基于YOLO的养殖鱼群全向声呐实时监测方法研究与应用
CSTR:
作者:
作者单位:

1.江苏海洋大学, 江苏 连云港 222005 ;2.中国水产科学研究院南海水产研究所, 农业农村部南海渔业资源开发利用重点实验室, 广东 广州 510300 ;3.中国水产科学研究院南海水产研究所热带水产研究开发中心, 海南 三亚 572018

作者简介:

孙鹏麒(2000?),男,硕士研究生,研究方向为声呐图像处理与软硬件开发.E-mail:853901442@qq.com

通讯作者:

中图分类号:

S969

基金项目:

海南省重大科技计划项目(ZDKJ2021013); 海南省重点研发项目(ZDYF2021XDNY305, ZDYF2023XDNY066); 中央级公益性科研院所基本科研业务费专项(2023TD97); 广州市科技计划项目(2023E04J0001); 连云港市重点研发计划项目(22CY080, 21SH038)


Research and application of real-time monitoring method for cultured fish based on YOLO
Author:
Affiliation:

1.School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005 , China ;2.South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Key Laboratory of South ChinaSea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300 , China ;3.Tropical Fisheries Research and Development Center, South China Sea Fisheries Research Institute, ChineseAcademy of Fishery Sciences, Sanya 572018 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水产养殖鱼群数量监测效率低、精确度不足的问题, 本研究以罗非鱼(Oreochromis sp.)为研究对象, 提出了一种基于全向扫描声呐与 YOLO (You Only Look Once)模型的实时鱼群监测方法。本方法利用全向扫描声呐采集水下鱼群影像数据, 通过 YOLOv8 算法与实时监测技术实现目标识别与分析, 并结合基于欧氏距离和空间分析算法, 合并与排除异常数据点, 最终获得鱼群数量与空间分布。实验针对不同鱼群数量(50 条、100 条、150 条、200 条)进行了评估, 监测精确度分别为 93.5%、94.5%、89.6%和 85.8%, 整体平均精确度达 90.9%。结果表明, 该方法显著提高了养殖鱼群数量监测的实时性和精确度, 为水产养殖中鱼群数量监测提供了一种高效的解决方案, 对优化水产养殖管理、提高生产效率及促进生态养殖可持续发展具有重要意义。

    Abstract:

    To address the issues of low efficiency and insufficient accuracy in monitoring fish populations in aquaculture, this study proposes a real-time fish monitoring method based on an omnidirectional scanning sonar and the You Only Look Once (YOLO) model using tilapia (Oreochromis sp.) as the research object. The proposed method used an omnidirectional scanning sonar to collect underwater fish shoal image data. By using the YOLOv8 algorithm combined with real-time monitoring, the proposed method achieved target recognition and analysis. Euclidean distance-based spatial analysis algorithms were used to merge and exclude anomalous data points to obtain the number and spatial distribution of fish schools. Experiments were conducted to evaluate fish schools of varying sizes (50, 100, 150, and 200 individuals) and achieved monitoring accuracies of 93.5, 94.5, 89.6, and 85.8%, respectively, with an average accuracy of 90.9%. This method substantially enhanced the real-time monitoring and accuracy of fish school population assessments. This provides an efficient solution for monitoring fish schools in aquaculture towards optimizing aquaculture management, improving production efficiency, and promoting the sustainable development of ecological aquaculture.

    参考文献
    相似文献
    引证文献
引用本文

孙鹏麒,胡家祯,黄小华,孙佳龙,李根,陶启友,袁太平,庞国良,胡昱.基于YOLO的养殖鱼群全向声呐实时监测方法研究与应用[J].中国水产科学,2025,32(3):409-419
SUN Pengqi, HU Jiazhen, HUANG Xiaohua, SUN Jialong, LI Gen, TAO Qiyou, YUAN Taiping, PANG Guoliang, HU Yu. Research and application of real-time monitoring method for cultured fish based on YOLO[J]. Journal of Fishery Sciences of China,2025,32(3):409-419

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-03
  • 出版日期:
文章二维码