中国水产科学  2021, Vol. 28 Issue (03): 1-12  DOI: 10.12264/JFSC2020-0330
0

引用本文 

张东玲, 徐浩, 张震西, 王志勇. 大黄鱼cGPDHmGPDH基因克隆及低温胁迫下的表达差异分析. 中国水产科学, 2021, 28(03): 1-12. DOI: 10.12264/JFSC2020-0330.
ZHANG Dongling, XU Hao, ZHANG Zhenxi, WANG Zhiyong. Molecular cloning of cGPDH and mGPDH and their expression analysis under low-temperature stress in Larimichthys crocea. , 2021, 28(03): 1-12. DOI: 10.12264/JFSC2020-0330.

基金项目

国家自然科学基金重点项目(U1705231);福建省自然科学基金项目(2019J01692);福建省教育厅项目(JT180274);福建省海洋生物增养殖与高值化利用重点实验室开放课题资助项目(2015fjxcq07);厦门市科技计划项目(3502Z20193052).

作者简介

张东玲(1977–), 女, 副教授, 研究方向为水生生物学. E-mail: zhangdongling@jmu.edu.cn

通信作者

通信作者: 王志勇, 教授, 研究方向为水生生物学. E-mail: zywang@jmu.edu.cn

文章历史

收稿日期:2020-10-09
修改日期:2020-11-17
大黄鱼cGPDHmGPDH基因克隆及低温胁迫下的表达差异分析
张东玲1,徐浩1,张震西1,王志勇1,     
1. 集美大学水产学院, 农业农村部东海海水健康养殖重点实验室, 福建 厦门 361021
摘要:为探究cGPDHmGPDH在大黄鱼(Larimichthys crocea)适应低水温过程中所起的调控作用, 本研究采用RACE-PCR技术克隆了大黄鱼cGPDHmGPDH基因全长cDNA序列, cGPDHmGPDH基因序列全长分别为1577 bp和2319 bp, 包含长度为1050 bp和2193 bp的开放阅读框, 分别编码349和730个氨基酸; 氨基酸比对分析发现大黄鱼cGPDHmGPDH与其他硬骨鱼类同源性较高, cGPDH包含一个特征性序列GXGXXG, mGPDH包含2个EF-hand功能结构域; 进化树分析表明大黄鱼cGPDH和mGPDH与其他硬骨鱼类聚为一枝, 与棘头梅童鱼(Collichthys lucidus)亲缘关系最近。生物信息学分析发现大黄鱼cGPDH和mGPDH均不含跨膜结构域, cGPDH亚细胞定位于细胞质可能性最大, 三维结构包含一个C端α螺旋底物结合结构, 8个N端β折叠结构和一个单体结构, mGPDH定位于线粒体的可能性最大。qRT-PCR分析显示cGPDHmGPDH在所检测的12个组织中均有表达, cGPDH mRNA主要表达在血液, 其次为鳃、头肾和肠道, 肌肉组织中表达量最低; 而mGPDH mRNA在头肾表达量最高, 肌肉组织表达量最低。在持续的冷胁迫下, 水温15 ℃到9 ℃每天降温2 ℃, 9 ℃到7 ℃每天降温1 ℃, 7 ℃保持5 d, 大黄鱼cGPDHmGPDH在脑和肌肉表达趋势均显著上调。研究结果表明, cGPDHmGPDH基因可能在大黄鱼适应冬季低水温过程中发挥重要作用。
关键词大黄鱼     cGPDH      mGPDH     低温    基因调控    基因表达    
Molecular cloning of cGPDH and mGPDH and their expression analysis under low-temperature stress in Larimichthys crocea
ZHANG Dongling1,XU Hao1,ZHANG Zhenxi1,WANG Zhiyong,1    
1. Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs; Fisheries College, Jimei University, Xiamen 361021, China
Abstract:For poikilotherms, including fish, water temperature is one of the most important environmental factors, as it affects their physiological and metabolic activities. Fish can adapt to daily or seasonal temperature fluctuations by reorganizing their physiological processes. However, when fish reach or exceed their limits for cold tolerance, they are no longer able to physiologically adapt to cope with the environmental conditions, and thus their health and survival are threatened. To survive in cold water environments, fish can produce anti-freeze proteins or accumulate glycerol, which can effectively depress the freezing point. Large yellow croakers, Larimichthys crocea, a warm water and near-shore migratory fish, increasingly suffer from cold temperatures during winter due to changes in the global climate. As such, there is an urgent need for both the scientific community and the fishery industry to investigate the molecular mechanisms underlying cold tolerance in this species. In this study, the full-length cDNA sequences of the cGPDH and mGPDH genes of large yellow croakers were cloned by rapid amplification of cDNA ends polymerase chain reaction (RACE PCR). The full-length cDNA sequences of cGPDH and mGPDH were 1050 bp and 2193 bp, consisted of open reading frames of 1050 bp and 2193 bp, and encoded 349 amino acids and 730 amino acids, respectively. Based on amino similarity comparison, cGPDH and mGPDH were found to have high homology with other teleost fishes. cGPDH was found to have a conserved GXGXXG motif, and mGPDH was found to have two EF-hand functional domains. Phylogenetic tree analysis indicated that cGPDH and mGPDH of large yellow croakers are associated with those in other fish and have the highest similarity with those of big head croakers, Collichthys lucidus. Bioinformatics analysis indicates that cGPDH and mGPDH did not contain transmembrane domains. cGPDH subcellular localization was most likely in cytoplasm. The three-dimensional structure contained a C-terminal α-helix substrate-binding structure, eight N-terminal β-fold structures, and a monomer structure. In contrast, mGPDH was most likely to be located in the mitochondria. In our experiments, we lowered the water temperature experienced by large yellow croakers from 15 ℃ (ambient temperature) to 9 ℃ (2 ℃/day). We subsequently lowered the temperature from and 9 ℃ to 7 ℃ (1 ℃/day) and maintained the temperature at 7 ℃ for five days. We found that there were significant differences in cGPDH and mGPDH mRNA expression in experimental treatments compared to those in the controls. We found that the expression of cGPDH and mGPDH mRNA tended to be up-regulated in the brain and liver when fish were exposed to lower temperatures. However, the expression of cGPDH in the brain and liver sharply decreased at 7 ℃. These results suggest that cGPDH and mGPDH may be involved in the mechanisms underlying adaptations to low temperatures in marine fish, including in large yellow croakers.
Key words Larimichthys crocea      cGPDH      mGPDH     low temperature    gene regulation    gene expression    

