2. 长江水利委员会流域河湖生态系统修复关键技术创新团队,湖北 武汉 430079
2. Innovation Team of the Changjiang Water Resources Commission for River and Lake Ecosystem Restoration Key Technology, Wuhan 430079, China
奇额墨头鱼(Garra mirofronits)隶属鲤形目(Cypriniformes)、鲤科(Cyprinidae)、野鲮亚科 (Labeoninae)、墨头鱼属(Garra),为澜沧江特有鱼类,国内仅分布于澜沧江中下游,分布区域狭窄(海拔500~700 m)[1]。奇额墨头鱼体呈圆筒形,鼻孔前具特别的额沟,形成两个额突,每个额突前端具有1颗圆锥形角质突起,大而明显,喜欢栖息于水流湍急、水底多石的河流底层[2]。近年来,澜沧江梯级电站的建设和运行,导致河流生境及水文水动力过程发生明显改变[3],给奇额墨头鱼的洄游、繁殖及栖息等造成不可逆的影响[4],加之过度捕捞、水质污染、河道采砂及航运等人类活动影响,奇额墨头鱼野外种群资源急剧下降,亟须保护[5]。
奇额墨头鱼生长速度快,肉质细嫩鲜美,具有较好的开发前景和养殖推广意义,开展其人工繁殖技术及早期发育研究,并开展放流活动对其物种保护及资源利用具有重要意义[6-7]。目前对墨头鱼属鱼类的研究主要集中于分类学[2,8-10]、系统发育[11]、形态分化[12]、常规组织学[13]、种群结构[14-15]、种群资源调查[16]等方面。关于墨头鱼属鱼类人工繁殖和早期发育方面的研究未见报道。2024年7—8月,作者团队成功开展了3次奇额墨头鱼人工繁殖实验,观察记录了其早期发育过程各时期的形态特征,丰富了其繁殖生物学、发育生物学研究资料,为人工繁育和苗种规模化生产提供了技术支撑,对其种质资源保护及开发利用具有重要意义。
1 材料与方法 1.1 亲鱼采集和挑选2024年7月至8月,利用刺网在澜沧江糯扎渡坝址下游采集奇额墨头鱼性成熟个体。挑选沿胸鳍鳍条方向抚摸有不明显珠星,略显粗糙,轻压腹部有乳白色精液流出,入水即散开,体重100 g以上的雄性奇额墨头鱼作为雄性亲本;挑选沿胸鳍鳍条方向抚摸光滑,腹部明显肿大,体重150 g以上的雌性奇额墨头鱼作为雌性亲本;雌雄比例为3∶2。
1.2 人工催产和授精催产剂由促黄体素释放激素A2 (LHRH-A2)和马来酸地欧酮(DOM)组成,采用2次注射法:第一针雌性亲本注射LHRH-A2 5 μg/kg,雄鱼不注射;12 h后对雌性亲本再次注射LHRH-A2 8 μg/kg+DOM 6 mg/kg,雄性减半。
第2针催产剂注射约6~7 h后,在观察到雄性亲本追逐并用头部撞击雌性亲本腹部时,捞出亲鱼后擦干体表水分,用手从鱼体前部向后挤压,将卵子挤出置于洗净擦干的塑料盆中,待所有雌鱼排卵完毕后,将雄鱼精液挤至卵子之上,再加入清水激活精子,用羽毛搅拌2 min后冲洗数次洗去黏液和杂质,后将受精卵置于孵化环道中微流水孵化。根据孵化阶段调整流速,0~22 h保持流速为0.5 m/s,22~27 h降低流速至0.1 m/s,27 h以后恢复流速为0.5 m/s。控制繁殖、孵化水温为18~21 ℃,溶氧≥7 mg/L。
![]() |
图1 繁殖季节奇额墨头鱼雌雄亲鱼特征a. 雄鱼;b. 雌鱼;c. 雄鱼精巢;d. 雌鱼卵巢. Fig. 1 Characteristics of male and female Garra mirofronits broodstocks during spawning seasona. Male individual; b. Female individual; c. Male testis; d. Female ovary. |
每次从孵化环道中随机取30~50粒受精卵置于培养皿中,在T2-HK830体视显微镜(深圳市奥斯微光学仪器有限公司)下进行持续观察和拍照,记录早期发育各时期的形态特征及水温。原肠胚期前每次取受精卵间隔不超过10 min,之后每次取受精卵间隔不超过30 min,仔鱼期适时取样观察和拍照。参考已有研究[17-20]中的方法,并根据显微镜下对奇额墨头鱼早期发育的观察,对其早期发育时期进行划分,当超过50%的受精卵、仔鱼发生形态变化时则判定为进入下一发育时期[21-22]。
1.4 数据采集和分析人工繁殖效率和胚胎发育过程相关指标计算公式如下:
催产率=产卵鱼数/催产鱼总数×100%;
受精率=原肠中期活卵数/产卵总数×100%[22];
孵化率=鱼苗水花数/受精卵总数×100%;
K=N×T;
AGR=(Lt2−Lt1)/(t2−t1)[23];
SGR=[(lnLt2−lnLt1)/(t2−t1)]×100%[23];
其中,K为积温(℃·h); N为发育所需时间(h); T为平均水温(℃); AGR为全长绝对生长率(mm/d); SGR为全长特定生长率(%/d); Lt2和Lt1分别为发育到t2和t1时的全长。
胚胎发育图片采用Adobe Photoshop CC 2023进行裁剪和编排,测量数据采用Graphpad Prism 9.1进行分析、制图,数据以“平均值±标准差($\bar x \pm {\rm{SD}}$)”表示。
2 结果与分析 2.1 人工繁殖情况2024年7月25日—8月21日,共进行了3次人工繁殖实验(表1),共计催产雌鱼9尾,产卵9尾,催产率均为100%、受精率为(89.93±0.72)%、孵化率为(87.83±1.00)%,共获得初孵仔鱼23.20× 104尾。
![]() |
表1 奇额墨头鱼人工繁殖情况统计 Tab. 1 Statistics of the artificial propagation of Garra mirofronits |
奇额墨头鱼受精卵呈圆球状,浅灰色,成熟卵子直径为(1.12±0.04) mm,吸水膨胀后卵膜径达(3.37±0.09) mm,膨胀系数300.89%,卵膜薄而透明,无黏性,卵周隙较大,系典型漂流性卵。水温18~21 ℃下,经24~26 h完成胚胎发育过程,初孵仔鱼全长为(4.50±0.07) mm,肌节32对,孵化积温为496.04 ℃·h,历经受精卵、胚盘期、卵裂期、囊胚期、原肠胚期、神经胚期、器官形成期、心脏搏动期和出膜期等9个时期,又可细分为32个发育期,各发育期具体形态特征、历时详见图2和表2。
![]() |
