水产养殖水体遥感动态监测及其应用
作者:
作者单位:

1. 北京合众思壮科技股份有限公司, 北京 100015;
2. 中国水产科学研究院东海水产研究所, 上海 200090;
3. 北斗导航位置服务(北京)有限公司, 北京 100191

作者简介:

王宁(1986-),男,博士后,研究方向为遥感影像智能化处理.E-mail:remote_gis@163.com

中图分类号:

S96;TP79

基金项目:

国家重点研发计划项目(2017YFB0503700);北京市博士后工作经费资助项目(2018-ZZ-036);青海省重大科技专项(2017-NK-A4);农财专项–农业农村资源等监测统计项目(2017).


Dynamic monitoring and application of remote sensing for aquaculture water
Author:
Affiliation:

1. Beijing Unistrong Science & Technology Company Limited, Beijing 100015, China;
2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
3. BeiDou Navigation & LBS(Beijing) Company Limited, Beijing 100191, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [19]
  • | | |
  • 文章评论
    摘要:

    以安徽省巢湖市为实验区,以国产高分一号(GF-1)和资源三号(ZY-3)高分辨率遥感影像为数据源,以NDWI和纹理特征作为分类特征,联合随机森林、支持向量机和BP神经网络3种分类方法,发展了一种集成分类模型,用于提取养殖水体信息,并进行阴影剔除和形态学处理。结果表明,该集成分类模型适用于提取养殖水体信息,总体精度为97.4%,Kappa系数为0.87,漏分误差为3.7%,错分误差为6.4%,相比单个模型精度明显提高;针对GF-1影像的增强阴影水体指数,对山体阴影和城市建筑阴影的剔除效果明显,较大程度上避免了阴影对水体提取的干扰;实验区养殖水体的遥感动态监测应用发现,2016年相比2013年水产养殖面积增加6.9%。该研究理论与技术成果的应用,有助于及时掌握养殖水体的时空分布及动态变化,快速提升中国渔业管理的信息化和科学化水平。

    Abstract:

    Land surface water is an important part of the water cycle and is invaluable for human survival. Timely monitoring of surface water and the delivery of data on the dynamics of surface water are essential for policy and decision-making processes. The rapid, accurate, and automated extraction of aquaculture water is significant for assessing its role in fishery informatization and scientific management. Remote sensing technology has the advantages of macroscopic, real-time, dynamic access to land-surface information, and can be used to obtain accurate spatial and temporal distribution and dynamic changes of aquaculture water.Commonly used spectral index-and threshold-based approaches are highly efficient, but they require carefully selected threshold values that vary depending on the region being imaged and on the atmospheric conditions. Moreover, these indexes easily mistake other targets with similar spectral characteristics for surface water, such as shadow. Here, we developed an integrated classification model for aquaculture water extraction, which combines Random Forest (RF), Support Vector Machine (SVM), and Back Propagation Neural Network (BP), and the result was voted by above three methods. The input for this model was spectral features and texture features from the domestic GF-1 and ZY-3 high-resolution remote sensing image, calculated by Normalized Difference Water Index (NDWI) and Gray-Level Co-occurrence Matrix (GLCM). Moreover, the shadow detection method, Enhanced Shadow Water Index (ESWI), was proposed for removing shadows from mountains and buildings.We tested the accuracy of the new model using GF-1 images in Chaohu City. The results indicate that the integrated classification model performed significantly better than other methods with total accuracy by 97.4%, Kappa by 0.87, omission error by 3.7% and commission error by 6.4%, respectively. In addition, the details showed that this algorithm can effectively distinguish shadows of high buildings and mountains from water bodies to improve the overall accuracy. Moreover, this new algorithm may also be suitable for monitoring the changes of aquaculture water. Spatiotemporal changes of aquaculture water in the experimental area from 2013 to 2016 were evaluated using ZY-3 and GF-1 images. The aquaculture water area was 423.9 km2 from GF-1 imagery in 2016 compared with 396.7 km2 from ZY-3 imagery in 2013, and the water area increased 6.9% for 3 years.The main purpose of this study was to devise a model that improves water extraction accuracy, particularly in areas with shadows, which is often a major cause of low classification accuracy. It is believed that this algorithm, which combines an integrated classification model with a shadow detection method, can significantly improve the accuracy of aquaculture water detection, especially in mountainous and urban areas where deep shadow caused by the terrain and buildings is an important source of error. This algorithm also provides a foundation for the automatic renewal of a larger range of aquaculture water and should promote the integration of high-resolution remote sensing imagery in hydrological applications.