甘油-3-磷酸脱氢酶(glycerol-3-phosphate dehydrogenase, GPDH)是糖异生和脂肪代谢的关键酶, 包括NAD+依赖的GPDH (cytoplasmic GPDH, cGPDH, EC 1.1.1.8)和FAD+依赖的GPDH (mitochondrial GPDH, mGPDH, EC 1.1.5.3), cGPDH催化磷酸二羟丙酮(DHAP)合成甘油-3-磷酸(G3P), 随后甘油三磷酸酶催化G3P脱磷酸合成甘油, 而mGPDH则催化G3P合成DHAP, 因此, cGPDH和mGPDH共同控制着磷酸甘油穿梭循环[1-2]。Vanga Ewart等[3]研究发现在低温胁迫下虹香鱼(Osmerus mordax)的cGPDH基因的表达量明显升高, 这与甘油在低温环境下积累的结论是一致的, 表明cGPDH活性与体内甘油的含量相关。此外, cGPDH也与能量的产生相关, 在昆虫α-甘油磷酸循环中, cGPDH和mGPDH与线粒体α-甘油磷酸氧化酶协同作用产生能量, 而这些能量是昆虫飞行过程中肌肉所必需的[4-6]。同时, cGPDH的活性也是脂肪细胞分化的重要指标[7]。鉴于甘油的积累、能量的产生、脂肪细胞的分化都与机体冷耐受密切相关, 而全球气候的非正常变化, 鱼类如何适应冬季突变的低水温值得深入研究, 因此探索cGPDH和mGPDH在调控鱼类低水温过程中的作用具有重要意义。

水温对于冷血动物, 包括鱼类, 是一个重要的环境因子, 影响着鱼类生理代谢活动。当水温接近于或低于鱼体耐受的最低温度时, 鱼类生理活动无法调节适应, 健康就会受到威胁, 甚至出现死亡[8-10]。大黄鱼是中国近海暖水性鱼类, 福建省和浙江省是大黄鱼的主要养殖区域。近年, 由于气温的不正常变化, 浙江冬季海水温度经常出现低于7 ℃时段, 而大黄鱼生长最佳温度为18~25 ℃, 当水温低于15 ℃时, 大黄鱼摄食减少和生长减缓, 低于7 ℃时, 大黄鱼出现大量死亡, 对大黄鱼养殖业造成巨大经济损失[11-12], 因此, 有必要研究大黄鱼耐受低水温的机制, 以便找到一些切实可行的方法促使大黄鱼适应低水温。本研究主要报道大黄鱼cGPDHmGPDH基因的分子特征、分子进化、生物信息学分析与低温适应下的表达分析。

1 材料与方法 1.1 实验设计和样品采集

冷胁迫实验在浙江省舟山市水产研究所养殖基地进行, 实验用的大黄鱼(体重45.0±5.0 g)由该所提供。对于低温胁迫实验, 大黄鱼分为实验组和对照组, 每组各140尾, 在室内水泥池中(3 m× 4 m)暂养2周, 水温设定为15 ℃, 投喂商业饲料。实验组, 水温每天减少2 ℃, 直到水温达到9 ℃, 以后每天降低1 ℃, 直到7 ℃, 7 ℃保持5 d, 每天观察大黄鱼行为变化和存活情况; 对照组除不降低水温外, 所有的处理与实验组相同。降温后, 实验组和对照组在起始的15 ℃和降温后的11 ℃、9 ℃、7 ℃ (1 d)、7 ℃ (3 d)和7 ℃ (5 d), 共6个温度点, 分别采集大黄鱼的脑和肌肉, 每个温度点每组采集5尾鱼。