图2 奇额墨头鱼胚胎发育1:受精卵;2:胚盘期;3:2细胞期;4:4细胞期;5:8细胞期;6:16细胞期;7:32细胞期;8:64细胞期;9:多细胞期;10:桑葚胚期;11:囊胚早期;12:囊胚中期;13:囊胚晚期;14:原肠早期;15:原肠中期;16:原肠晚期;17:神经胚期;18:胚孔封闭期;19:肌节出现期;20:眼囊期;21:嗅板期;22:尾芽期;23:心脏原基期;24:尾泡出现期;25:听囊期;26:尾鳍出现期;27:肌肉效应期;28:眼晶体形成期;29:耳石出现期;30:心脏搏动期;31:出膜期;32:初孵仔鱼. Fig. 2 Embryonic development of Garra mirofronits1: Fertilized egg; 2: blastoderm stage; 3: 2 cell stage; 4: 4 cell stage; 5: 8 cell stage; 6: 16 cell stage; 7: 32 cell stage; 8: 64 cell stage; 9: multicellular stage; 10: morula stage; 11: early blastula stage; 12: mid-blastula stage; 13: late blastula stage; 14: early gastrula stage; 15: mid-gastrula stage; 16: late gastrula stage; 17: neurula stage; 18: blastopore closure stage; 19: sarcomere stage; 20: eye capsule stage; 21: olfactory plate stage; 22: tail bud stage; 23: rudiment of heart stage; 24: caudal vesicle emergence stage; 25: otocyst stage; 26: caudal appearance stage; 27: muscular contraction effect; 28: crystal stage of eyes; 29: otolith stage; 30: heart pulsation stage; 31: hatching stage; 32: newly hatched larvae. |
![]() |
表2 奇额墨头鱼胚胎发育时序 Tab. 2 Timing of embryonic development of Garra mirofronits |
奇额墨头鱼卵受精后,卵膜遇水迅速膨胀,卵膜径达(3.37±0.09) mm,卵黄呈浅灰色,卵膜薄而透明,卵周隙较大,卵外周原生质向动物极汇集,逐渐隆起形成胚盘,可见卵质流动形成的细胞质网(图2-1)。
2.2.2 胚盘期受精25 min后胚盘隆起最高,约达到卵径的1/2(图2-2)。
2.2.3 卵裂期奇额墨头鱼属盘状卵裂,即胚盘分裂而卵黄不分裂。
受精41 min后,受精卵进行了第1次分裂,即经裂,胚盘中央沿动物极向植物极的轴向出现1条分裂沟,把胚盘分割成2个同样大小的分裂球,到达2细胞期(图2-3);
受精56 min后,进行第2次卵裂,此次分裂面与第一次分裂面相垂直,出现4个大小相同的分裂球,到达4细胞期(图2-4);
受精1 h 6 min后,进行第3次分裂,有2个分裂面通过第2次分裂沟,将4个分裂球分裂成8个,到达8细胞期(图2-5);
受精1 h 18 min后,受精卵进行第4次卵裂,本次分裂也产生2个分裂面,与第2次分裂面平行,分裂为16个细胞(图2-6);
受精1 h 33 min后,受精卵进行第5次分裂,产生4个分裂面,与第1、第3次分裂面平行,32个细胞大小不再均一,排列也变得不规则(图2-7);
受精1 h 51 min后,细胞继续分裂,显著变小,形成64个细胞,进入64细胞期(图2-8);
受精2 h 12 min后,细胞分裂速度不一,分裂球体积逐渐缩小,开始堆积排列,分裂球边缘界限变得模糊不清,进入多细胞期(图2-9);
受精2 h 40 min后,细胞分裂继续进行,分裂球数量不断增加,几乎不可见,呈桑葚状排列在一起,与卵黄界限明显,进入桑葚胚期(图2-10)。
2.2.4 囊胚期受精3 h 35 min后,随着卵裂不断进行,分裂球变得很小使细胞团边缘显得平滑,细胞间界限模糊,分裂球组成囊胚层,在卵黄囊上高高隆起,约达到卵黄径的1/2,呈高帽状,到达囊胚早期(图2-11);
受精4 h 40 min后,细胞体积持续缩小,囊胚体积随之缩小,高度降至卵黄径的2/5,颜色变浅,囊胚层与卵黄相接处凹痕明显,到达囊胚中期(图2-12);
受精5 h 50 min后,囊壁细胞向植物极延伸生长,胚层逐渐下包卵黄,囊胚层变低、变瘪,囊胚高度降至卵黄径的1/3,受精卵动物极处无明显凸起,囊胚腔缩小,囊胚层与卵黄平滑相接,进入囊胚晚期(图2-13)。
2.2.5 原肠胚期受精7 h 20 min后,胚层细胞不断发育,在卵黄表面向植物极方向扩展,下包到卵黄的2/5处,部分胚层细胞向胚胎内部卷入,在胚盘边缘形成一圈较薄的胚环,到达原肠早期(图2-14);
受精8 h 10 min后,胚层细胞向下包裹到卵黄的1/2处,胚环明显增大变厚,进入原肠中期(图2-15);
受精8 h 50 min后,胚层继续下包至卵黄的4/5处,此时胚环一侧集中增厚形成胚盾(胚体背部),背唇、两侧侧唇及腹唇共同组成胚孔,胚孔外未被胚层包住的卵黄称为卵黄栓,标志着受精卵进入原肠晚期(图2-16)。
2.2.6 神经胚期受精10 h 35 min后,卵黄几乎被完全包裹,胚层背侧开始逐渐增厚形成神经板,在神经板顶端出现增厚隆起的脑泡,胚孔进一步收缩,卵黄栓逐渐变小,进入神经胚期(图2-17);
受精12 h 40 min后,胚孔封闭,弧形胚体腹面包绕卵黄囊约3/5,到达胚孔封闭期(图2-18)。
2.2.7 器官形成期受精14 h后,头部隆起膨大为脑泡原基,胚体中部发育形成6对肌节,脊索出现,卵黄囊被胚体环绕约4/5,胚孔仍未完全消失,到达肌节出现期(图2-19);
受精14 h 40 min后,胚体前脑两侧出现一对西瓜子状凸起泡,即眼囊,到达眼囊期(图2-20);
受精15 h 20 min后,胚体眼前缘出现嗅板,到达嗅板期(图2-21);
受精15 h 40 min后,尾部与卵黄囊间产生一个微微凸起的部分,界限分明,即尾芽,到达尾芽期(图2-22);
受精17 h 20 min后,卵黄吸收加快,如肾形,尾部脱离卵黄更加明显,眼囊下部的卵黄出现凹陷形成空腔,可见心脏原基,到达心脏原基期(图2-23);
受精17 h 50 min后,尾部卵黄吸收加快,胚体尾芽中出现泡状结构,即尾泡,到达尾泡出现期(图2-24);
受精18 h 20 min后,在胚体前部1/4处出现1对扁豆状凸起,即听囊,胚体继续延长,肌节发育明显,增加至16对,到达听囊期(图2-25);
