中国水产科学  2021, Vol. 28 Issue (11): 1489-1503  DOI: 10.12264/JFSC2021-0092
0

引用本文 

张俊波, 孙名山, 万荣. 海洋渔业装备生物附着控制技术研究进展[J]. 中国水产科学, 2021, 28(11): 1489-1503. DOI: 10.12264/JFSC2021-0092.
ZHANG Junbo, SUN Mingshan, WAN Rong. Research progress of biofouling prevention techniques for marine fishery equipment[J]. Journal of Fishery Sciences of China, 2021, 28(11): 1489-1503. DOI: 10.12264/JFSC2021-0092.

基金项目

国家重点研发计划项目(2019YFC0312104).

作者简介

张俊波(1985–),男,副教授,研究方向为海洋生态系统工程. E-mail: jb_zhang@shou.edu.cn

通信作者

万荣,教授. E-mail: rwan@shou.edu.cn

文章历史

收稿日期:2021-03-09
修改日期:2021-04-14
海洋渔业装备生物附着控制技术研究进展
张俊波1,2,孙名山1,万荣1,2,3,     
1. 上海海洋大学海洋科学学院,上海 201306
2. 国家远洋渔业工程技术研究中心,上海 201306
3. 国家远洋渔业工程技术研究中心舟山分中心,浙江 舟山 316014
摘要:海洋生物附着一直是世界渔业发展面临的主要难题之一,渔业装备长期整体或局部与海水接触,生物附着会降低其使用寿命,影响正常使用。因此,深入研究生物附着现象,采取合理、有效的措施抑制或降低海洋生物附着,对实现渔业装备的长效使用以及提升海洋渔业经济效益具有重要的意义。本文概述了海洋生物附着的危害和附着机理以及中国沿海渔业装备生物附着情况,并对现今世界生物附着控制技术进行了总结,着重分析了自抛光共聚物及防生物附着涂料在海洋渔业船舶和海洋网箱系统中的应用,为今后生物附着控制技术在海洋渔业装备的应用提供科学的参考。
关键词海洋渔业装备    生物附着    生物附着控制技术    自抛光共聚物涂料    防生物附着涂料    海洋渔业船舶    海洋网衣网箱系统    
Research progress of biofouling prevention techniques for marine fishery equipment
ZHANG Junbo1,2,SUN Mingshan1,WAN Rong,1,2,3    
1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
2. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China
3. Zhoushan Branch of National Engineering Research Center for Oceanic Fisheries, Zhoushan 316014, China
Abstract:Marine biofouling has always been one of the major problems in world fishery development. Fishery equipment has been immersed in seawater environment for a long time, and biofouling will reduce its service life and affect the normal use. Marine fishery equipment is the special equipment used for production operations in the marine environment, mainly including aquaculture equipment, fishing equipment, aquatic processing equipment, etc. Among them, marine fishing vessels, offshore cage netting and fishing equipment are the important basic equipment for the development of marine fishery economy. However, due to long-term overall or partial contact with the sea water, biological attachment phenomenon appears, which seriously affects the normal use of fishery equipment, thus causing different degrees of economic losses. Furthermore, biological attachment is a unique function of natural organisms. Many animals or plants have an attachment mechanism through which they carry out various biological functions. When the organisms with the habit of attachment use marine fishery equipment as the substrate, the phenomenon of biological attachment is caused. The biological attachment on the equipment of marine fishing vessels leads to the decrease of ship speed, the increase of fuel consumption, and the increase of operation cost. The biological attachment on the offshore cage netting will reduce the life of the net and cause clogging of the net mouth, thus reducing the survival rate of the cultured fish. At present, domestic anti-fouling coatings combined with manual removal are adopted to deal with biofouling in offshore cage netting, but the effect is not satisfactory. Some cages located in the South China Sea were once broken due to improper manual removal, and a large number of fish escaped, resulting in serious economic losses. Similarly, the use of diluted foreign antifouling coating combined with a small amount of TBT method to remove organic matter adhering to the surface of marine fishing vessels, the ocean-going fishing vessels located in Guangxi need to dock every 6 months for repairs and are less effective in preventing fouling. The commonly used biofouling prevention techniques in China has some disadvantages such as toxic, time-consuming, laborious, weak timeliness and easy to damage equipment, etc., so it cannot effectively control biological contamination. Therefore, it is of great significance to further study the biological attachment phenomenon, take reasonable and effective measures to restrain or reduce the marine biofouling, and achieve the long-term use of marine fishery equipment to improve the economic benefits of marine fishery. This paper provides an overview of the hazards and attachment mechanisms of marine biological attachment and the biological attachment situation of Chinese coastal fishery equipment, and summarizes current world biological attachment control technology, with emphasis on the application of self-polishing copolymers and antifouling coatings in marine fishery vessels and marine netting systems.
Key wordsmarine fishery equipment    biofouling    biofouling prevention techniques    self-polishing coating    antifouling coatings    marine fishing vessels    offshore cage netting    

海洋渔业装备是在海洋环境中用于生产作业的专用设备,主要包括水产养殖装备、捕捞装备、水产加工装备等[1],其中海洋渔船装备、海水养殖网箱、渔船及捕捞装备是海洋渔业经济发展的重要基础设备。但因其长期整体或局部与海水接触,出现生物附着现象,严重影响渔业装备的正常使用,从而造成不同程度的经济损失。

生物附着是自然界生物特有的一种功能,许多动物或植物都存在附着机制,并凭借这种机制实现各种生物学功能[2]。当具有附着习性的动植物如藻类中的海带(Laminaria japonica)和裙带菜(Undaria pinnatifida Suringar)、贝类中的牡蛎(Ostrea gigas Thunberg)、甲壳动物中的藤壶(Balanus)以及脊索动物中的海鞘(Pyrosomella verticilliata)等以海洋渔业装备作为附着基质时,会影响装备的正常使用,甚至造成损坏。海洋渔船装备上的生物附着导致船速降低、油耗增加,提高运营成本[3];海水养殖网箱上的生物附着会减少网衣寿命并造成网口堵塞,降低养殖鱼体成活率[4]。因此,深入研究生物附着现象,采取合理、有效的措施抑制或降低海洋生物附着,对提升海洋渔业经济效益具有重要的意义[5]