基因组织表达谱实验: 20尾大黄鱼暂养在 30 L水桶内2周, 水温设定为15 ℃, 投喂商业化饲料, 剖取5尾大黄鱼, 采集每尾鱼的心脏、肝、脾、体肾、头肾、胃、肠道、鳃、皮肤、肌肉和血液组织, 共12个组织、保存在RNA保护液中, 以备RNA提取。

1.2 RNA提取和cDNA合成

采用TRIzol试剂盒法提取大黄鱼组织总RNA, 通过RNase-free DNase I试剂盒纯化RNA, 37 ℃, 30 min去除基因组DNA。琼脂糖凝胶电泳检测RNA的完整性, Nandodrop 2000进行纯度分析和浓度测定。根据反转录试剂盒(PrimeScript RT-PCR kit)说明书合成cDNA第一条链, 以此为模板进行PCR。

1.3 cGPDH和mGPDH基因全长克隆

根据实验室前期转录组数据, 筛选获得cGPDHmGPDH基因部分序列, 基因特异性引物通过Primer 5.0软件设计(表1), 采用Nested- RACE方法扩增基因3′端, PCR反应条件为94 ℃ 5 min; 94 ℃ 30 s, 69/68 ℃ 30 s, 72 ℃ 1 min, 30个循环; 72 ℃ 10 min。然后通过RT-RCR确认cGPDH和mGPDH基因序列全长, PCR反应条件为94 ℃ 5 min; 94 ℃ 30 s, 54 ℃ 45 s, 72 ℃1 min, 30个循环; 72 ℃ 10 min。PCR产物用1% 的琼脂糖凝胶电泳进行检测, 回收目的产物, 并克隆至pMD19-T载体, 由上海Invitrogen公司测序。

表1  大黄鱼cGPDHmGPDH基因克隆和表达所用引物 Tab. 1 Primers used for cGPDH and mGPDH cloning and expression analysis in Larimichthys crocea
1.4 cGPDH和mGPDH基因生物信息学分析

应用ORF Finder (http://www.ncbi.nlm.nih.gov/ gorf/gorf.html)查找拼接的大黄鱼cGPDHmGPDH基因cDNA序列的开放阅读框。Expert蛋白分析系统(http://www.expasy.org/)预测对应蛋白分子量和等电点。Signal 4.0在线软件预测蛋白的信号肽。SWISS-MODEL (http://swissmodel. expasy.org/interactive)在线预测蛋白三维结构。SMART 4.1 (http://smart.embl-heidelberg.de/)和NCBI分析序列蛋白的保守结构域、功能基序。运用Bioedit和ClustalW软件进行氨基酸序列比对, 用MEGA 5.0软件, Neighbor-Joining方法构建系统进化树。

1.5 荧光定量PCR (qRT-PCR)分析基因的表达

根据拼接的cGPDH和mGPDH基因序列全长设计荧光定量PCR特异性引物(表1), β-actin基因作为荧光定量反应的内参基因, 实验操作按照SuperReal PreMix Plus (SYBR Green)荧光定量试剂盒说明书进行。以反转录的cDNA为模板, 确定引物的扩增效率和样品模板浓度。反应总体系为10 µL, 包括cDNA (稀释100倍)1 μL, 特异性引物各0.5 μL, SYBR Primix Ex Taq 5 μL, ddH2O 3 μL。采用两步法进行扩增, 反应条件为95 ℃ 2 min; 95 ℃ 15 s, 60 ℃ 20 s, 共40个循环。每个样品有3个重复, 以保证数据的稳定性。大黄鱼cGPDHmGPDH基因mRNA相对表达水平采用2–ΔΔCt计算, 分析出来的基因表达量由平均值±标准误($\bar x \pm \;{\rm{SE}}$)表示, 并使用SPSS 19.0软件进行显著性分析, 用Duncan法进行多重比较分析(P<0.05为显著水平)。

2 结果与分析 2.1 大黄鱼cGPDH和mGPDH基因cDNA扩增、克隆和全长拼接

克隆片段经测序和拼接, 结果显示cGPDH序列全长为1577 bp, 包括666 bp的5′-UTR, 1050 bp的开放阅读框(ORF), 461 bp的3′-UTR, 共编码349个氨基酸(图1)。SMART预测cGPDH无典型的结构域, 但NCBI保守结构域数据库显示其C端具有NAD依赖性GPDH超家族保守序列(196-336aa), 为C端底物结合区域。Signal 4.1显示其没有信号肽。Expert推测其蛋白分子量为38.125 ku, 等电点为5.90。mGPDH序列全长为2319 bp, ORF为2193 bp, 共编码730个氨基酸, 5′-UTR为28 bp, 3′-UTR为315 bp (图2)。SMART预测ORF包括2个EF-hand功能结构域(630-658aa, 666-694aa), 表明该蛋白具有结合Ca2+的特性。NCBI显示其具有N端3-磷酸甘油脱氢酶和C端α-磷酸甘油氧化酶超家族保守序列。Signal 4.0显示其没有信号肽。Expert推测其蛋白分子量为80.888 ku, 等电点为6.78。