受精19 h 50 min后,胚体头部分化,中部明显增厚,尾部卵黄几乎完全吸收,卵黄呈长茄形,尾部伸长脱离卵黄囊形成尾鳍雏形,到达尾鳍出现期(图2-26);
受精20 h 30 min后,随着卵黄吸收逐渐加速,胚体尾鳍和肌肉发育,尾泡完全消失,胚体后部腹侧逐渐脱离卵黄囊,胚体长度超过卵膜径,尾部盘曲,开始扭动,频次6~8次/min,到达肌肉效应期(图2-27);
受精21 h 10 min后,眼囊中出现圆形晶体,头部前方可见嗅囊,到达眼晶体形成期(图2-28);
受精22 h 20 min后,耳囊中出现2个黑色小颗粒,即耳石,到达耳石出现期(图2-29)。
2.2.8 心脏搏动期受精23 h后,胚体频繁扭动翻滚,可见明显心脏跳动,达50~60次/min,到达心脏搏动期(图2-30)。
2.2.9 出膜期受精25 h 10 min后,受精卵进入出膜期,通常情况下,胚体头部首先突破卵膜显现,随后通过尾部的扭动促使身体完全脱离卵膜(图2-31);
受精25 h 45 min后,50%以上受精卵孵化出膜,初孵仔鱼躯体已趋于笔直,全长为(4.50± 0.07) mm,肌节32对,尾鳍微微上翘,但机体发育还不完善,无胸鳍、鳔,在水中作抛石式扭动(图2-32)。
2.3 仔鱼发育水温18~21 ℃条件下,仔鱼发育经历16 d进入稚鱼期。仔鱼期可分为卵黄囊仔鱼和后期仔鱼,卵黄囊仔鱼是从仔鱼孵出至卵黄基本吸收完毕时的仔鱼,后期仔鱼是从卵黄基本吸收完至奇鳍褶分化为背鳍、臀鳍和尾鳍,腹鳍、鳞片出现。卵黄囊仔鱼和后期仔鱼又可细分为21个发育期,各发育期形态特征见图3。
![]() |
图3 奇额墨头鱼仔鱼发育1:眼黑色素期;2:尾鳍褶皱期;3:胸鳍原基期;4:血液着色、眼睛着色;5:心脏红色血液汇集;6:鳔雏形期;7:肛凹期;8:鳃弧期;9:鳔一室期;10:消化道膨大;11:鳃丝出现;12:消化道成形;13:初次摄食轮虫;14:卵黄吸尽期;15:头部黑色素汇集;16:背褶分化期、眼睛形成;17:尾椎上翘期;18:背鳍形成;19:腹鳍芽出现、臀鳍雏形、鳔2室期;20:臀鳍形成、鳞片出现;21:腹鳍、胸鳍形成. Fig. 3 Laval development of Garra mirofronits1: eye melano-phase; 2: folding stage of the caudal fin; 3: primordial stage of the pectoral fin; 4: blood pigmentation and eye pigmentation; 5: collection of red blood in the heart; 6: primordial stage of the swim bladder; 7: anal pit stage; 8: gill arch stage; 9: chamber 1 stage of the swim bladder; 10: enlargement of the digestive tract; 11: appearance of gill filaments; 12: formation of the digestive tract; 13: initial feeding on rotifers; 14: yolk depletion stage; 15: concentration of melanin in the head; 16: differentiation stage of the dorsal fold and formation of the eyes; 17: upward warping stage of the caudal vertebra; 18: formation of the dorsal fin; 19: appearance of the ventral fin bud, rudiment of the anal fin, and stage 2 of the swim bladder; 20: formation of the anal fin and appearance of scales; 21: ventral and pectoral fins are formed. |
出膜9.5 h后,眼下缘出现黑色素,卵黄囊前端与肠后段出现黑色素(图3-1);
出膜16 h后,眼下缘黑色素向眼睛中部汇聚,可见胸鳍芽微微凸起,尾鳍鳍褶出现(图3-2);
出膜20 h后,胸鳍芽进一步发育成为胸鳍原基(图3-3);
出膜1 d 3 h后,眼睛基本被黑色素充满,尾部和胸腔处可见淡红色血液流动(图3-4);
出膜1 d 8 h后,在卵黄囊前方出现明显的心脏,附近卵黄囊被快速吸收出现凹陷,红色血流明显(图3-5);
出膜1 d 12 h后,出现无色透明的鳔雏形(图3-6);
出膜1 d 16 h后,出现明显肛凹(图3-7);
出膜2 d 3 h后,出现4片鳃弧(图3-8);
出膜2 d 12 h后,头部显著生长变大,眼睛变大充满黑色素,消化道明显可见,消化道和脊椎之间出现一个不透光的小圆球,即鳔一室(图3-9);
出膜2 d 16 h后,鳔一室膨大呈胶囊状,消化道中部明显膨胀(图3-10);
出膜3 d 4 h后,鳃弧上可见清晰鳃丝,背部开始拱起,躯体后部显著延伸变细长(图3-11);
出膜4 d 3 h后,头部出现星芒状色素痕迹,脊椎出现黑色素,鳔室进一步膨大,背部拱起更高,肛门开通,消化道基本成形(图3-12);
出膜4 d 14 h后,肠道中可见棕色轮虫残骸,仔鱼开始摄食,由内源性营养期到达混合营养期,卵黄基本被吸收殆尽(图3-13);
出膜5 d 6 h后,卵黄被完全吸收,消化道可见褶皱(图3-14)。
2.3.2 后期仔鱼出膜5 d 16 h后,头部出现点状黑色素沉积(图3-15);
出膜6 d 4 h后,黑色素集中到眼珠中部形成色素膜,眼眶与眼睛分明,眼睛发光灵动,背褶凸起,尾褶圆形,尾褶下方出现丛状黑色素(图3-16);
出膜6 d 16 h后,尾椎上翘(图3-17);
7日龄(Days after hatching,DAH) 仔鱼背鳍与背鳍褶分离,鳃明显变红(图3-18);
10 DAH仔鱼腹鳍芽出现,臀鳍雏形出现,尾鳍分叉,鳔分二室(图3-19);
11 DAH仔鱼臀鳍逐渐形成,鳞片出现(图3-20);
16 DAH仔鱼腹鳍褶消失,分化为腹鳍,胸鳍鳍条出齐,各鳍均已形成,进入稚鱼期(图3-21)。
2.4 仔鱼生长奇额墨头鱼仔鱼全长和日龄的关系见图4,可发现在1.5 DAH前仔鱼全长增速最快,而后增速减慢,到仔鱼开口后增速再次加快,到8 DAH后增速渐趋缓。各发育阶段的全长绝对生长率(AGR)和全长特定生长率(SGR)见表3,其中1.5 DAH前仔鱼阶段AGR和SGR均最高,分别达到1.15 mm/d和21.58%/d,其次是开口仔鱼至8 DAH仔鱼阶段,AGR和SGR分别达到0.97 mm/d和11.40%/d。