本文概述了中国沿海附着生物情况,以及海洋生物附着的危害和机理,并对目前生物附着控制技术进行了综述,以期为今后生物附着控制技术在海洋渔业装备中的应用提供科学的参考。

1 我国沿海渔业装备的主要附着生物种类

我国沿海渔业装备附着生物有600多种,总体可分为藻类(Algae)、腔肠类(Coelenterata)、苔藓类(Bryozoa)、多毛类(Polychaetes)、软体类(Mollusca)、甲壳类(Crustacea)、被囊类(Tunicata)以及海绵类(Spongia)共8类[6-7]。由于海区的光照、溶解氧、pH、水流速度、营养盐的浓度及海水的温度、盐度等环境因素的差异,附着生物在我国渤海、黄海、东海和南海四大海区的优势种类有所区别(表1)。

表1  我国四大海区主要附着生物种类[7] Tab. 1  Species of heavily attached coastal organisms in China[7]
2 生物附着原理

渔业装备表面的生物附着是一种生物富集的现象,当化学惰性基质浸入海水时,由于物理吸附、静电相互作用和范德华力的作用,将溶解在海水中的蛋白质、多糖、糖蛋白等有机分子聚集,形成一层可供生物定殖的条件膜(图1)[8]。附着生物在条件膜上的生长过程可以分为初级定殖、次级定殖和第三代定殖3个阶段(表2)。但是,实际情况中附着过程更复杂,由于各种附着生物自身附着能力不同,其附着顺序也可以是随机的。例如,藤壶在幼虫阶段释放一种黏合剂,在接触到的表面永久附着[9];同样,石莼(Ulva)的游动孢子可以暂时附着,当探索到最佳基质时,会永久定殖并繁殖下一代[10];而贻贝(Mytilus)则使用胶原蛋白形成的足丝进行选择性附着[11];硅藻(Diatom)可产生多聚糖,将细胞体包裹并与基质连接[12]。此外,海洋环境因素对生物附着的种类、数量及分布具有决定性因素,因为海区的光照、溶解氧、pH、水流速度、营养盐的浓度及海水的温度、盐度等直接影响生物的生长和繁殖。例如,茗荷(Lepas anatifera Linnaeus)通常分布在热带和亚热带海域,繁殖最适温度为19~25 ℃,若温度低于16 ℃或高于30 ℃,卵巢则停止发育[13];翡翠贻贝的存活温度为9~35 ℃,盐度为35~37[14];紫贻贝的生长最适温度为20 ℃,生长最适盐度为35[15], Anestis等[16]研究发现紫贻贝无法在26 ℃以上的水温条件下长期存活,当水温升高至30 ℃时,稚贝的死亡率急剧上升;硅藻在钢质表面附着120 h后能承受的最大流速为0.13 m/s,附着2~3周后则提高到5.14 m/s[17]

图1  海洋生物附着过程 Fig. 1  Development processes of biofouling
表2  附着生物定殖过程 Tab. 2  Process of biological colonization
3 海洋生物附着对渔业装备的危害

海水环境中的微生物、藻类和无脊椎动物极易附着在船舶及网箱表面,对船舶航行、网箱养殖造成不利影响,阻碍海洋渔业和海水养殖业的发展[13]

3.1 生物附着对船舶航行的危害

海洋生物附着会增加船体表面的粗糙度,加大航行阻力,引起燃料的额外损耗,导致有害气体释放加剧,因此从航海时代起就被认为是制约社会和经济发展的重要问题。据国际海事组织统计,世界船队每年燃烧3亿t燃料,向大气中释放9.6亿t二氧化碳和900万t二氧化硫,若无有效的海洋生物附着控制技术,燃料损耗将会继续增加40%[18-19]。生物附着会破坏船体表面的涂层并加速金属基底的腐蚀,附着生物聚集在船体表面导致区域内的pH、溶解氧及其他溶解质浓度发生改变,从而加剧金属材料腐蚀的进程[20-21],增加船舶回坞维修的次数,减少船舶的使用寿命和航行时间。

3.2 生物附着对养殖网箱的危害

生物附着会减少养殖网箱的网眼面积,藻类、软体类和水螅类对网目的覆盖率可达到100%,使网箱变形、体积缩小,从而降低网箱内外的水体交换、营养交换、溶解氧扩散和废物的排出[20]。此外,生物附着会促进细菌和病原体的生长,危害鱼体健康[22]。牡蛎、贻贝、藤壶等具有坚硬几丁质外壳的生物长时间附着于网箱网衣表面,使网衣使用寿命降低,随时面临网衣破裂鱼种逃逸的风险。

Fitridge等[23]描述了生物附着对海水养殖业的危害,在贝类养殖过程中,玻璃海鞘(Ciona intestinalis)、菊海鞘(Botryllus)等附着于网箱表面,导致箱体尺寸减小、食物竞争激烈、存活率降低;藻类附着增殖,造成网孔堵塞、溶氧降低、水质恶化;海绵动物可以软化网箱结构和贝类的外壳,造成箱体稳定性下降、贝类外壳变形。在海洋鱼类养殖过程中,藻类附着的危害最大,浒苔、石莼、江蓠(Gracilaria)等破坏网箱结构、堵塞网孔、限制水体交换、降低溶氧、减少代谢废物的排出,导致养殖环境中氨氮离子的堆积和病原体的生长,最终鱼类因缺氧和疾病出现大面积死亡。

4 海洋渔业装备生物附着控制技术

生物附着控制技术大致分为两类,一类是根据技术的作用原理(物理、化学、生物),另一类是根据技术的作用方式。Lehaitre等[24]、吴正伟等[25]根据生物附着控制过程是否需要消耗能量,将生物附着控制技术实施方式分为消耗能量的主动控制方式和不消耗能量的被动控制方式。

