现,elovl6活性增强,有利于C18: 0的积累。同理,禁食时elovl6转录水平下调,C18: 0显著降低,表明C16: 0和C16: 1n-7底物减少,不能有效延伸为C18: 0,且C18: 0作为能源物质被部分消耗。在复投后,elovl6活性显著增加,C16: 0、C16: 1n-7和C18: 0的水平迅速上升,帮助重建脂肪储备和恢复正常的生理功能。

4 结论

综上所述,饥饿条件下,鳜肝脏中粗脂肪含量下降,脂肪酸组成改变,MUFA和SFA被显著动员;复投后,各脂肪酸含量都会得到恢复。禁食时,通过下调ppar-γfasnacacaelovl6抑制脂肪酸合成,上调cpt1abacox1促进脂肪酸β-氧化;复投后,ppar-γfasnacacaelovl6上调,促进脂肪酸合成,恢复正常脂代谢水平。肝脏脂肪酸是鳜应对饥饿生理的重要能量来源。

参考文献
[1]
Piccinetti C C, Donati M, Radaelli G, et al. The effects of starving and feeding on dover sole (Solea solea, Soleidae, Linnaeus, 1758) stress response and early larval development[J]. Aquaculture Research, 2015, 46(10): 2512-2526..》Google Scholar
[2]
Gou N N, Wang K F, Jin T Z, et al. Effects of starvation and refeeding on growth, digestion, nonspecific immunity and lipid-metabolism-related genes in Onychostoma macrolepis[J]. Animals, 2023, 13(7): 1168..》Google Scholar
[3]
Zhu Q H, Song H J, Zhang Y, et al. Effects of cold stress and starvation on the liver of yellow drum Nibea albiflora: Histological alterations and transcriptomic analysis[J]. Aquaculture Environment Interactions, 2020, 12: 359-369..》Google Scholar
[4]
Davis K B, Gaylord T G. Effect of fasting on body composition and responses to stress in sunshine bass[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 158(1): 30-36..》Google Scholar
[5]
Xie M, Li S M, Feng Z F, et al. Effects of starvation on the physiology and liver transcriptome of yellowcheek (Elopichthys bambusa)[J]. Fishes, 2023, 8(4): 175..》Google Scholar
[6]
Arslan G, Bayır M, Yağanoğlu A M, et al. Changes in fatty acids, blood biochemistry and mRNA expressions of genes involved in polyunsaturated fatty acid metabolism in brown trout (Salmo trutta) during starvation and refeeding[J]. Aquaculture Research, 2021, 52(2): 494-504..》Google Scholar
[7]
Xu H G, Bi Q Z, Meng X X, et al. Response of lipid and fatty acid composition of turbot to starvation under different dietary lipid levels in the previous feeding period[J]. Food Research International, 2022, 151: 110905..》Google Scholar
[8]
Suárez M D, Cervera M R, Abellán E, et al. Influence of starvation on flesh quality of farmed dentex, Dentex dentex[J]. Journal of the World Aquaculture Society, 2010, 41(4): 490-505..》Google Scholar
[9]
Ölmez A, Bayir M, Wang C F, et al. Effects of long-term starvation and refeeding on fatty acid metabolism-relatedgene expressions in the liver of zebrafish, Danio rerio[J]. Turkish Journal of Veterinary & Animal Sciences, 2015, 39: 654-660..》Google Scholar
[10]
Luo Z, Tan X Y, Wang W M, et al. Effects of long-term starvation on body weight and body composition of juvenile channel catfish, Ictalurus punctatus, with special emphasis on amino acid and fatty acid changes[J]. Journal of Applied Ichthyology, 2009, 25(2): 184-189..》Google Scholar
[11]
Sun J, Wu W Y, Ji H. Effect of overwintering on body composition, antioxidant enzyme activities, fatty acid composition, glucose and lipid-metabolic related gene expression of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2021, 545: 737125..》Google Scholar
[12]
Barreto-Curiel F, Focken U, D’Abramo L R, et al. Metabolism of Seriola lalandi during starvation as revealed by fatty acid analysis and compound-specific analysis of stable isotopes within amino acids[J]. PLoS One, 2017, 12(1): e0170124..》Google Scholar