图1  大黄鱼cGPDH基因cDNA 全长序列及推导的氨基酸序列cDNA序列中小写字母代表开放阅读框; 大写字母代表5′和3′非编码区; *代表终止密码子. 多聚腺苷酸加尾信号(aataaa)用下划线标出; NAD依赖性GPDH超家族保守序列(196-336aa)用下划线标出. Fig. 1 Nucleotide and predicted protein sequences of cGPDH of Larimichthys croceaLowercase letters in cDNA represent open reading frame (ORF); uppercase letters represent the 5′ and 3′ noncoding regions; * indicates stop codon. Poly adenosine tail signal (aataaa) is underlined; the conserved sequence of NAD-dependent GPDH (196-336aa) is underlined.
图2  大黄鱼mGPDH基因cDNA 全长序列及推导的氨基酸序列cDNA序列中小写字母代表开放阅读框; 大写字母代表5′和3′非编码区; *代表终止密码子.EF-hand功能结构域(630-658, 666-694)用下划线标出. Fig. 2 Nucleotide and predicted protein sequences of mGPDH of Larimichthys croceaLowercase letters in cDNA represent open reading frame (ORF); uppercase letters represent the 5′ and 3′ noncoding regions; * indicates stop codon. EF-hand function domain (630-658aa, 666-694aa) is underlined.
2.2 大黄鱼cGPDH和mGPDH氨基酸同源性比对和进化树分析

利用MEGA 5.0软件将大黄鱼cGPDH氨基酸序列与棘头梅童鱼(Collichthys lucidus TKS66641.1)、条纹鲈(Morone saxatilis XP_035533906.1)、红鳍东方鲀(Takifugu rubripes XP_003966720.2)、大西洋鲑(Salmo salar XP_014007129.1)、红鲑(Oncorhynchus nerka XP_029516245.1)、褐鳟(Salmo trutta XP_029612427.1)、斑马鱼(Danio rerio NP_999918.1)、雀鳝(Lepisosteus oculatus XP_006636319.1)、非洲爪蛙(Xenopus tropicalis XP_031749749.1)、小鼠(Mus musculus NP_ 034401.1)、人类(Homo sapiens NP_005267.2)的cGPDH氨基酸序列进行同源比对和进化树分析, 结果显示, 大黄鱼cGPDH氨基酸序列包含一个典型的保守特征性序列GXGXXG, 并含有10个高度保守的半胱氨酸残基(Cys7、Cys102、Cys162、Cys200、Cys214、Cys243、Cys256、Cys265、Cys329、Cys341)。cGPDH在硬骨鱼类中的保守性较高(84.24%~99.14%), 大黄鱼cGPDH与棘头梅童鱼相似性最高, 为99.14%, 与两栖类、鸟类、哺乳类的相似性较低(图3, 图4)。此外, 大黄鱼cGPDH与其他硬骨鱼类聚为一枝, 其他脊椎动物聚为另一枝(图4)。

图3  大黄鱼cGPDH与其他物种cGPDH氨基酸同源性比对黑色区域为完全相似; 灰色区域为75%相似; 黑色框为保守的GXGXXG特征序列; *表示半胱氨酸残基. Fig. 3 Larimichthys crocea cGPDH homology comparison with other species cGPDH amino acidsThe black area indicates completely similar; the gray area indicates 75% similar; the black frames indicates GXGXXG motif; * represents the phosphorylation site of protein C.
图4  不同物种cGPDH氨基酸序列构建的系统进化树 Fig. 4 Phylogenetic tree based on the alignment of amino acid sequences of cGPDH

将大黄鱼mGPDH氨基酸序列与棘头梅童鱼(TKS66450.1)、青鳉(Oryzias latipes XP_ 020563241.1)、红鳍东方鲀(XP_029696176.1)、尼罗罗非鱼(Oreochromis niloticus XP_005452335.2)、半滑舌鳎(Cynoglossus semilaevis XP_008323276.1)、斑马鱼(NP_001038813.1)、雀鳝(XP_015214294.1)、非洲爪蛙(NP_001107700.1)、卡氏小鼠(Mus caroli XP_029326597.1)、人类(XP_024308566.1)、野牦牛(Bos mutus ELR48610.1)的mGPDH氨基酸序列进行同源比对和进化树分析, 结果显示, 大黄鱼mGPDH氨基酸序列中包含5个高度保守的半胱氨酸残基(Cys191、Cys273、Cys288、Cys312、Cys549), mGPDH在硬骨鱼类中的保守性较高(88.63%~95.07%), 大黄鱼mGPDH与棘头梅童鱼相似性最高, 为95.07%, 与两栖类、鸟类、哺乳类的相似性较低(图5, 图6); 此外, 大黄鱼mGPDH与其他硬骨鱼类聚为一枝, 其他脊椎动物聚为另一枝(图6)。