4.1 主动控制方式

主动控制方式主要包括机械清除、网衣更换等方法[12,18,22,25-27],其优缺点和渔业设备适用情况如表3所示。

4.2 被动控制方式

被动控制方式以涂层技术为主[8,18-19,25-35],将具有生物附着控制效力的涂料分层涂抹在基底表面。其中化学活性涂料应用范围最广、使用频率最高,但存在时效性低、有毒、使用条件受限等缺陷(表4)。

表3  海洋生物附着控制方法——主动控制方式 Tab. 3  Marine biofouling control methods—active control approach
表4  海洋生物附着控制方法——被动控制方式 Tab. 4  Marine biofouling control methods—passive control approach
4.2.1 防生物附着涂料的发展

被动控制方式始于公元前1500年(表5),早期腓尼基人和迦太基人尝试将蜡、沥青、焦油、铅皮涂装在船体表面解决生物附着问题。19世纪开始出现含铜、砷、汞等金属元素的涂料,但时效性较弱,需频繁清洗和重新喷漆[36]。20世纪50年代,三丁基锡(tributyltin, TBT)被发现具有强大的生物灭杀性能,有机锡基涂料进入快速发展阶段,20世纪60年代TBT自抛光共聚物涂料问世[37-39]。此后,该涂料在世界各地的海水养殖网箱和远洋船舶上广泛使用,利用率达到70%。然而,随着TBT自抛光共聚物涂料的广泛应用,涂料的毒性和对生态环境的破坏性逐渐引起世界各地的重视[40-42]。因此,1987—1990年间法国、英国、美国、加拿大、澳大利亚、欧盟、新西兰和日本等陆续颁布法令禁止船舶(<25 m)使用含有TBT的涂料。2001年11月国际海事组织采用“AFS公约”禁止2003年以后的所有船舶涂装TBT涂料,并在2008年起全面消除TBT涂料。目前市场上常见的防生物附着涂料主要分为含杀菌剂的自抛光型涂料和不含杀生剂的污损释放涂料。其中,自抛光型涂料应用最广泛,约占防生物附着涂料市场90%的份额[43]

表5  世界防生物附着涂料发展史[36] Tab. 5  Historical development of biological attachment prevention paints[36]
4.2.2 自抛光共聚物涂料

20世纪60年代,人们基于丙烯酸或甲基丙酸共聚物发明了在海水中易于水解的自抛光共聚物涂料[44]。这些共聚物作为基质与杀菌剂和黏合剂混合形成涂层,通过黏合剂控制杀菌剂的浸出速率(图2)。随着涂层中的树脂在海水中水解,杀菌剂被缓慢释放,先锋细菌、藻类孢子和无脊椎动物的幼虫等无法在涂层区域聚集,显著抑制了生物附着现象的形成。

图2  自抛光共聚物涂层在海水中的溶解过程 Fig. 2  Self-polishing coatings dissolution process in sea water

自抛光共聚物涂料生物附着控制效果好、时效性强、价格合理,适应市场。但因目前市场上常用的杀菌剂具有一定毒性(表6),对环境具有负面影响。因此,寻找绿色环保的物质替代现有的毒性杀菌剂是防生物附着涂料未来的发展方向。

目前,环境友好型自抛光共聚物涂料的研制是世界防生物附着涂料中最重要的课题。Tian等[46]将铜–钛合金用机械处理成纳米级,通过降低铜离子的释放速度和浓度,减少其对环境的影响。实验层分别在大肠杆菌培养基和芽孢杆菌上进行实验,均取得了良好的抑菌效果(图3)。Zhao等[47]研制的自抛光聚丙烯酸酯聚硅氧烷涂料具有良好的自抛光性能和污损释放性能,实验将9种配方(二氧化硅和氧化亚铜的配比不同)涂抹在载玻片表面,将处理好的载玻片在人工海水环境中浸泡6个月,发现Y7组(二氧化硅和氧化亚铜质量比1∶1)的生物附着控制效果最好(图4)。随着自抛光共聚物涂料的研究不断发展,涂层材料以及杀菌剂对环境的影响越来越小,但是限于制备成本较高,这些产品的市场前景可能并不乐观。

表6  防生物附着涂料中主要的杀菌剂[45] Tab. 6  Main biocides used in biological attachment prevention paints[45]
5 防生物附着涂料在海洋渔业装备上的应用 5.1 防生物附着涂料在海洋渔业船舶上的应用

目前的研究中,评价船舶防生物附着涂料的生物附着控制效果多采用静态海水挂板实验和动态船体涂装实验。静态海水挂板实验是利用海区挂板直接评价涂料的生物附着控制效果[48],而动态船体涂装实验是对某种类型船只的代表性部位进行局部涂装,然后随船航行以进行效果评价。后者实验方法耗时、耗力、难度大,需要涂装2艘以上的船在不同的海域做平行实验,航行期间涂层会受到不同海域、流速、盐度和pH等多种因素的影响[49]

图3  大肠杆菌在不同涂层表面8 h生长情况以及芽孢杆菌在不同涂层表面48 h生长情况[46]a. 无涂层;b. TC4基底;c. 铜-钛混合涂层;d. TC4基底;e. 铜-钛混合涂层. Fig. 3  Antifouling performance of different samples of E. coli 8 h growth and Bacillus 48 h growth[46]a. blank control; b. TC4 substrate; c. copper-titanium composite coating; d. TC4 substrate; e. copper-titanium composite coating.
图4  不同配方在人工海水中浸泡6个月的结果[47] Fig. 4  Results of different formulations exposed to artificial seawater for 6 months[47]