![]() |
图4 奇额墨头鱼仔鱼日龄和全长的关系 Fig. 4 Relationship between total length and time after hatching of Garra mirofronits larvae |
![]() |
表3 奇额墨头鱼仔鱼各发育阶段的生长率 Tab. 3 Growth rates of Garra mirofronits larvae at different developmental stages |
奇额墨头鱼怀卵量较高,卵产出后迅速吸水膨胀,卵周隙较大,但比重略大于水,在流水冲刷下漂浮孵化,为典型产漂流性卵鱼类[22]。鱼类卵巢需在一定温度条件下才能从IV期过渡到V期,即每种鱼类具有一定的产卵温度[24-25],且合适的孵化温度可以确保孵化酶正常浓度和活性,有利于受精卵正常发育[26]。奇额墨头鱼繁殖期为7—8月,此时澜沧江自然水体温度在18~21 ℃之间[27]。因此,在繁殖、孵化过程中控制水温为18~21 ℃。
与青鱼(Mylopharyngodon piceus)、草鱼(Ctenopharyngodon idella)、鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys nobilis)、鲮(Cirrhinus molitorella)等大多产漂流性卵的鱼类不同[28],本研究中奇额墨头鱼催产剂采用两针法,提高了卵的成熟度。综上所述,本研究以人工注射外源激素和水温调控取代了奇额墨头鱼繁殖时所必需的外界综合生态条件,同时保留了影响其新陈代谢的生态条件,如溶氧、冲水等,促进了亲鱼性腺发育成熟、排精或产卵,是取得人工繁殖成功的关键[24],使奇额墨头鱼成为继腾冲墨头鱼(G. tengchongensis)[29]、东方墨头鱼(G. orientalis)[20]和桥街墨头鱼(G. qiaojiensis)[30]之后第四种有记载人工繁殖成功的墨头鱼属鱼类。
3.2 奇额墨头鱼胚胎发育特点奇额墨头鱼胚胎发育历经9个时期,32个发育期,遵循硬骨鱼类发育的基本规律[31],符合漂流性卵胚胎发育的一般特点[20,22,29,32-35]:受精卵迅速吸水膨胀,卵膜薄而透明,卵黄小而卵周隙大,随水流漂浮发育迅速,胚胎发育遵循“卵裂-胚体形成-器官分化-出膜”的顺序,一般1~1.5 d完成孵化出膜。但不同鱼类间孵化时间和积温仍存在显著差异,主要是受卵径影响。整合分析相关研究[20,22,29,32-37]可以发现,随着受精卵卵径、卵膜径增大,总体上孵化时间和积温也相应地增加(表4);另外,出膜时间也受到温度和物种本身发育特点的影响:如鲢的卵径远大于大鼻吻鮈(Rhinogobio nasutus),但因孵化水温稍高,出膜时间比后者更短。另外,当卵径相近时,如表4中的青鱼、草鱼、鲢、鳙、长鳍吻鮈(Rhinogobio ventralis)和圆口铜鱼(Coreius guichenoti),在适宜温度范围内水温越高,出膜时间和积温越少[38]。上述论断与张永泉等[39]提出的观点有所差异,即水温对孵化时间和积温的影响大于卵径。这可能是因为分析对象的不同所致,该研究所列举鱼类包含冷水性和温带鱼类,孵化温度变化幅度巨大,而本文所列漂流性鱼类繁殖水温基本分布在18~28 ℃,故卵径对孵化时间和积温的影响大于水温。
![]() |
表4 奇额墨头鱼与其他产漂流性卵鱼类胚胎发育特点的比较 Tab. 4 Comparison of embryonic development characteristics between Garra mirofronits and other fish species producing drifting eggs |
墨头鱼属在云南分布广泛[11,30],奇额墨头鱼与腾冲墨头鱼发育特点较为相似,孵化积温也相近,而与产黏沉性卵的东方墨头鱼[20]差异较大,或可成为质疑墨头鱼属单系性的证据之一[11]。同亚科内产漂流性卵的还有四须盘鮈(Discogobio tetrabarbatus)、露斯塔野鲮(Labeo rohita)、鲮、麦瑞加拉鲮(Cirrhinus mrigala),它们卵径、孵化积温分布都较为集中(表4),在其中奇额墨头鱼卵径和卵周隙均处于较大水平,卵径大可以延长内源性营养阶段,有利于其向外源性营养过渡,卵周隙大可以降低其对孵化流速的要求[40],避免因沉降发生的机械碰撞致受精卵破损[41]。在器官分化时期奇额墨头鱼与其他鱼类存在发育异时的现象,即相同器官分化发生的时间顺序有所不同,这使得幼体长至成体后特征各异,是鱼类多样性形态的重要产生机制[22]。奇额墨头鱼听囊形成时期晚于露斯塔野鲮[34]和麦瑞加拉鲮(待发表数据),且未在胚胎发育时期完成尾鳍褶皱与胸鳍原基的分化,心脏原基期则早于四大家鱼[20],其他器官分化顺序基本一致。
3.3 奇额墨头鱼仔鱼发育和生长特点奇额墨头鱼仔鱼期是指鱼苗自出膜至各鳍形成、鳞片出现,包括卵黄囊仔鱼和后期仔鱼[31]。鱼苗出膜后就面临摄食和被摄食的挑战,故卵黄囊对于鱼类早期发育和存活具有重要意义[22]:首先卵黄囊大小直接决定了初孵仔鱼的个体大小(表5),大个体仔鱼摄食和避敌能力往往更强[42],奇额墨头鱼初孵仔鱼全长在一众鱼类中较短,可能与其成鱼个体较小有关;另外,其卵黄囊仔鱼期又分为内源性营养期和混合营养期两个阶段[43]:在内源性营养期,仔鱼完全以卵黄作为营养物质,主要完成了眼、口、呼吸系统、消化系统、循环系统以及鳍和鳔的初步发育,基本实现平游,与其他产漂流性卵鱼类基本一致(表5);在混合营养期,仔鱼具备了摄食能力,可由内源性营养期向外源性营养期过渡,此时卵黄尚未完全吸收,确保了仔鱼营养期的顺利转变。奇额墨头鱼卵黄囊仔鱼期在野鲮亚科几种鱼类中较长(表5),有利于其建立摄食能力,更易适应环境[43]。在仔鱼度过卵黄囊期之后,已建立了摄食能力,具备了一定的生存能力,后期仔鱼开始进一步发育运动器官:陆续完成胸鳍、尾鳍、背鳍、臀鳍和腹鳍等各鳍的分化,与其他鱼类(表5)发育顺序基本一致,而较短的仔鱼后期也使得奇额墨头鱼能够更快地度过早期发育阶段,提高其鱼苗成活率。
![]() |
表5 奇额墨头鱼与其他产漂流性卵鱼类仔鱼发育特点的比较 Tab. 5 Comparison of the developmental characteristics of larva of Garra mirofronits and other fish species producing drifting eggs |