图5  左栏 尼罗罗非鱼 改为正体大黄鱼mGPDH与其他鱼类物种氨基酸同源性比对黑色区域为完全相似, 灰色区域为75%相似, *为保守的半胱氨酸残基. Fig. 5 Larimichthys crocea cGPDH homology comparison with other species mGPDH amino acidsThe black area indicates completely similar; the gray area indicates 75% similar; * represents the phosphorylation site of protein C.
图6  不同物种mGPDH氨基酸序列构建的系统进化树 Fig. 6 Phylogenetic tree based on the alignment of amino acid sequences of mGPDH
2.3 大黄鱼cGPDH和mGPDH理化性质和三维结构分析

ProtParam分析结果显示cGPDH分子式为 C1698H2731N449O505S19, 氨基酸序列中带正电荷的精氨酸(Arg)和赖氨酸(Lys)共43个, 带负电荷的天冬氨酸(Asp)和谷氨酸(Glu)共38个, 不稳定指数为22.78, 为稳定性蛋白。结合ProtScale分析, cGPDH脂肪族指数为96.05, 疏水性最强出现在Leu89处, 其值为2.389, 疏水性最弱出现在Glu59处, 其值为–2.1, 大部分氨基酸出现正值, 推测cGPDH为疏水性蛋白。TMHMM分析蛋白跨膜结构域, cGPDH蛋白不含跨膜结构域, 不属于分泌蛋白和跨膜蛋白。Protcomp 9.0蛋白亚细胞定位分析显示, cGPDH位于细胞质的可能性最大, 其值为5.88, 其次为细胞膜, 其值为0.18。利用Net NGlyc 1.0 Serve和NetOGlyc 4.0 Server分析糖基化位点, 发现cGPDH有1个N-糖基化位点(Asn173), 1个O-糖基化位点(Ser281); 采用NetPhos 3.1 Server分析磷酸化位点, cGPDH有27个磷酸化位点, 其中丝氨酸12个(第16、29、117、133、145、194、246、249、255、281、283、和323位氨基酸残基), 苏氨酸11个(第51、56、113、164、165、183、189、250、280、285和302位氨基酸残基), 酪氨酸4个(第41、63、307和326位氨基酸残基)。

对于mGPDH, ProtParam分析结果显示cGPDH分子式为C3598H5728N990O1071S28, 氨基酸序列中带正电荷的精氨酸(Arg)和赖氨酸(Lys)共88个, 带负电荷的天冬氨酸(Asp)和谷氨酸(Glu)共86个, 不稳定指数为38.77, 为稳定性蛋白。结合ProtScale分析, cGPDH脂肪族指数为91.26, 疏水性最强出现在Ala20处, 其值为1.911, 疏水性最弱出现在Asn305处, 其值为2.744, 大部分氨基酸出现负值, 推测mGPDH为亲水性蛋白。TMHMM分析蛋白跨膜结构域, mGPDH蛋白不含跨膜结构域, 不属于分泌蛋白和跨膜蛋白。Protcomp9.0蛋白亚细胞定位分析显示, mGPDH位于线粒体的可能性最大, 其值为5.32, 其次为内质网, 其值为0.24。利用Net NGlyc 1.0 Server和NetOGlyc 4.0 Server分析糖基化位点, 发现mGPDH有1个N-糖基化位点(Asn248), 9个O-糖基化位点(Ser59、Thr358、Thr362、Thr365、Thr481、Ser610、Ser612、Thr616、Thr618、Ser619); 采用NetPhos 3.1 Server分析磷酸化位点, mGPDH有61个磷酸化位点, 其中丝氨酸28个(第104、107、108、111、114、194、195、199、299、327、339、387、402、418、426、428、445、459、502、531、538、610、612、619、642、692、700、702、710位氨基酸残基), 苏氨酸26个(第 10、33、110、115、238、258、263、278、308、358、360、365、409、441、442、450、479、481、503、559、616、622、647、648、714、722位氨基酸残基), 酪氨酸7个(第137、196、443、535、542、603、625 位氨基酸残基)。

利用SOPMA对蛋白质二级结构进行分析, cGPDH蛋白质二级结构中α-螺旋(alpha helix, h)占47.85%, β-转角(beta turn, t)占6.30%, 延伸链(extended strand, e)占13.75%, 无规则卷曲(random coil, c)占 32.09%。蛋白质整体结构α-螺旋为主要结构元件, 其次为无规则卷曲, β-转角较少。mGPD H蛋白二级结构, α-螺旋占49.59%, β-转角占6.16%, 延伸链占11.64%, 无规则卷曲占32.60%; 蛋白质整体结构以α-螺旋为主, 其次为无规则卷曲。SWISS-MODEL预测三维结构显示(图7a), cGPDH和mGPDH蛋白均以α-螺旋结构为主, cGPDH预测QMEAN值为–0.66, 包含一个C端α螺旋底物结合结构, 一个N端8个β折叠结构和一个单体结构。mGPDH预测QMEAN值为–2.91, 目前对于mGPDH三维结构解析并不是很清晰(图7b)。

2.4 大黄鱼cGPDH和mGPDH mRNA的组织表达分析

采用qRT-PCR检测12个组织中cGPDHmGPDH mRNA的表达水平, 结果显示, cGPDHmGPDH mRNA在各个组织中均有表达。cGPDH在血液中表达量最高, 其次在鳃、头肾和肠道也有较高表达, 肌肉表达量最低(图8a)。mGPDH在头肾表达量最高, 其次在血液、体肾、胃部; 肌肉表达量最低(图8b)。