大量学者利用海水挂板对各种防生物附着涂料进行测试[50-62],提供数据支持,加快了环保型涂料的研究进展(表7),如Swain等[63]在静态和动态浸泡条件下对4种商业涂料(铜基自抛光共聚物涂层、铜基混合涂层和2种硅基污损释放型涂层)进行效果评价,分析样板的水动力性能和物种丰富度,结果表明不同涂层的抗阻性和物种丰富度差异显著;Bellotti等[64]以水杨酸锌为生物制剂与黏合剂(松香/油酸、松香/苯乙烯–丙烯酸共聚物)混合得到2种可溶性涂料,海水挂板实验表明水杨酸锌和松香/油酸黏合剂组成的涂层效果良好,12个月内生物附着率较低;Baldissera等[65]将导电聚合物(聚苯胺)与聚氯乙烯混合,采用红外光谱、热重分析、电导率、扫描电镜、海水挂板和盐雾实验等手段对涂料的附着力、防腐蚀性和生物附着控制效果进行评价,为新型环保涂料的开发提供了数据和实验支持。Stafslien等[66]对8种污损释放型涂料(硅氧烷–聚氨酯)进行测试,采用实验室分析法和海水挂板对附着生物黏附性(细菌、微藻、大型藻类孢子和藤壶)和生物附着控制效果进行评价,其中含单官能团聚二甲基硅氧烷和双官能团聚硅氧烷的涂层生物附着控制效果最佳;Chen等[67]对6种不同配比的新型丙烯酸锌自抛光共聚物进行选优试验,采用红外光谱、核磁共振光谱和凝胶渗透色谱等手段表征,在15个月海水挂板实验中与杀菌剂(氧化亚铜、吡啶硫酮铜)结合,表现出良好的生物附着控制效果;李如等[68]采用电镜、分光光度计、海水挂板等方法,探究晶体形貌对氧化亚铜自抛光共聚物涂料生物附着控制效果的影响,150 d海水浸泡结果证明氧化亚铜晶体的形貌和尺寸对生物附着控制效果具有显著提升;于雪艳等[49]采用环境友好型自抛光涂料(以丙烯酸锌树脂为基底,氧化亚铜为主要杀菌剂),经36个月的海水挂板和船体涂装实验,试验区域光滑、无生物附着;陈珊珊等[69]选用3种市售的防生物附着涂料(自抛光型和损耗型)构成不同的涂层体系进行实船淡水浸泡测试,测试结果可为防生物附着涂料新型涂层体系的开发提供参考。

世界船舶防生物附着涂料的研究源源不断[8,18-19,25-35,45-47,49-69],但我国海洋渔业船舶只有较少数船舶选择使用防生物附着涂料,如广东省远洋渔船主要涂装挪威生产的佐敦牌涂料,而近海渔船则采用进口涂料稀释法进行涂装(会出现在涂料中加入有机锡等有毒物质的情况)。后者稀释比例为1∶2或1∶3(体积比),但通常一年内就需要靠岸维修,依靠人工清除附着生物,这种做法会造成船体磨损,降低船舶使用寿命。现今,我国海洋渔业船舶急需性价比高的环保型涂料以有效控制生物附着。

表7 涂料测验效果 Tab. 7 Effect of coating test
5.2 防生物附着涂料在海洋网箱网衣系统中的应用

防生物附着涂料在海洋网箱网衣系统与船体上的应用有明显区别,网衣主要用尼龙和聚乙烯材料制成的网线编制而成[70],在静态海水实验中的实验样品多为片状网衣,比铁板更具韧性,所以用于网衣的防生物附着涂料需要有一定的柔韧性。

为研制出适应网衣的防生物附着涂料,国内外学者进行了大量研究[71-81]。马星等[82]以树脂氯磺化聚乙烯树脂为基底,与杀菌剂(异噻唑啉酮、硫氰酸亚铜、氧化亚铜)混合得到3种涂料,经电镜表征及海上挂网实验等方法,涂料表现出较好的附着力、柔韧性和生物附着控制效果;Braithwaite等[83]在鲑养殖海域对铜基涂料进行测试,利用净阻塞百分比(percentage net occlusion, PNO)表示生物附着率,并记录了涂料前后附着生物的群落变化,为海洋网箱网衣系统生物附着控制效果评价提供了新思路;Edwards等[84]同样利用PNO测试了5种市售的涂料在网衣上的效果,其中4种不含杀菌剂,几乎对生物附着无影响,而另外一种以17%氧化亚铜为杀菌剂的涂料效果最好,连续7个月将生物附着率控制在较低值;Bloecher等[85]对比了6种未上市的涂料(杀菌剂含氧化亚铜、吡啶硫酮铜、吡啶硫酮锌、吡咯腈和硼化物等),采用海上挂网实验、浸没式防污板试验标准及主坐标分析法对生物附着控制效果、时效性、生物附着率和物种丰富度进行评价,认为含0.6%氧化亚铜的涂料效果更全面。

目前我国海洋网箱网衣系统仅有少数使用防生物附着涂料,主要原因是国产涂料时效性短、国外涂料价格昂贵且涂层工序复杂、网箱所处海区海况复杂和生物附着状况等。然而,我国深远海网箱生物附着问题不容乐观(图5),例如,2019年4月投入广东省万山岛海域(南海)进行生产作业的“德海1号”养殖网箱,养殖过程中牡蛎与藤壶生物附着严重,造成网衣磨损破裂,导致养殖鱼种逃逸,造成一定的经济损失;同年投入海中生产作业的“澎湖号”养殖网箱也深受生物附着影响,每半年网箱需要暂停作业,集中清除网箱网衣和供能装置表面的附着生物。

图5  生物附着情况a、b: 德海1号;c、d: 澎湖号. 图片拍摄于2019年广东省珠海市. Fig. 5  Biological attachment
6 问题与展望

海洋渔业装备是渔业生产中重要的基础设施,近年来,随着国家对渔业装备的日益重视以及现代科技水平的不断提高,中国海洋渔业装备迅速发展[1]。海洋渔业船舶、深远海网箱的不断投入,以及复杂的海洋环境使得生物附着问题逐渐凸显,渔业船舶出现航速降低、油耗增加、装备失灵、严重老化等现象;网箱网衣上的附着物影响网箱内的溶氧、鱼类生长发育、网衣内外水体交换和营养物质交换以及鱼类的品质和健康。中国沿海的附着生物有600多种[6-7],常年广泛分布于四大海区,外加渔业装备结构多样、技术措施要求安全环保、渔业企业自身条件千差万别等原因,使得海洋渔业装备生物附着防除工作更具复杂性、艰巨性、差异性和长期性。