奇额墨头鱼仔鱼生长速度呈现出阶段性特点:在1.5 DAH前仔鱼全长增速最快,而后增速减慢,到仔鱼开口后增速再次加快,到8 DAH后增速渐趋缓。这与四大家鱼等典型的产漂流性卵鱼类仔鱼生长特点基本一致[20],再次印证了仔鱼发育异时和异速生长模式遵循生存机能优先和机体与环境相适应的原则[44],即仔鱼本身会经济地使用有限的物质和能量,分配到生长、维持和为生存和发展而需要的各种活动之间[22],这是仔鱼面临严峻环境下自然进化出的适应性策略。初孵仔鱼尾部异速生长,使仔鱼具备一定的运动能力,故1.5 DAH前仔鱼全长增速最快,而后卵黄营养主要供给摄食、消化器官发育,身体增长放缓,直至仔鱼建立摄食能力后摄取外界营养后,仔鱼身体增长才开始加快,到8 DAH机体完全适应外源性营养期,身体增速渐趋缓。
[1] |
Liu M D, Chen D Q, Duan X B, et al. Ichthyofauna composition and distribution of fishes in Yunnan section of Lancang River[J]. Journal of Fishery Sciences of China, 2011, 18(1): 156-170. [刘明典,陈大庆,段辛斌,等. 澜沧江云南段鱼类区系组成与分布[J]. 中国水产科学,2011, 18(1): 156-170.].》Google Scholar
|
[2] |
Chu X L, Cui G H. Taxonomic rivision of Chinese cyprinid fishes of the genus Garra Hamilton[J]. Acta Zootaxonomica Sinica, 1987, 12(1): 93-100. [褚新洛,崔桂华. 中国鲤科鱼类墨头鱼属分类的整理[J]. 动物分类学报,1987, 12(1): 93-100.].》Google Scholar
|
[3] |
Hong Y X, Liu D S, Ma H H, et al. Effects of fish habitat substitution in tributaries under the cascade hydropower development of Lancang River[J]. Acta Ecologica Sinica, 2022, 42(8): 3191-3205. [洪迎新,刘东升,马宏海,等. 澜沧江梯级开发下鱼类支流生境替代效果[J]. 生态学报,2022, 42(8): 3191-3205.].》Google Scholar
|
[4] |
Kang B, He D M. Research progress of biodiversity of fish species in the Lancangjiang River[J]. Resources Science, 2007, 29(5): 195-200. [康斌,何大明. 澜沧江鱼类生物多样性研究进展[J]. 资源科学,2007, 29(5): 195-200.].》Google Scholar
|
[5] |
Zhang C. Responses of species and phylogenetic diversity of fish communities in the Lancang River to cascade hydropower development[D]. Kunming: Yunnan University, 2018. [张超. 梯级水电开发背景下澜沧江鱼类物种多样性和系统发育多样性的变化[D]. 昆明:云南大学,2018.].》Google Scholar
|
[6] |
Zhang Z M, Liang W H, Yang Y, et al. Characteristics of freshwater fishes in Lists of Wild Animals under Special State Protection in China (WASPC) and suggestions for their protection[J]. Yangtze River, 2023, 54(4): 68-75. [张志明,梁炆汉,杨洋,等. 国家重点保护淡水鱼类特点及其保护建议[J]. 人民长江,2023, 54(4): 68-75.].》Google Scholar
|
[7] |
Chen J P, Shen F F, Wu H H, et al. Research progress of China's fish embryonic development[J]. Jiangsu Agricultural Sciences, 2021, 49(17): 45-52. [陈军平,沈方方,武慧慧,等. 我国鱼类胚胎发育研究进展[J]. 江苏农业科学,2021, 49(17): 45-52.].》Google Scholar
|
[8] |
Zhou W, Li M H, Li Y L, et al. Microscopic analysis of the scales of Garra and Placocheilus (Teleostei: Cypriniformes)[J]. Sichuan Journal of Zoology, 2015, 34(4): 505-510, 517. [周伟,李明会,李有兰,等. 鲤科墨头鱼属和盆唇鱼属鳞片显微研究[J]. 四川动物,2015, 34(4): 505-510, 517.].》Google Scholar
|
[9] |
Chen Z M, Zhao S, Yang J X. A new species of the genus Garra from Nujiang River Basin, Yunnan, China (Teleostei: Cyprinidae)[J]. Zoological Research, 2009, 30(4): 438-444..》Google Scholar
|
[10] |
Gong Z. Taxonomic arrangement and ecological adaptation of Garra in the lower reaches of the Yarlung Zangbo River[D]. Beijing: University of Chinese Academy of Sciences, 2019. [巩政. 雅鲁藏布江下游墨头鱼属鱼类的分类整理与生态适应研究[D]. 北京:中国科学院大学,2019.].》Google Scholar
|
[11] |