图7  cGPDH (a)和mGPDH (b)蛋白分子的空间结构 Fig. 7 The spatial structure of cGPDH (a) and mGPDH (b) predicted by SWISS-MODEL
图8  大黄鱼各组织中cGPDH (a)和mGPDH (b)mRNA的相对表达量1. 脑; 2. 心脏; 3. 鳃; 4. 肝; 5. 脾脏; 6. 肾脏; 7. 头肾; 8. 胃; 9. 肠道; 10. 皮肤; 11. 肌肉; 12. 血液. Fig. 8 Relative expression of cGPDH (a) and mGPDH (b) mRNA in different tissues of Larimichthys crocea1. brain; 2. heart; 3. gill; 4. liver; 5. spleen; 6. kidney; 7. head kidney; 8. stomach; 9. intestine; 10. skin; 11. muscle; 12. blood.
2.5 大黄鱼cGPDH和mGPDH mRNA在低温刺激下表达量变化

为了理解大黄鱼对低温胁迫的响应, 实验采用qRT-PCR检测低温胁迫后大黄鱼脑和肌肉cGPDHmGPDH mRNA表达量的变化。实验期间, 从15 ℃至9 ℃, cGPDH在脑组织表达量没有明显变化(图9a); 当温度降至7 ℃时, cGPDH表达量迅速增加, 7 ℃三个时间点cGPDH表达量为对照组的3.07倍、2.58倍、2.17倍。在肌肉组织(图9b), cGPDH表达量在开始降温的13 ℃表达量迅速增加, 随后表达量有所下调, 但在 11 ℃、9 ℃和7 ℃ (1 d)温度点, cGPDH表达量仍比对照组高。mGPDH mRNA在脑组织表达量从13 ℃逐步上升(图9c), 7 ℃ (5 d)表达量达到最高值, 为对照组的3.29倍。在肌肉组织(图9d), mGPDH mRNA表达量也为上调趋势, 7 ℃ (1 d)表达量达到峰值, 为对照组的5.23倍。

图9  低温胁迫下大黄鱼cGPDHmGPDH基因的表达分析cGPDH脑; (b) cGPDH肌肉; (c) mGPDH脑; (d) mGPDH肌肉; *表示显著上升, P<0.05. Fig. 9 cGPDH and mGPDH expression of Larimichthys crocea under low temperature adaption(a) cGPDH brain, (b) cGPDH muscle, (c) mGPDH brain, (d) mGPDH muscle; * and ! indicate significant up-regulation, P<0.05.
3 讨论

GPDH是糖酵解、氧化磷酸化和脂肪代谢的关键酶, 代谢过程产生的ATP、酮体和甘油等物质和能量有助于机体适应恶劣环境以确保存活。本研究克隆了大黄鱼cGPDHmGPDH基因全长序列, 分析cGPDH和mGPDH氨基酸序列, cGPDH和mGPDH除具有家族保守序列外, cGPDH氨基酸序列包含一个GXGXXG特征序列, 这段序列存在于所有NAD依赖性GPDH蛋白; mGPDH含有2个EF-hand功能结构域, 表明该蛋白具有结合Ca2+的特性。有研究表明mGPDH活性依赖于Ca2+的浓度, mGPDH活性是被Ca2+别构作用激活的[13-14]。不同物种氨基酸比对分析发现大黄鱼cGPDH氨基酸序列含有10个高度保守的半胱氨酸残基, mGPDH含有5个半胱氨酸残基, 这对蛋白质结构的稳定性和生物学功能非常重要。三维结构分析发现cGPDH含有8个β折叠结构, 包括6个平行的β折叠结构和2个反平行β折叠结构, 这些β折叠结构通过几个α螺旋结构连接在一起形成一个稳定的整体结构[15]。系统进化树显示, 大黄鱼cGPDH和mGPDH与其他硬骨鱼类聚在一起, 其他动物聚在一起, 表明鱼类cGPDH和mGPDH的分化是发生在类群的分化之后。此外, 有些植物, 如杜氏盐藻(Dunaliella salina)[16]、玉米(Zea mays L.)[17], 其cGPDH存在多个亚型, 可能是基因组复制的原因。

大黄鱼cGPDH mRNA主要表达在血液, 其次是肾脏, 较少表达在肌肉, 这与人类主要表达在骨骼肌和脂肪组织完全不同[18-19]。此外, 有报道大西洋鲑、虹香鱼和香鱼(Plecoglossus altivelis) cGPDH mRNA主要表达在肝脏, 在脾脏表达较低[3,20]。理氏裂腹鱼(Schizothorax richardsonii) cGPDH也主要表达在肌肉和肝脏[21]。昆虫cGPDH涉及能量代谢, 主要表达在飞行肌肉组织中[4-5]。地松鼠(Urocitellus richardsonii)肝脏可以纯化得到cGPDH[22]。大黄鱼mGPDH mRNA主要表达在头肾, 肌肉表达量较低, 这与哺乳动物的研究结果有所不同, 小鼠mGPDH mRNA主要在棕色脂肪、肌肉和脑部表达, 在肝和心表达较低[2]; 兔骨骼肌和脑可以分离纯化得到mGPDH[23-24]。这些不一致的结果可能由于物种的差异性以及物种适应不同环境而导致的不同表达分布。此外, 其他动物并未检测血液中GPDH mRNA含量, 且实验方法的不同, 检测季节的不同也可能导致不同的实验结果。