目前,远洋渔业船只生物附着严重,通常选用国外涂料应对该问题,但成本较高;而近海渔业船只在船体水线以下采用国外涂料稀释与有机锡混合的方式防护,但每年仍需靠岸进行机械清除,影响船体的性能和使用寿命。我国近海网箱多数使用人工清除法,只有少数深远海网箱选用防生物附着涂料。位于南海的深远海网箱生物附着严重,普遍采用国产涂料和人工清除相结合的方法控制生物附着,但效果差强人意,部分网箱因人工清除不当,网衣受损,大量养殖鱼种逃逸,造成重大经济损失;此外网箱处于开放水域,疾病难以防治,残留的附着生物易引起相关的病原体入侵养殖环境,危害鱼体健康。

市售涂料中自抛光共聚物涂料占90%,污损释放涂料占10%[43],由于生物附着控制措施逐渐强调安全性和环保性,传统防生物附着涂料中效果最好的TBT自抛光共聚物涂料被国际禁止使用[38-42],部分有毒的自抛光共聚物涂料也不断被淘汰,而无毒的污损释放性涂料价格昂贵、使用条件受限(只适用于高活动性的船只);如今环保型涂料的研究源源不断,但测试实验较少,使得可供使用的涂料实际效果无法得到保障,造成国内的涂料市场出现严重的供不应求现象。因此,亟须研制具有商业用途、无毒、有效、时效性强和价格适宜等特点的新型环保型涂料,并对分布于我国四大海区的海洋渔业船舶与深远海网箱进行充分的防生物附着测试与效果评价,以期在打破国外防生物附着涂料的技术垄断的同时减轻生物附着现象对海洋渔业装备的损害,保护我国渔业从业者的利益,加强我国海洋渔业的发展。