    参考文献
    [1] Research Group on "Aquaculture Project in Survey Sampling at Ministry of Agriculture". Application of multiple source types statistical investigation method in freshwater aquaculture of statistics[J]. Statistical Research, 2014, 31(6):11-16.["农业部水产养殖抽样调查项目"课题组. 多源型统计调查方法在淡水养殖渔业统计中的应用[J]. 统计研究, 2014, 31(6):11-16.]
    [2] Guan W J, Gao F, Chen X J. Review of the applications of satellite remote sensing in the exploitation, management and protection of marine fisheries resources[J]. Journal of Shanghai Ocean University, 2017, 26(3):440-449.[官文江, 高峰, 陈新军. 卫星遥感在海洋渔业资源开发、管理与保护中的应用[J]. 上海海洋大学学报, 2017, 26(3):440-449.]
    [3] Rao P Z, Jiang W G, Hou Y K, et al. Dynamic change analysis of surface water in the Yangtze river basin based on MODIS products[J]. Remote Sensing, 2018, 10(7):1025.
    [4] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
    [5] Xing L W, Tang X M, Wang H B, et al. Monitoring monthly surface water dynamics of Dongting Lake using Sentinal-1 data at 10 m[J]. PeerJ, 2018, 6:e4992.
    [6] Lu S L, Wu B F, Yan N N, et al. Water body mapping method with HJ-1A/B satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3):428-434.
    [7] Chen W Q, Ding J L, Li Y H, et al. Extraction of water information based on China-made GF-1 remote sense image[J]. Resources Science, 2015, 37(6):1166-1172.[陈文倩, 丁建丽, 李艳华, 等. 基于国产GF-1遥感影像的水体提取方法[J]. 资源科学, 2015, 37(6):1166-1172.]
    [8] Yao F F, Wang C, Dong D, et al. High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery[J]. Remote Sensing, 2015, 7(9):12336-12355.
    [9] Feng Q L, Liu J T, Gong J H. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier-A case of Yuyao, China[J]. Water, 2015, 7(12):1437-1455.
    [10] Wang X B, Xie S P, Du J K. Water index formulation and its effectiveness research on the complicated surface water surroundings[J]. Journal of Remote Sensing, 2018, 22(2):360-372.[王小标, 谢顺平, 都金康. 水体指数构建及其在复杂环境下有效性研究[J]. 遥感学报, 2018, 22(2):360-372.]
    [11] Wu G M, Chen Q, Shibasaki R, et al. High precision building detection from aerial imagery using a U-net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872.[伍广明, 陈奇, Ryosuke Shibasaki, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872.]
    [12] Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2012, 27(5):77-82.[毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析[J]. 遥感信息, 2012, 27(5):77-82.]
    [13] Xu H Q. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033.
    [14] Cao L L, Li H T, Han Y S, et al. Application of convolutional neural networks in classification of high resolution remote sensing imagery[J]. Science of Surveying and Mapping, 2016, 41(9):170-175.[曹林林, 李海涛, 韩颜顺, 等. 卷积神经网络在高分遥感影像分类中的应用[J]. 测绘科学, 2016, 41(9):170-175.
    [15] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
    [16] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
    [17] Wei C T, Wang N, Zhang L H, et al. Remote sensing image classification based on texture features[J]. Journal of Guilin University of Technology, 2013, 33(1):80-85.[韦春桃, 王宁, 张利恒, 等. 基于纹理特征的高分辨率遥感影像分类方法[J]. 桂林理工大学学报, 2013, 33(1):80-85.]
    [18] Yang W L, Yang M H, Qi H X. Water body extracting from TM image based on BPNN[J]. Science of Surveying and Mapping, 2012, 37(1):148-150.[杨文亮, 杨敏华, 祁洪霞. 利用BP神经网络提取TM影像水体[J]. 测绘科学, 2012, 37(1):148-150.]
    [19] Wu D, Liu T, Yang S W. Extraction of urban building shadows in the ZY-3 high resolution image[J]. Science of Surveying and Mapping, 2017, 42(6):190-195.[武丹, 刘涛, 杨树文. 资源三号卫星高分影像的城市建筑物阴影提取[J]. 测绘科学, 2017, 42(6):190-195.]
    [20] Fang W, Li C K, Liang J, et al. Classification of remote sensing image based on the combination of multiple classifiers[J]. Science of Surveying and Mapping, 2016, 41(10):120-125.[方文, 李朝奎, 梁继, 等. 多分类器组合的遥感影像分类方法[J]. 测绘科学, 2016, 41(10):120-125.]
    [21] Chen Y B, Dou P, Zhang T. Multiple classifiers integrated classification based on Landsat imagery[J]. Science of Surveying and Mapping, 2018, 43(8):97-103, 109.[陈洋波, 窦鹏, 张涛. 基于Landsat的多分类器集成遥感影像分类[J]. 测绘科学, 2018, 43(8):97-103, 109.]
    [22] Zhou Y N, Zhu Z W, Shen Z F, et al. Automatic extraction of coastline from TM image integrating texture and spatial relationship[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(2):273-279.[周亚男, 朱志文, 沈占锋, 等. 融合纹理特征和空间关系的TM影像海岸线自动提取[J]. 北京大学学报(自然科学版), 2012, 48(2):273-279.]
    [23] Ogilvie A, Belaud G, Massuel S, et al. Surface water monitoring in small water bodies:Potential and limits of multi-sensor Landsat time series[J]. Hydrology and Earth System Sciences Discussions, 2018, 22(8):4349-4380.
    [24] Xie C, Huang X, Zeng W X, et al. A novel water index for urban high-resolution eight-band World View-2 imagery[J]. International Journal of Digital Earth, 2016, 9(10):925-941.
    [25] Li Y H, Ding J L, Yan R H. Extraction of small river information based on China-made GF-1 remote sense images[J]. Resources Science, 2015, 37(2):408-416.[李艳华, 丁建丽, 闫人华. 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015, 37(2):408-416.]
    [26] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35.
    [27] Wei S S, Zhang H, Wang C, et al. Multi-temporal SAR data large-scale crop mapping based on U-Net model[J]. Remote Sensing, 2019, 11(1):68.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王宁,程家骅,张寒野,曹红杰,刘军.水产养殖水体遥感动态监测及其应用[J].中国水产科学,2019,26(5):893-903
WANG Ning, CHENG Jiahua, ZHANG Hanye, CAO Hongjie, LIU Jun. Dynamic monitoring and application of remote sensing for aquaculture water[J]. Journal of Fishery Sciences of China,2019,26(5):893-903

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2019-09-18
文章二维码