鱼类为了适应冬季低水温必须改变生理过程, 大多数鱼类通过积累甘油或抗冻蛋白降低冰点越冬。甘油是一种相容的溶质, 可以降低冰点而不引起任何的生理波动。Albertyn等[25]和He等[26]研究报道酵母(Saccharomyces cereisiae)过表达cGPDH可导致其甘油产量显著增加, 相反沉默cGPDH导致甘油产量显著降低。RNA干扰甜菜夜蛾(Spodoptera exigua) cGPDH表达, 明显抑制了其血淋巴中甘油的积累[27]。Ribunson等[28]研究发现虹香鱼(Osmerus mordax)冷驯化组的甘油浓度是暖驯化组的100倍。休眠期的跳鼠(Jaculus orientalis) cGPDH活性在所有组织都有所增加, 在骨骼肌和棕色脂肪增加3倍[29], 因此, GPDH可能与生物体抗低温密切相关。Vanga Ewart等[3]研究报道虹香鱼在低温胁迫下cGPDH表达量显著增加, 这与虹香鱼体内甘油低温积累的结论一致, 进一步表明鱼类cGPDH具有抗低温的作用。Robinson等[28]和Liebscher等[30]也证实了虹香鱼cGPDH表达量随季节发生波动, 冬季表达量最高。Barat等[21]研究发现理氏裂腹鱼肝脏cGPDH在水温5 ℃的表达量相对15 ℃增加19倍。冷胁迫下, 大黄鱼cGPDH和mGPDH mRNA表达量显著上调, 7 ℃, 在脑部的增加量尤为显著(图9a, 图9c), 这与机体在胁迫环境下首先保证生命体征是一致的, 研究结果也提示cGPDH和mGPDH可能参与大黄鱼低温适应调控, 但7 ℃ (5 d)时, cGPDH mRNA在肌肉组织表达量显著下调, 其可能是由于持续低温超过了大黄鱼生理调节范围, 在实际生产过程中水温持续7 ℃将会导致大黄鱼大批量死亡。