参考文献
[1]
Huang Y X, Ding J L, Bao X T, et al. Development research on China fishery equipment and engineering technology[J]. Fishery Modernization, 2019, 46(5): 1-8. [黄一心,丁建乐,鲍旭腾,等. 中国渔业装备和工程科技发展综述[J]. 渔业现代化,2019, 46(5): 1-8.].》Google Scholar
[2]
Gorb S, Beutel R. Evolution of locomotory attachment pads of hexapods[J]. Naturwissenschaften, 2001, 88(12): 530-534..》Google Scholar
[3]
Coutts A D M, Taylor M D, Hewitt C L. Novel method for assessing the en route survivorship of biofouling organisms on various vessel types[J]. Marine Pollution Bulletin, 2007, 54(1): 97-100..》Google Scholar
[4]
Zhang K, Cong W W, Gui T J, et al. Effect and remediation of biofouling on marine aquaculture[J]. Materials Reports, 2020, 34(S1): 78-81. [张凯,丛巍巍,桂泰江,等. 海洋水产养殖业中的生物污损与控制[J]. 材料导报,2020, 34(S1): 78-81.].》Google Scholar
[5]
Hou B R. The Cost of Corrosion in China[M]. Beijing: Science Press, 2017. [侯保荣. 中国腐蚀成本[M]. 北京: 科学出版社,2017.].》Google Scholar
[6]
Zhang M M, Zhao W, Yu S C. Research progress of marine fouling organisms in China[J]. Fisheries Science, 2008, 27(10): 545-549. [张明明,赵文,于世超. 我国海洋污损生物的研究概况[J]. 水产科学,2008, 27(10): 545-549.].》Google Scholar
[7]
Yan T, Liu S S, Cao W H. Marine biofouling on aquaculture facilities in the coastal waters of China and prevention methods[J]. Marine Science Bulletin, 2008, 27(1): 102-110. [严涛,刘姗姗,曹文浩. 中国沿海水产设施污损生物特点及防除途径[J]. 海洋通报,2008, 27(1): 102-110.].》Google Scholar
[8]
Chambers L D, Stokes K R, Walsh F C, et al. Modern approaches to marine antifouling coatings[J]. Surface and Coatings Technology, 2006, 201(6): 3642-3652..》Google Scholar
[9]
Clare A S, Høeg J T. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature[J]. Biofouling, 2008, 24(1): 55-57..》Google Scholar
[10]
Naldrett M J. The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement[J]. Journal of the Marine Biological Association of the United Kingdom, 1993, 73(3): 689-702..》Google Scholar
[11]
Callow M E, Callow J E. Marine biofouling: A sticky problem[J]. Biologist, 2002, 49(1): 10-14..》Google Scholar
[12]
Callow M. Ship fouling: Problems and solutions[J]. Chemistry & Industry, 1990, 5: 123-127..》Google Scholar
[13]
Patel B. The influence of temperature on the reproduction and moulting of Lepas anatifera L. under laboratory conditions[J]. Journal of the Marine Biological Association of the United Kingdom, 1959, 38(3): 589-597..》Google Scholar
[14]
Yuan W S, Walters L J, Brodsky S A, et al. Synergistic effects of salinity and temperature on the survival of two nonnative bivalve molluscs, Perna viridis (Linnaeus 1758) and Mytella charruana (d’Orbigny 1846)[J]. Journal of Marine Biology, 2016, 2016: 9261309..》Google Scholar
[15]
His E, Robert R, Dinet A. Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas[J]. Marine Biology, 1989, 100(4): 455- 463..》Google Scholar
[16]
Anestis A, Lazou A, Pörtner H O, et al. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2007, 293(2): R911-R921..》Google Scholar
[17]
Jones G. The battle against marine biofouling: A historical review[M]//Advances in Marine Antifouling Coatings and Technologies. Amsterdam: Elsevier, 2009: 19-45..》Google Scholar
[18]
Hellio C, Yebra D. Advances in Marine Antifouling Coatings and Technologies[M]. Florida: Woodhead Publishing, 2009..》Google Scholar
[19]
Anisimov A V, Mikhailova M A, Uvarova E A. Modern approaches to the development of marine antifouling coatings[J]. Inorganic Materials: Applied Research, 2019, 10(6): 1384-1389..》Google Scholar
[20]
Lu Y Y, Wu J H, Sun M X, et al. Prevention of ocean halobios fouling—Development of electrolytic anti-fouling technology[J]. Corrosion & Protection, 2001, 22(12): 530- 534. [逯艳英,吴建华,孙明先,等. 海洋生物污损的防治——电解防污技术的新进展[J]. 腐蚀与防护,2001, 22(12): 530-534.].》Google Scholar
[21]
Guenther J, Misimi E, Sunde L M. The development of biofouling, particularly the hydroid Ectopleura larynx, on commercial salmon cage nets in Mid-Norway[J]. Aquaculture, 2010, 300(1-4): 120-127..》Google Scholar
[22]
de Nys R, Guenther J. The impact and control of biofouling in marine finfish aquaculture[M]//Advances in Marine Antifouling Coatings and Technologies. Amsterdam: Elsevier, 2009: 177-221..》Google Scholar
[23]
Fitridge I, Dempster T, Guenther J, et al. The impact and control of biofouling in marine aquaculture: A review[J]. Biofouling, 2012, 28(7): 649-669..》Google Scholar
[24]
Lehaitre M, Delauney L, Compère C. Biofouling and underwater measurements[M]//Real-Time Coastal Observing Systems for Marine Ecosystem Dynamics and Hharmful Algal Blooms: Theory, Instrumentation and Modelling. United Nations Educational, Scientific & Cultural Organization, 2008: 463-493..》Google Scholar
[25]
Wu Z W, Zhou H Y, Lyu F. Bio-fouling prevention techniques for ocean observing instruments[J]. The Ocean Engineering, 2017, 35(5): 110-117. [吴正伟,周怀阳,吕枫. 海洋观测仪器防生物附着技术[J]. 海洋工程,2017, 35(5): 110-117.].》Google Scholar
[26]
Xu Z, Ouyang Q, Yi D H. Antifouling method of marine fouling organisms—A review[J]. Corrosion Science and Protection Technology, 2012, 24(3): 192-198. [胥震,欧阳清,易定和. 海洋污损生物防除方法概述及发展趋势[J]. 腐蚀科学与防护技术,2012, 24(3): 192-198.].》Google Scholar
[27]
Lan H, Li H Z, Wang L, et al. Design and test of a CTD anti- biofouling device based on ultraviolet sterilization technology[J]. Advances in Marine Science, 2019, 37(2): 332-341. [兰卉,李红志,王磊,等. 基于紫外线的CTD防生物附着装置设计和试验[J]. 海洋科学进展,2019, 37(2): 332-341.].》Google Scholar
[28]
Zhou F. Antifouling Surfaces and Materials: From Land to Marine Environment[M]. Heidelberg: Springer, 2014..》Google Scholar
[29]
Chen L. Development of anti-fouling coating using in marine environment[J]. International Journal of Environmental Monitoring and Analysis, 2015, 3(5): 373..》Google Scholar
[30]
Liu J, He Q W, Chen H, et al. Review on marine antifouling coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(6): 483-488. [刘姣,何其伟,陈洪,等. 船舶防污涂料的研究现状[J]. 中国腐蚀与防护学报,2014, 34(6): 483-488.].》Google Scholar
