金枪鱼延绳钓渔业中CPUE的不同计算方法对渔场预测精度的影响
CSTR:
作者:
作者单位:

1.上海海洋大学海洋生物资源与管理学院, 上海 201306 ;2.上海海洋大学国家远洋渔业工程技术研究中心, 上海 201306 ;3.大洋世家(浙江)股份公司, 浙江 舟山 316014 ;4.中国水产科学研究院东海水产研究所, 上海 200090 ;5.深圳市联成远洋渔业有限公司, 广东 深圳 518035

作者简介:

宋利明(1968-),男,教授,研究方向为捕捞学.E-mail:lmsong@shou.edu.cn

通讯作者:

中图分类号:

S931

基金项目:

国家重点研发计划项目(2023YFD2401301); 中水集团远洋股份有限公司科研项目“低温延绳钓渔船作业模式创新研究”(COFC-C-F-2024-004)


Impact of different calculation methods for CPUE on the accuracy of fishing ground predictions in tuna longline fisheries
Author:
Affiliation:

1.College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306 , China ;2.National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306 , China ;3.Zhejiang Ocean Family Co., Ltd., Zhoushan 316014 , China ;4.East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090 , China ;5.Liancheng Overseas Fishery Co., Ltd., Shenzhen 518035 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高延绳钓渔业的渔场预测精度, 本研究依据密克罗尼西亚海域延绳钓渔船的渔捞日志, 以及船舶监测系统 (vessel monitor system, VMS)得到的渔业数据, 计算得出黄鳍金枪鱼(Thunnus albacares)的两种单位捕捞努力量渔获量 (catch per unit effort, CPUE)。基于双向长短期记忆网络(Bi-directional long-short- term memory, BiLSTM)模型, 将两种 CPUE 分别作为模型输入数据, 结合空间要素和海洋遥感环境数据, 建立黄鳍金枪鱼的渔场预报模型, 并评价不同的 CPUE 输入对渔场预测精度的影响; 通过 SHAP (SHapley Additive exPlanations)分析, 得出对黄鳍金枪鱼渔场预测的重要变量; 通过不同 CPUE 的地理空间分布得出渔场的时空分布特征。结果表明, BiLSTM 模型可用来预测黄鳍金枪鱼渔场, 具有良好的预测效果; 基于 VMS 计算的 CPUE 比基于渔捞日志计算的 CPUE 建立的 BiLSTM 渔场预测模型有更高的精度。影响黄鳍金枪鱼渔场预测的重要变量是: 叶绿素浓度、200 m 水层的溶解氧浓度、300 m 水层的温度、200 m 水层的温度和经度等。基于渔捞日志的渔场南北分散, 而基于 VMS 的渔场主要集中在南部, 由温度和溶解氧浓度的垂直剖面图推测基于 VMS 得出的渔场更合理; 密克罗尼西亚海域黄鳍金枪鱼渔场在一二季度分布较为密集。本研究证明基于 VMS 可计算延绳钓渔业的 CPUE 并用于渔场预测; 基于本研究的结果, 当以较小空间尺度研究金枪鱼延绳钓渔场时, 建议按照 VMS 的方式逐条记录渔获位置, 以网格化计算 CPUE, 从而提高渔场预测精度。

    Abstract:

    Accurately calculating catch per unit effort (CPUE) is a prerequisite for predicting fishery resource abundance and distribution. In tuna longline fisheries, the statistics of catch and effort are often influenced by spatial scale, and different sources of catch and effort data can result in biased CPUE estimates, which thereby potentially affect the forecast precision of fishing grounds. This study utilized fishery data obtained from longline vessels operating in waters near Micronesia, derived from both fishing logbooks and the VMS (vessel monitoring system), to calculate two types of CPUE for yellowfin tuna (Thunnus albacares). Using a BiLSTM (Bi-directional long-short-term memory) model, both types of CPUE were employed as inputs, alongside spatio-temporal factors and ocean remote sensing data, to develop a predictive model for yellowfin tuna fishing grounds. By SHAP (SHapley Additive exPlanations) analysis, key variables influencing the prediction of yellowfin tuna fishing grounds were identified. The spatio-temporal distribution characteristics of fishing grounds were determined based on the geographical distribution of different CPUE values. This study also evaluated the impact of different CPUE inputs on the accuracy of fishing ground prediction. The results showed that the BiLSTM model effectively predicts yellowfin tuna fishing grounds, with strong performance within the study area. Moreover, the model using CPUE calculated from VMS data demonstrated higher accuracy compared to the model built by using logbook data. Key variables influencing yellowfin tuna fishing ground predictions included chlorophyll-a concentration, dissolved oxygen concentration at 200 m, temperature at 300 m, temperature at 200 m, and longitude. Fishing grounds derived from fishing logbook were dispersed across the north and south, whereas those derived from VMS data were mainly concentrated in the southern region. Based on the vertical profile of temperature and dissolved oxygen, it was inferred that the fishing grounds identified by VMS data are more accurate. In the waters of Micronesia, yellowfin tuna fishing grounds were more densely distributed in the first and second quarters. This study demonstrates that VMS-based CPUE can be calculated for longline fisheries and effectively used for fishing ground prediction. Based on this study, it is recommended to record catch locations individually using the VMS method, when investigating tuna fishing grounds in longline fisheries at smaller spatial scales. This allows for grid-based CPUE calculations, thereby improving the accuracy of fishing ground prediction.

    参考文献
    相似文献
    引证文献
引用本文

宋利明,许回,齐雨琨,卢灿璜,申丰源,丁鹏,李玉伟,沈介然.金枪鱼延绳钓渔业中CPUE的不同计算方法对渔场预测精度的影响[J].中国水产科学,2025,32(5):659-674
SONG Liming, XU Hui, QI Yukun, LU Canhuang, SHEN Fengyuan, DING Peng, LI Yuwei, SHEN Jieran. Impact of different calculation methods for CPUE on the accuracy of fishing ground predictions in tuna longline fisheries[J]. Journal of Fishery Sciences of China,2025,32(5):659-674

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-29
  • 最后修改日期:2025-04-09
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码