Wang W Y. Phylogenetics and biogeography of genus Garra (Pisces: Cypriniformes: Cyprinidae)[D]. Beijing: University of Chinese Academy of Sciences, 2012. [王伟营. 墨头鱼属(Garra)鱼类系统发育及生物地理学研究[D]. 北京:中国科学院大学,2012.].》Google Scholar
|
[12] |
Yang X, Zhou W, Li X, et al. Morphological differentiation of Garra orientalis (Cyprinidae) among different geographical populations[J]. Zoological Research, 2013, 34(5): 471-474. [杨熙,周伟,李旭,等. 不同地理种群东方墨头鱼(Garra orientalis)的形态分化[J]. 动物学研究,2013, 34(5): 471-474.].》Google Scholar
|
[13] |
Wen L L, Shi Y, Wang Z J. The structure of the urinary system of Garra kempi Hora[J]. Journal of Chongqing Normal University (Natural Science), 2008, 25(4): 8-11, 128. [温龙岚,石禹,王志坚. 西藏墨头鱼泌尿系统结构[J]. 重庆师范大学学报(自然科学版), 2008, 25(4): 8-11, 128.].》Google Scholar
|
[14] |
Jin H Y, Li L, Wu S, et al. Age structure and growth characteristics of Garra sp. population in Motuo section of Yarlung Zangbo River[J]. Wetland Science, 2022, 20(6): 785-792. [金洪宇,李雷,吴松,等. 雅鲁藏布江墨脱段的墨头鱼属待定名种种群的年龄结构和生长特性[J]. 湿地科学,2022, 20(6): 785-792.].》Google Scholar
|
[15] |
Tian H W, Yue X J, Chen D Q, et al. Age structure and growth characteristic of Garra orientalis from the Nujiang River[J]. Chinese Journal of Zoology, 2010, 45(1): 104-110. [田辉伍,岳兴建,陈大庆,等. 怒江东方墨头鱼的年龄结构与生长特性[J]. 动物学杂志,2010, 45(1): 104-110.].》Google Scholar
|
[16] |
Tian H W, Yue X J, Chen D Q, et al. Estimation of stock biomass and mortality parameters of oriental sucking barb (Garra orientalis) in Nujiang River of Sichuan Province, Southwest China[J]. Chinese Journal of Ecology, 2012, 31(1): 235-240. [田辉伍,岳兴建,陈大庆,等. 怒江东方墨头鱼资源量和死亡参数的估算[J]. 生态学杂志,2012, 31(1): 235-240.].》Google Scholar
|
[17] |
Liu J Y, Li Q, Sun Y Q, et al. Embryonic and post-embryonic development of Selenotoca multifasciata[J]. Journal of Fishery Sciences of China, 2021, 28(8): 978-987. [刘鉴毅,李琪,孙艳秋,等. 多纹钱蝶鱼胚胎发育及胚后发育观察[J]. 中国水产科学,2021, 28(8): 978-987.].》Google Scholar
|
[18] |
Liu M J, Guo H Y, Gao J, et al. Embryonic development and morphological characteristics of larvae and juvenile of Platax teira[J]. South China Fisheries Science, 2022, 18(4): 103-111. [刘明鉴,郭华阳,高杰,等. 尖翅燕鱼早期胚胎发育及仔稚鱼形态观察[J]. 南方水产科学,2022, 18(4): 103-111.].》Google Scholar
|
[19] |
Wang Y S, Xu L, Yang Y, et al. Study on artificial propagation and early development of Acrossocheilus longipinnis[J]. South China Fisheries Science, 2024, 20(2): 63-72. [王岳松,徐林,杨洋,等. 长鳍光唇鱼(Acrossocheilus longipinnis)人工繁殖和早期发育研究[J]. 南方水产科学,2024, 20(2): 63-72.].》Google Scholar
|
[20] |
Liang Z S, Yi B L, Yu Z T. A photographic guide to early development of fish in rivers[M]. Guangzhou: Guangdong Science & Technology Press, 2019: 81-108, 199-202, 239-245, 298-302. [梁秩燊,易伯鲁,余志堂. 江河鱼类早期发育图志[M]. 广州:广东科技出版社,2019: 81-108, 199-202, 239-245, 298-302.].》Google Scholar
|
[21] |
Li X. Histoembryology of aquatic animals[M]. Beijing: China Agriculture Press, 2006: 324-350. [李霞. 水产动物组织胚胎学[M]. 北京:中国农业出版社,2006: 324-350.].》Google Scholar