[31]
Guo J, Liu C H, Zhang F, et al. Review on environmental friendly antifouling coatings[J]. Corrosion Science and Protection Technology, 2016, 28(4): 374-378. [郭静,刘春花,张帆,等. 环境友好型船舶防污涂料的研究进展[J]. 腐蚀科学与防护技术,2016, 28(4): 374-378.].》Google Scholar
[32]
Ye Z J, Chen S S, Zhang J W, et al. Application of silicone and fluoropolymer in marine antifouling coatings[J]. Paint & Coatings Industry, 2018, 48(1): 75-82. [叶章基,陈珊珊,张金伟,等. 有机硅和氟树脂在海洋防污涂料中的应用研究进展[J]. 涂料工业,2018, 48(1): 75-82.].》Google Scholar
[33]
Pan J S, Xie Q Y, Ma C F, et al. Progress in biodegradable polymer-based marine antifouling materials[J]. Surface Technology, 2019, 48(7): 185-192. [潘健森,谢庆宜,马春风,等. 生物降解高分子基海洋防污材料的研究进展[J]. 表面技术,2019, 48(7): 185-192.].》Google Scholar
[34]
Mao T Y, Lu G, Chi J H, et al. Technical research and application status of marine antifouling coatings[J]. Materials Protection, 2019, 52(2): 113-118. [毛田野,陆刚,迟钧瀚,等. 船舶防污涂料的技术研究和应用现状[J]. 材料保护,2019, 52(2): 113-118.].》Google Scholar
[35]
Zhang X S, Wang J X, Le Y, et al. Research progress of biocides and resins for novel marine antifouling coatings[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 848-853, 900. [张新生,王洁欣,乐园,等. 新型海洋防污涂料用防污剂及树脂的研究进展[J]. 化工进展,2011, 30(4): 848-853, 900.].》Google Scholar
[36]
Dafforn K A, Lewis J A, Johnston E L. Antifouling strategies: History and regulation, ecological impacts and mitigation[J]. Marine Pollution Bulletin, 2011, 62(3): 453-465..》Google Scholar
[37]
Ruiz J M, Bachelet G, Caumette P, et al. Three decades of tributyltin in the coastal environment with emphasis on Arcachon Bay, France[J]. Environmental Pollution, 1996, 93(2): 195-203..》Google Scholar
[38]
Xu Y, He H P, Schulz S, et al. Potent antifouling compounds produced by marine Streptomyces[J]. Bioresource Technology, 2010, 101(4): 1331-1336..》Google Scholar
[39]
Sousa A N, Génio L, Mendo S, et al. Comparison of the acute toxicity of tributyltin and copper to veliger larvae of Nassarius reticulatus (L.)[J]. Applied Organometallic Chemistry, 2005, 19(3): 324-328..》Google Scholar
[40]
Alzieu C L, Sanjuan J, Deltreil J P, et al. Tin contamination in Arcachon Bay: Effects on oyster shell anomalies[J]. Marine Pollution Bulletin, 1986, 17(11): 494-498..》Google Scholar
[41]
Evans S M. TBT or not TBT?: That is the question[J]. Biofouling, 1999, 14(2): 117-129..》Google Scholar
[42]
Evans S M, Birchenough A C, Brancato M S. The TBT ban: Out of the frying pan into the fire?[J]. Marine Pollution Bulletin, 2000, 40(3): 204-211..》Google Scholar
[43]
Bodkhe R B, Stafslien S J, Daniels J, et al. Zwitterionic siloxane-polyurethane fouling-release coatings[J]. Progress in Organic Coatings, 2015, 78: 369-380..》Google Scholar
[44]
Almeida E, Diamantino T C, de Sousa O. Marine paints: The particular case of antifouling paints[J]. Progress in Organic Coatings, 2007, 59(1): 2-20..》Google Scholar
[45]
Lejars M, Margaillan A, Bressy C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings[J]. Chemical Reviews, 2012, 112(8): 4347-4390..》Google Scholar
[46]
Tian J J, Xu K W, Hu J H, et al. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design[J]. Journal of Materials Science & Technology, 2021, 79: 62-74..》Google Scholar
[47]
Zhao X, Hao H, Duan Y P. A self-polishing polyacrylate-g- polysiloxane paint for marine antifouling application[J]. Polymer Science, Series A, 2020, 62(3): 184-195..》Google Scholar
[48]
Xu J W, Yu L M, Li X, et al. Development of self-polishing antifouling coating and evaluation approaches[J]. Paint & Coatings Industry, 2011, 41(2): 62-66. [徐经委,于良民,李霞,等. 自抛光防污涂层及评价技术的发展[J]. 涂料工业,2011, 41(12): 62-66].》Google Scholar
[49]
Yu X Y, Chen Z T, Wang K, et al. Research on environmental friendly self-polishing antifouling paint[J]. New Chemical Materials, 2016, 44(7): 252-254, 257. [于雪艳,陈正涛,王科,等. 环境友好型自抛光防污涂料的研制及性能[J]. 化工新型材料,2016, 44(7): 252-254, 257.].》Google Scholar
[50]
Zhang X, Yu L M. Research on antifouling property of functional acrylic acid zinc resin[J]. Applied Chemical Industry, 2010, 39(6): 793-795. [张霞,于良民. 功能性丙烯酸锌树脂的防污性能研究[J]. 应用化工,2010, 39(6): 793-795.].》Google Scholar
[51]
Efimenko K, Finlay J, Callow M E, et al. Development and testing of hierarchically wrinkled coatings for marine antifouling[J]. ACS Applied Materials & Interfaces, 2009, 1(5): 1031-1040..》Google Scholar
[52]
Baldissera A F, de Miranda K L, Bressy C, et al. Using conducting polymers as active agents for marine antifouling paints[J]. Materials Research, 2015, 18(6): 1129-1139..》Google Scholar
[53]
Ventura C, Guerin A J, El-Zubir O, et al. Marine antifouling performance of polymer coatings incorporating zwitterions[J]. Biofouling, 2017, 33(10): 892-903..》Google Scholar
[54]
Cavas L, Yildiz P G, Mimigianni P, et al. Reinforcement effects of multiwall carbon nanotubes and graphene oxide on PDMS marine coatings[J]. Journal of Coatings Technology and Research, 2018, 15(1): 105-120..》Google Scholar
[55]
Hunsucker K Z, Gardner H, Lieberman K, et al. Using hydrodynamic testing to assess the performance of fouling control coatings[J]. Ocean Engineering, 2019, 194: 106677..》Google Scholar
[56]
Guo H S, Liu X M, Zhao W Q, et al. A polyvinylpyrrolidone-based surface-active copolymer for an effective marine antifouling coating[J]. Progress in Organic Coatings, 2021, 150: 105975..》Google Scholar
[57]
Holberg S, Losada R, Blaikie F H, et al. Hydrophilic silicone coatings as fouling release: Simple synthesis, comparison to commercial, marine coatings and application on fresh water-cooled heat exchangers[J]. Materials Today Communications, 2020, 22: 100750..》Google Scholar
[58]
Chen L G, Ye R, Xu Y, et al. Comparative safety of the antifouling compound butenolide and 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2014, 149: 116- 125..》Google Scholar
