eDNA技术在长江口中华绒螯蟹蟹苗资源监测上的应用
CSTR:
作者:
作者单位:

1.中国水产科学研究院东海水产研究所, 农业农村部东海与远洋渔业资源开发利用重点实验室, 上海 200090 ; 2.上海长江口渔业资源增殖和生态修复工程技术研究中心, 上海 200090 ; 3.上海海洋大学水产与生命学院, 上海 201306

作者简介:

张方圆(1998-),女,硕士研究生,研究方向为河口生态学.E-mail:zfy15236475212@163.com

通讯作者:

中图分类号:

S931

基金项目:

国家自然科学基金项目(32102800); 中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金项目(2024XT1001); 上海市科学技术委员会科研计划项目(22dz1202703);上海市科技兴农项目[沪农科创字(2022)第2-1号].


Application of eDNA technology for monitoring megalopa resources of Eriocheir sinensis in the Yangtze River estuary
Author:
Affiliation:

1.Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural affairs , East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090 , China ; 2.Shanghai Engineering Research Center of Fisheries Stock Enhancement and Habitat Restoration of the Yangtze Estuary, Shanghai 200090 , China ; 3.College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究运用eDNA技术监测了中华绒螯蟹(Eriocheir sinensis)蟹苗(大眼幼体阶段)的资源量, 有助于揭示中华绒螯蟹蟹苗在长江口种群资源量的动态变化, 监测中华绒螯蟹的资源状况。通过建立室内定量曲线, 及对长江口水域eDNA样品的采集, 并结合了蟹苗的资源调查数据, 阐述了长江口中华绒螯蟹蟹苗资源的分布。结果显示, 72 h内4个浓度实验组蟹苗的室内定量曲线, 幂函数拟合程度最高。去除蟹苗后, 水体中eDNA浓度与时间为负相关, 幂函数更符合eDNA降解与时间之间的关系。2023年6月调查北八滧水域监测的蟹苗密度平均值为(23.03±55.10)个/m3, eDNA浓度为(9145.86±31147.36) copies/mL。蟹苗密度与标准化处理后的eDNA浓度间极显著性相关, 幂函数方程拟合程度最高。团结沙水域浮游生物网监测的蟹苗密度为(0.38±0.99)个/m3, eDNA浓度为(29808.3±95359.04) copies/mL。团结沙水域蟹苗密度与eDNA浓度之间具有时滞效应, 蟹苗密度变化早于eDNA浓度, 时滞时间为5 d。时滞后的蟹苗密度与标准化后的eDNA浓度具有相关性, 最佳拟合方程为线性方程。研究表明目前利用eDNA技术分析中华绒螯蟹蟹苗资源的方法仅适用于离蟹苗发生较近的水域。

    Abstract:

    Eriocheir sinensis is an important economic species in China. It is widely distributed in the Yellow River, Yangtze River, and other river basins in China. It exhibits distinct feeding migrations and reproductive migrations. However, since the implementation of a 10-year fishing ban in the Yangtze River, it has been difficult to obtain fishery data. Therefore, a new method for monitoring E. sinensis resources under the background of the fishing ban in the Yangtze River needs to be established to monitor megalopa resources during the flood season. In this study, eDNA technology was used to monitor the abundance of E. sinensis megalopae, which helped reveal the dynamic changes in the population size of megalopae in the Yangtze River estuary and monitor the resource status of E. sinensis. By establishing an indoor quantitative curve and collecting eDNA samples from the Yangtze River Estuary, combined with megalopa resource survey data, the distribution of E. sinensis megalopa resources in the Yangtze River estuary was elucidated. The indoor quantitative curve of megalopae in the four concentration experiments(with concentration gradients of 1 megalopa per 20 liters of water, 10 megalopae, 100 megalopae, and 1000 megalopae) within 72 hours had the best fit with a power function. After removing the larvae, the eDNA concentration in the water was negatively correlated with time, and the power function best represented the relationship between eDNA degradation and time, which was consistent with previous research results for other crustaceans. In June 2023, the average density of megalopae in the Beibayao waters was (23.03±55.10) ind/m³, and the eDNA concentration range was (9145.86±31147.36) copies/mL. There was a highly significant correlation between the density of megalopae and the standardized eDNA concentration, and the power function equation had the best fit. The density of megalopae monitored using a plankton net in the Tuanjiesha waters was (0.38±0.99) individuals/m³, and the eDNA concentration was (29808.3±95359.04) copies/mL. There was a time-lag effect between megalopae density and eDNA concentration in the Tuanjiesha waters, with changes in density preceding changes in eDNA concentration by 5 days. After the lag, the density of megalopae was correlated with the standardized eDNA concentration, and the best-fit equation was a linear equation. The main reason for the lageffect was that the migration speed of megalopae was faster than the water exchange speed; thus, the megalopae arrived at the Tuanjiesha waters before the eDNA they produced. This study demostrates that the current method of using eDNA technology to analyze E. sinensis megalopa resources is only applicable to waters close to the occurrence of the megalopae.

    参考文献
    相似文献
    引证文献
引用本文

张方圆,谭清元,耿智,杨刚,赵峰,张涛.eDNA技术在长江口中华绒螯蟹蟹苗资源监测上的应用[J].中国水产科学,2024,31(9):1129-1139
ZHANG Fangyuan, TAN Qingyuan, GENG Zhi, YANG Gang, ZHAO Feng, ZHANG Tao. Application of eDNA technology for monitoring megalopa resources of Eriocheir sinensis in the Yangtze River estuary[J]. Journal of Fishery Sciences of China,2024,31(9):1129-1139

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-26
  • 最后修改日期:2024-07-23
  • 录用日期:
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码