[13]
Chen W J, Ding L Y, Deng Y H, et al. Effects of starvation stress on physical indices, muscle fatty acid composition and liver lipoprotein lipase gene expression of juvenile crucian carp (Carassius auratus var. Pengze)[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2782-2790. [陈文静,丁立云,邓勇辉,等. 饥饿胁迫对彭泽鲫幼鱼形体指标、肌肉脂肪酸组成和肝脏脂蛋白脂酶基因表达的影响[J]. 动物营养学报,2020, 32(6): 2782-2790.].》Google Scholar
[14]
Day R D, Tibbetts I R, Secor S M. Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes[J]. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2014, 184(4): 497-512..》Google Scholar
[15]
Zhang B Y, Cai G H, Yang H L, et al. New insights on intestinal microorganisms and carbohydrate metabolism in fish[J]. Aquaculture International, 2024, 32(2): 2151-2170..》Google Scholar
[16]
Xu H Z, Zhang H D, Wang G L, et al. Comparison of physiological status of short-term starvation and feeding of mandarin fish (Siniperca chuatsi) at low temperature in winter[J]. Journal of Fisheries of China, 2022, 46(9): 1572-1581. [徐杭忠,张皓迪,王贵龙,等. 冬季低水温鳜短期饥饿和摄食的生理状态比较[J]. 水产学报,2022, 46(9): 1572-1581.].》Google Scholar
[17]
Jiang X H, Wang X B, Kou L X, et al. A comparative study on the nutrient and fatty acid composition in muscle of Siniperca scherzeri in upstream and downstream area of Yalu River[J]. Journal of Fisheries Research, 2023, 45(6): 569-576. [蒋湘辉,王兴兵,寇凌霄,等. 鸭绿江上游和下游斑鳜肌肉常规营养成分及脂肪酸组成分析[J]. 渔业研究,2023, 45(6): 569-576.].》Google Scholar
[18]
Yuan X C. The regulation of glucose and lipid metabolism on food intake of grass carp and mandarin fish[D]. Wuhan: Huazhong Agricultural University, 2017. [袁小琛. 糖脂代谢对草鱼和鳜鱼摄食的调控机制[D]. 武汉:华中农业大学,2017.].》Google Scholar
[19]
Wu H X, Li W J, Shan C J, et al. Oligosaccharides improve the flesh quality and nutrition value of Nile Tilapia fed with high carbohydrate diet[J]. Food Chemistry: Molecular Sciences, 2021, 3: 100040..》Google Scholar
[20]
Chen F J, Duojie D Z, Fu S Y, et al. Effects of different dissolved oxygen levels on the liver tissue structure and antioxidant enzyme activities of Lake Qinghai Gymnocypris przewalskii[J]. Freshwater Fisheries, 2021, 51(5): 13-20. [陈付菊,多杰当智,付生云,等. 不同溶解氧水平对青海湖裸鲤肝组织结构及抗氧化酶活性的影响[J]. 淡水渔业,2021, 51(5): 13-20.].》Google Scholar
[21]
Mao S Q, Wang B L, Xu P. Effects of starvation for various days and re-feeding on growth and body compositions in rockfish Sebastes schlegeli[J]. Chinese Journal of Fisheries, 2017, 30(1): 26-31. [冒树泉,王秉利,许鹏. 饥饿不同时间后投喂对许氏平鮋生长及体成分的影响[J]. 水产学杂志,2017, 30(1): 26-31.].》Google Scholar
[22]
Tian J, Tu W, Zeng L B, et al. The changes in growth, serum biochemical indices and GH/IGF-I/IN mRNA expression abundance of Oreochromis niloticus during fasting and re-feeding[J]. Journal of Fisheries of China, 2012, 36(6): 900-907. [田娟,涂玮,曾令兵,等. 饥饿和再投喂期间尼罗罗非鱼生长、血清生化指标和肝胰脏生长激素、类胰岛素生长因子-I和胰岛素mRNA表达丰度的变化[J]. 水产学报,2012, 36(6): 900-907.].》Google Scholar
[23]
Messina M, Tulli F, Calligaris M, et al. Effects of long term feeding diets differing in protein source and pre-slaughter starvation on biometry, qualitative traits and liver IGF-I expression in large rainbow trout[J]. Italian Journal of Animal Science, 2009, 8(sup2): 866-868..》Google Scholar
[24]
Qin C J, Shao T, Yang J P, et al. The effect of starvation on lipid metabolism of darkbarbel catfish, Pelteobagrus vachelli[J]. Acta Hydrobiologica Sinica, 2015, 39(1): 58-65. [覃川杰,邵婷,杨洁萍,等. 饥饿胁迫对瓦氏黄颡鱼脂肪代谢的影响[J]. 水生生物学报,2015, 39(1): 58-65.].》Google Scholar