[59]
Chen L G, Xu Y, Wang W X, et al. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions[J]. Chemosphere, 2015, 119: 1075-1083..》Google Scholar
[60]
Yu X Y, Wang K, Chen Z T, et al. Development and performance of copper antifoulant-free marine biocide antifouling paints[J]. Surface Technology, 2017, 46(12): 11-17. [于雪艳,王科,陈正涛,等. 不含铜类防污剂海洋防污涂料研制及性能[J]. 表面技术,2017, 46(12): 11-17.].》Google Scholar
[61]
Li C G. Development of self-polishing antifouling paints based on silicone acrylate copolymer[J]. Surface Technology, 2017, 46(12): 6-10. [李春光. 含丙烯酸甲硅烷酯共聚物基自抛光防污涂料的研制[J]. 表面技术,2017, 46(12): 6-10.].》Google Scholar
[62]
Cao J Y, Zhang H Y, Meng X L, et al. Preparation and property of environmental friendly copper-free self-polishing antifouling coatings[J]. Paint & Coatings Industry, 2015, 45(3): 33-36. [曹京宜,张海永,孟宪林,等. 环境友好型无铜自抛光防污涂料的制备与性能研究[J]. 涂料工业,2015, 45(3): 33-36.].》Google Scholar
[63]
Swain G W, Kovach B, Touzot A, et al. Measuring the performance of today’s antifouling coatings[J]. Journal of Ship Production, 2007, 23(3): 164-170..》Google Scholar
[64]
Bellotti N, Romagnoli R. Assessment of zinc salicylate as antifouling product for marine coatings[J]. Industrial & Engineering Chemistry Research, 2014, 53(38): 14559-14564..》Google Scholar
[65]
Baldissera A F, de Miranda K L, Bressy C, et al. Using conducting polymers as active agents for marine antifouling paints[J]. Materials Research, 2015, 18(6): 1129-1139..》Google Scholar
[66]
Stafslien S J, Sommer S, Webster D C, et al. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings[J]. Biofouling, 2016, 32(8): 949-968..》Google Scholar
[67]
Chen R R, Li Y K, Tang L, et al. Synthesis of zinc-based acrylate copolymers and their marine antifouling application[J]. RSC Advances, 2017, 7(63): 40020-40027..》Google Scholar
[68]
Li R, Yan X F, Yu L M, et al. Dependence of micro/nano- Cu2O structures: Controlled morphology synthesis, and photocatalytic and antifouling property[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(10): 2258-2269. [李如,闫雪峰,于良民,等. 氧化亚铜微/纳米结构的形貌可控制备及光催化和防污性能[J]. 无机化学学报,2014, 30(10): 2258-2269.].》Google Scholar
[69]
Chen S S, Ye Z J, Wang S L, et al. Evaluation of freshwater resistance of marine antifouling coating systems[J]. Paint & Coatings Industry, 2018, 48(11): 42-47. [陈珊珊,叶章基,王胜龙,等. 海洋防污涂层体系耐淡水浸泡性能的综合试验评价[J]. 涂料工业,2018, 48(11): 42-47.].》Google Scholar
[70]
Liu D L. Coatings Technology[M]. Beijing: Chemical Industry Press, 2010. [刘登良. 涂料工艺[M]. 4版. 北京: 化学工业出版社,2010.].》Google Scholar
[71]
Shi J G, Zhou X J, Shen M. Agriculture Technology of Deep-Offshore Cage[M]. Beijing: China Ocean Press, 2019: 1-330. [石建高,周新基,沈明. 深远海网箱养殖技术[M]. 北京: 海洋出版社,2019: 1-330.].》Google Scholar
[72]
Shi J G. Fishing Net and Antifouling Technology[M]. Shanghai: Donghua University Press, 2011: 208-418. [石建高. 渔用网片与防污技术[M]. 上海: 东华大学出版社,2011: 208-418.].》Google Scholar
[73]
Shi J G. Agriculture Technology of Deep-sea Ecological Enclosure[M]. Beijing: China Ocean Press, 2019: 170-222. [石建高. 深远海生态围栏养殖技术[M]. 北京: 海洋出版社,2019: 170-222.].》Google Scholar
[74]
Gao Q F, Zhang G, Dong S L. Reviews on cage-culture ecology[J]. Periodical of Ocean University of China, 2019, 49(3): 7-17. [高勤峰,张恭,董双林. 网箱养殖生态学研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 7- 17.].》Google Scholar
[75]
Shi J G, Shi H, Wang L M, et al. A study on the novel eco-friendly anti-fouling composition for fishing netting[J]. Modern Fisheries Information, 2011, 26(9): 7-12. [石建高,史航,王鲁民,等. 新型环保渔网防污剂的研究[J]. 现代渔业信息,2011, 26(9): 7-12.].》Google Scholar
[76]
Feng Q M, Ma Z Y, Cui J, et al. An antifouling agent for fishing net and its preparation: ZL 201310338034[P]. 2013- 01-09. [冯启明,马振瀛,崔健,等. 一种渔网防污剂及其制备方法: ZL 201310338034[P]. 2013-01-09.].》Google Scholar
[77]
Glaropoulos A, Papadakis V M, Papadakis I E, et al. Sea bream interactions toward the aquaculture net due to the presence of micro-fouling[J]. Aquaculture International, 2014, 22(3): 1203-1214..》Google Scholar
[78]
Ashraf P M, Edwin L. Nano copper oxide incorporated polyethylene glycol hydrogel: An efficient antifouling coating for cage fishing net[J]. International Biodeterioration & Biodegradation, 2016, 115: 39-48..》Google Scholar
[79]
Feng L B. Design and study on antifouling coatings with microphase-separated structure[D]. Shanghai: Fudan University, 2007. [冯利邦. 具有微相分离结构的防污涂层的设计与研究[D]. 上海: 复旦大学,2007.].》Google Scholar
[80]
Shi J G, Yu W W, Zhao K, et al. Progress in research of antifouling technology of offshore cage netting[J]. Journal of Fisheries of China, 2021, 45(3): 472-485. [石建高,余雯雯,赵奎,等. 海水网箱网衣防污技术的研究进展[J]. 水产学报,2021, 45(3): 472-485..》Google Scholar
[81]
Yu L M, Liu H F, Tian B, et al. Antifouling technology of fishing net and its application[J]. Paint & Coatings Industry, 2005, 35(7): 47-52, 63. [于良民,刘和芳,田斌,等. 渔网防污技术及应用[J]. 涂料工业,2005, 35(7): 47-52, 63.].》Google Scholar
[82]
Ma X, Ma X X, Liu S J, et al. Preparation and assessment of antifouling coatings for polyethylene based fishing net[J]. Paint & Coatings Industry, 2016, 46(5): 33-38. [马星,马宣宣,刘苏静,等. 聚乙烯类渔网防污涂料的制备与性能评价[J]. 涂料工业,2016, 46(5): 33-38.].》Google Scholar
[83]
Braithwaite R A, Carrascosa M C C, McEvoy L A. Biofouling of salmon cage netting and the efficacy of a typical copper-based antifoulant[J]. Aquaculture, 2007, 262(2-4): 219- 226..》Google Scholar
[84]
Edwards C D, Pawluk K A, Cross S F. The effectiveness of several commercial antifouling treatments at reducing biofouling on finfish aquaculture cages in British Columbia[J]. Aquaculture Research, 2015, 46(9): 2225-2235..》Google Scholar
[85]
Bloecher N, Floerl O. Efficacy testing of novel antifouling coatings for pen nets in aquaculture: How good are alternatives to traditional copper coatings?[J]. Aquaculture, 2020, 519: 734936..》Google Scholar