|
[22] |
Luo X N. Artificial propagation and breeding of fish[M]. Beijing: Science Press, 2023: 54-101, 155, 279-304. [骆小年. 鱼类人工繁育[M]. 北京:科学出版社,2023: 54-101, 155, 279-304.].》Google Scholar
|
[23] |
Hachero-Cruzado I, Ortiz-Delgado J B, Borrega B, et al. Larval organogenesis of flatfish brill Scophthalmus rhombus L: Histological and histochemical aspects[J]. Aquaculture, 2009, 286(1-2): 138-149..》Google Scholar
|
[24] |
Zhang L, Wen H B, Zheng B Q, et al. Artificial spawning and embryonic development of freshwater drum, Aplodinotus grunniens[J]. Journal of Fishery Sciences of China, 2021, 28(5): 569-578. [张亮,闻海波,郑冰清,等. 淡水石首鱼人工催产与胚胎发育观察[J]. 中国水产科学,2021, 28(5): 569-578.].》Google Scholar
|
[25] |
Li Y S, Zhao H H, Wang Q, et al. Effects of impoundment of Datengxia Dam on fish community of the Xunjiang River[J]. Acta Ecologica Sinica, 2023, 43(17): 7140-7156. [李育森,赵会宏,王庆,等. 大藤峡大坝蓄水对浔江鱼类群落的影响[J]. 生态学报,2023, 43(17): 7140-7156.].》Google Scholar
|
[26] |
Han L M, Liu M Q, Li C W, et al. Artificial reproduction and embryonic development of Onychostoma rara[J]. Journal of Fishery Sciences of China, 2024, 31(6): 662-673. [韩淋梅,刘明求,李传武,等. 稀有白甲鱼人工繁殖与胚胎发育[J]. 中国水产科学,2024, 31(6): 662-673.].》Google Scholar
|
[27] |
Jiang L. Cumulative impact of cascade hydropower development in the middle reaches of Lancang River on reservoir water temperature[D]. Kunming: Yunnan University, 2021. [蒋丽. 澜沧江中游梯级水电开发对水库水温的累积影响[D]. 昆明:云南大学,2021.].》Google Scholar
|
[28] |
Luo X N, Zhao X W, Duan Y J. Application of artificial hormones in induction to spawn in economically important main fishes in China: A review[J]. Journal of Dalian Ocean University, 2020, 35(1): 10-18. [骆小年,赵兴文,段友健. 中国主要养殖经济鱼类人工催产药物使用进展[J]. 大连海洋大学学报,2020, 35(1): 10-18.].》Google Scholar
|
[29] |
Xian D H, Han D, Mao K Y, et al. Artificial domestication and reproduction of Garra tengchongensis[J]. Scientific Breeding, 2012(6): 40-41. [线德和,韩东,毛夸云,等. 腾冲墨头鱼的人工驯养繁殖技术[J]. 科学种养,2012(6): 40-41.].》Google Scholar
|
[30] |
Tian S K, Wang Y F, Chen X Y, et al. Yunnan fish Atlas[M]. Kunming: Yunnan Science and Technology Press, 2022: 425. [田树魁,王云峰,陈小勇,等. 云南鱼类图集[M]. 昆明:云南科技出版社,2022: 425.].》Google Scholar
|
[31] |
Yin M C. Fish ecology[M]. Beijing: China Agriculture Press, 1995: 105-130. [殷名称. 鱼类生态学[M]. 北京:中国农业出版社,1995: 105-130.].》Google Scholar
|
[32] |
Liang Y Q, Hu X J, Huang D M, et al. Observations on the embryonic development of Leptobotia elongata[J]. Acta Hydrobiologica Sinica, 1999, 23(6): 631-635. [梁银铨,胡小建,黄道明,等. 长薄鳅胚胎发育的观察[J]. 水生生物学报,1999, 23(6): 631-635.].》Google Scholar
|
[33] |
Yang R L, Liu Y B, Zhao H X, et al. Embryonic development and morphologic observations of newly-hatched Rhinogobio nasutus Larvae[J]. Journal of Gansu Agricultural University, 2024, 59(1): 49-58. [杨瑞兰,刘彦斌,赵红雪,等. 大鼻吻鮈胚胎发育特征和初孵仔鱼形态观察[J]. 甘肃农业大学学报,2024, 59(1): 49-58.].》Google Scholar