[25]
Xu H G, Turchini G M, Francis D S, et al. Are fish what they eat? A fatty acid’s perspective[J]. Progress in Lipid Research, 2020, 80: 101064..》Google Scholar
[26]
Kabeya N, Yevzelman S, Oboh A, et al. Essential fatty acid metabolism and requirements of the cleaner fish, ballan wrasse Labrus bergylta: Defining pathways of long-chain polyunsaturated fatty acid biosynthesis[J]. Aquaculture, 2018, 488: 199-206..》Google Scholar
[27]
Wu Q X, Shi D D, Dong T, et al. Serum saturated fatty acids including very long-chain saturated fatty acids and colorectal cancer risk among Chinese population[J]. Nutrients, 2023, 15(8): 1917..》Google Scholar
[28]
Zhao G Y, Tan Y Y, Cardenas H, et al. Ovarian cancer cell fate regulation by the dynamics between saturated and unsaturated fatty acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(41): e2203480119..》Google Scholar
[29]
Stubhaug I, Lie Ø, Torstensen B E. β-Oxidation capacity in liver increases during parr-smolt transformation of Atlantic salmon fed vegetable oil and fish oil[J]. Journal of Fish Biology, 2006, 69(2): 504-517..》Google Scholar
[30]
Liu M H, Luo H Z, Fu R B, et al. Biochemical composition, amino acid and fatty acid composition in juvenile of Miichthys miiuy under short-time starvation[J]. Acta Hydrobiologica Sinica, 2009, 33(2): 230-235. [柳敏海,罗海忠,傅荣兵,等. 短期饥饿胁迫对鮸鱼生化组成、脂肪酸和氨基酸组成的影响[J]. 水生生物学报,2009, 33(2): 230-235.].》Google Scholar
[31]
Varga D, Hancz C, Szabó A. Selective mobilization of fatty acids in common carp (Cyprinus carpio) during long-term starvation[J]. Aquaculture, Aquarium, Conservation & Legislation—International Journal of the Bioflux Society, 2020, 13(3): 1366-1373..》Google Scholar
[32]
Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Reviews in Fisheries Science, 2003, 11(2): 107-184..》Google Scholar
[33]
Tocher D R. Fatty acid requirements in ontogeny of marine and freshwater fish[J]. Aquaculture Research, 2010, 41(5): 717-732..》Google Scholar
[34]
Dietrich M A, Hliwa P, Adamek M, et al. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism[J]. Fish & Shellfish Immunology, 2018, 76: 305-315..》Google Scholar
[35]
Sun J J, Chen C Y, You C H, et al. The miR-15/16 cluster is involved in the regulation of vertebrate LC-PUFA biosynthesis by targeting pparγ as demonostrated in rabbitfish Siganus canaliculatus[J]. Marine Biotechnology, 2020, 22(4): 475-487..》Google Scholar
[36]
Tian J, Wen H, Zeng L B, et al. Changes in the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) of Nile tilapia (Oreochromis niloticus) during fasting and re-feeding[J]. Aquaculture, 2013, 400-401: 29-35..》Google Scholar
[37]
Zhong J, Li P C, Yao F, et al. Effects of different cyclic starvation and refeeding methods on growth, metabolic enzymes activities and body composition of juvenile grass carp (Ctenopharyngodon idellus)[J]. Chinese Journal of Animal Nutrition, 2020, 32(3): 1445-1453. [钟娟,李鹏程,姚峰,等. 不同循环饥饿-投喂策略对草鱼生长、代谢酶活性及体成分的影响[J]. 动物营养学报,2020, 32(3): 1445-1453.].》Google Scholar
[38]
Li Y N, Pang Y N, Zhao Z Q, et al. Molecular characterization, nutritional and insulin regulation of Elovl6 in rainbow trout (Oncorhynchus mykiss)[J]. Biomolecules, 2020, 10(2): 264..》Google Scholar