参考文献
[1]
Mydy L S, Cristobal J R, Katigbak R D, et al. Human glycerol 3-phosphate dehydrogenase: X-ray crystal structures that guide the interpretation of mutagenesis studies[J]. Biochemistry, 2019, 58(8): 1061-1073..》Google Scholar
[2]
Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013, 1827(3): 401-410..》Google Scholar
[3]
Vanya Ewart K, Richards R C, Driedzic W R. Cloning of glycerol-3-phosphate dehydrogenase cDNAs from two fish species and effect of temperature on enzyme expression in rainbow smelt (Osmerus mordax)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2001, 128(3): 401-412..》Google Scholar
[4]
Fink S C, Brosemer R W. Glycerol-3-phosphate dehydrogenase from the honey bee[J]. Methods in Enzymology, 1975, 41: 240-245..》Google Scholar
[5]
Masson S W C, Hedges C P, Devaux J B L, et al. Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis[J]. Scientific Reports, 2017, 7(1): 13107..》Google Scholar
[6]
Stroppa M M, Lagunas M S, Carriazo C S, et al. Differential expression of glycerol-3-phosphate dehydrogenase isoforms in flight muscles of the Chagas disease vector Triatoma infestans (Hemiptera, Reduviidae)[J]. The American Journal of Tropical Medicine and Hygiene, 2013, 88(6): 1146-1151..》Google Scholar
[7]
Wang X X, Huang M, Wang Y Z. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena crocea R.)[J]. PLoS One, 2012, 7(10): e48069..》Google Scholar
[8]
Beitinger T L, Bennett W A, McCauley R W. Temperature tolerances of north American freshwater fishes exposed to dynamic changes in temperature[J]. Environmental Biology of Fishes, 2000, 58(3): 237-275..》Google Scholar
[9]
Qi Z H, Liu Y F, Luo S W, et al. Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress[J]. Fish & Shellfish Immunology, 2013, 35(5): 1466-1476..》Google Scholar
[10]
Mininni A N, Milan M, Ferraresso S, et al. Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature[J]. BMC Genomics, 2014, 15(1): 765-777..》Google Scholar
[11]
Li W Y, Luo H Z, Yin X L, et al. Effects of low temperature stress on the gene expression of MT, AQP1 and TCP1 of low temperature-resistant and non-low temperature resistant strains Larimichthys crocea[J/OL]. Journal of Dalian Ocean University. (2020-07-27). https://doi.org/10.16535/j.cnki.dlhyxb. 2020-042. [李伟业, 罗海忠, 殷小龙, 等. 低温胁迫对耐低温和非耐低温品系大黄鱼MT、AQP1、TCP1 基因表达的影响[J/OL]. 大连海洋大学学报. (2020-07-27). https:// doi.org/10.16535/j.cnki.dlhyxb.2020-042.].》Google Scholar
[12]
Miao L, Li M Y, Chen Y Y, et al. Cloning of cold inducible RNA-binding protein (CIRP) gene in Larimichthys crocea and its expression analysis under cold treatments[J]. Journal of Fisheries of China, 2017, 41(4): 481-489. [苗亮, 李明云, 陈莹莹, 等. 大黄鱼冷诱导结合蛋白(CIRP)基因cDNA克隆及低温胁迫对其时空表达的影响[J]. 水产学报, 2017, 41(4): 481-489.].》Google Scholar
[13]
MacDonald M J, Brown L J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied[J]. Archives of Biochemistry and Biophysics, 1996, 326(1): 79-84..》Google Scholar
[14]
Carmon A, MacIntyre R. The alpha glycerophosphate cycle in Drosophila melanogaster VI. structure and evolution of enzyme paralogs in the genus Drosophila[J]. The Journal of Heredity, 2010, 101(2): 225-234..》Google Scholar
[15]
de la Roche M, Tessier S N, Storey K B. Structural and functional properties of glycerol-3-phosphate dehydrogenase from a mammalian hibernator[J]. The Protein Journal, 2012, 31(2): 109-119..》Google Scholar
[16]
Wu Q, Lan Y H, Cao X Y, et al. Characterization and diverse evolution patterns of glycerol-3-phosphate dehydrogenase family genes in Dunaliella salina[J]. Gene, 2019, 710: 161-169..》Google Scholar
[17]
Zhao Y, Li X, Wang F, et al. Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses[J]. PLoS One, 2018, 13(7): e0200357..》Google Scholar
[18]
Birkenmeier E H, Hoppe P C, Lyford K A, et al. Tissue- and cell-specific expression of human sn-glycerol-3-phosphate dehydrogenase in transgenic mice[J]. Nucleic Acids Research, 1992, 20(11): 2819-2825..》Google Scholar
[19]
Sledzinski T, Korczynska J, Goyke E, et al. Association between cytosolic glycerol 3-phosphate dehydrogenase gene expression in human subcutaneous adipose tissue and BMI[J]. Cellular Physiology and Biochemistry, 2013, 32(2): 300- 309..》Google Scholar
[20]
Hao X N, Chen J, Lu X J, et al. cDNA cloning and mRNA expression of GPDH in Ayu (Plecoglossus altivelis)[J]. Biotechnology Bulletin, 2011(2): 151-156. [郝晓娜, 陈炯, 陆新江, 等. 香鱼甘油-3-磷酸脱氢酶基因的克隆与表达[J]. 生物技术通报, 2011(2): 151-156.].》Google Scholar
[21]
Barat A, Goel C, Tyagi, A, et al. Molecular cloning and expression profile of snow trout GPDH gene in response to abiotic stress[J]. Molecular Biology Reports, 2012, 39(12): 10843-10849..》Google Scholar
[22]
Ruberto A A, Childers C L, Storey K B. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2016, 202: 48-55..》Google Scholar
[23]
Cole E S, Lepp C A, Holohan P D, et al. Isolation and characterization of flavin-linked glycerol-3-phosphate dehydrogenase from rabbit skeletal muscle mitochondria and comparison with the enzyme from rabbit brain[J]. Journal of Biological Chemistry, 1978, 253(21): 7952-7959..》Google Scholar
[24]
Wernette M E, Ochs R S, Lardy H A. Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase[J]. The Journal of Biological Chemistry, 1981, 256(24): 12767- 12771..》Google Scholar
[25]
Albertyn J, Hohmann S, Thevelein J M, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144..》Google Scholar
[26]
He W J, Ye S C, Xue T, et al. Silencing the glycerol-3- phosphate dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol being produced and less glycerol[J]. Biotechnology Letters, 2014, 36(3): 523-529..》Google Scholar
[27]
Park Y, Kim Y. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua[J]. The Journal of Experimental Biology, 2013, 216(Pt 22): 4196-4203..》Google Scholar
[28]
Robinson J L, Hall J R, Charman M, et al. Molecular analysis, tissue profiles, and seasonal patterns of cytosolic and mitochondrial GPDH in freeze-resistant rainbow smelt (Osmerus mordax)[J]. Physiological and Biochemical Zoology, 2011, 84(4): 363-376..》Google Scholar
[29]
Berrada W, Naya A, Iddar A, et al. Purification and characterization of cytosolic glycerol-3-phosphate dehydrogenase from skeletal muscle of jerboa (Jaculus orientalis)[J]. Molecular and Cellular Biochemistry, 2002, 231(1-2): 117-127..》Google Scholar
[30]
Liebscher R S, Richards R C, Lewis J M, et al. Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes[J]. Physiological and Biochemical Zoology, 2006, 79(2): 411-423..》Google Scholar