|
[34] |
Guan M, Xiao K, Hu M H, et al. Study on the embryonic and early larval development of Rhinogobio ventralis[J]. Progress in Fishery Sciences, 2015, 36(4): 57-64. [管敏,肖衎,胡美宏,等. 长鳍吻鮈(Rhinogobio ventralis)胚胎发育和仔鱼发育[J]. 渔业科学进展,2015, 36(4): 57-64.].》Google Scholar
|
[35] |
Dong C, Chen X J, Wan C Y, et al. Artificial propagation and embryonic development of Coreius guichenoti[J]. Journal of Hydroecology, 2019, 40(3): 115-119. [董纯,陈小娟,万成炎,等. 圆口铜鱼人工繁殖及胚胎发育研究[J]. 水生态学杂志,2019, 40(3): 115-119.].》Google Scholar
|
[36] |
Liu J Z, Luo Z T, Xie G, et al. Artificial reproduction and embryonic development of Labeo rohita[J]. Freshwater Fisheries, 1982, 12(3): 6-8. [刘家照,罗志腾,谢刚,等. 露斯塔野鲮人工生殖和胚胎发育[J]. 淡水渔业,1982, 12(3): 6-8.].》Google Scholar
|
[37] |
Bi Y, Tan X C, Li Y F, et al. Post-embryonic development of Cirrhinus molitorella[J]. Journal of Guangdong Ocean University, 2008, 28(6): 94-96. [毕晔,谭细畅,李跃飞,等. 鲮的胚后发育[J]. 广东海洋大学学报,2008, 28(6): 94-96.].》Google Scholar
|
[38] |
Li X L, Zhu Y J, Wu X B, et al. Effect of temperatures and hatching methods on the hatching of Mystus macropterus fertilized eggs[J]. Freshwater Fisheries, 2024, 54(1): 19-26. [李晓莉,朱永久,吴兴兵,等. 温度和孵化方式对大鳍鳠受精卵孵化效果的影响[J]. 淡水渔业,2024, 54(1): 19-26.].》Google Scholar
|
[39] |
Zhang Y Q, Yin J S, Jia Z H, et al. The embryonic and larval development in Taimen Hucho taimen[J]. Journal of Dalian Fisheries University, 2008, 23(6): 425-430. [张永泉,尹家胜,贾钟贺,等. 哲罗鱼胚胎和仔鱼发育的研究[J]. 大连水产学院学报,2008, 23(6): 425-430.].》Google Scholar
|
[40] |
Tang M Y, Huang D L, Huang L Z, et al. Experiment on hydraulic characteristics of eggs of Mylopharyngodon piceus, Ctenopharyngodon idella, Hypophthalmichthys molitrix, Hypophthalmichthys nobilis and preliminary prediction of hatching conditions in the Three Gorges Reservoir area[J]. Reservoir Fisheries, 1989, 10(4): 26-30. [唐明英,黄德林,黄立章,等. 草、青、鲢、鳙鱼卵水力学特性实验及其在三峡库区孵化条件初步预测[J]. 水利渔业,1989, 10(4): 26-30.].》Google Scholar
|
[41] |
Hu Y P. Effects of riverbed and mechanical shock on the hatching of drifting fish eggs[D]. Chongqing: Chongqing Jiaotong University, 2022: 6-9. [胡亚萍. 底质和撞击对漂流性鱼卵孵化过程的影响研究[D]. 重庆:重庆交通大学,2022: 6-9.].》Google Scholar
|
[42] |
Goto A. A consideration on the adaptation and evolution of life history in the freshwater sculpins[J]. Biological Science, 1981, 33(3): 129-136..》Google Scholar
|
[43] |
Qiao Y. Early morphogenesis and species identification of fishes in Yangtze River[D]. Wuhan: University of Chinese Academy of Sciences (Institute of Hydrobiology), 2005: 10-17. [乔晔. 长江鱼类早期形态发育与种类鉴别[D]. 武汉:中国科学院研究生院(水生生物研究所), 2005: 10-17.].》Google Scholar
|
[44] |
Li J, Han Y L, Xu L, et al. Embryological stages and allometric growth during yolksac larvae of Lampetra japonica (martens)[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1207-1217. [李军,韩英伦,徐磊,等. 日本七鳃鳗胚胎发育及卵黄囊期仔鱼的异速生长[J]. 水生生物学报,2017, 41(6): 1207-1217.].》Google Scholar
|