中国水产科学  2022, Vol. 29 Issue (10): 1425-1436  DOI: 10.12264/JFSC2022-0184
0

引用本文 

曾霖, 王永红, 宋炜, 谢正丽, 张惠. 基于转录组解析铜驯化对低温胁迫下大黄鱼氧化损伤的影响[J]. 中国水产科学, 2022, 29(10): 1425-1436. DOI: 10.12264/JFSC2022-0184.
ZENG Lin, WANG Yonghong, SONG Wei, XIE ZhengLi, ZHANG Hui. Effects of Cu acclimation on oxidative damage in the large yellow croaker under cold stress based on transcriptome analysis[J]. Journal of Fishery Sciences of China, 2022, 29(10): 1425-1436. DOI: 10.12264/JFSC2022-0184.

基金项目

国家重点研发计划项目(2019YFDO900904);国家海水鱼产业技术体系专项(CARS-47);中国水产科学研究院基本科研业务费专项(2020TD76).

作者简介

曾霖(1983-),男,博士,研究方向:养殖生理生态学. E-mail: zenglin615@126.com

通信作者

通信作者:宋炜,研究员,研究方向:水产养殖. E-mail: songw@ecsf.ac.cn

文章历史

收稿日期:2022-05-07
修改日期:2022-05-29
基于转录组解析铜驯化对低温胁迫下大黄鱼氧化损伤的影响
曾霖1,3,王永红1,3,宋炜2,3,谢正丽4,张惠3,     
1. 蚌埠学院食品与生物工程学院,安徽 蚌埠 233030
2. 中国水产科学研究院东海水产研究所,上海 200090
3. 浙江海洋大学国家海洋设施养殖工程技术研究中心,浙江 舟山 316000
4. 中国水产科学研究院渔业机械仪器研究所,上海 200092
摘要:为探讨铜驯化对低温胁迫下大黄鱼(Larimichthys crocea)氧化损伤和基因表达水平的影响,本研究将体重为(48.92±3.62)g的大黄鱼暴露在铜浓度为0和10 μg/L的水体中14 d,再暴露在温度为8 ℃的水体中24 h。结果显示,低温胁迫显著增加了活性氧(ROS)和脂质过氧化物(LPO)含量。尽管铜驯化对ROS和LPO含量不产生影响,但铜驯化显著增加了低温胁迫下大黄鱼ROS和LPO含量,表明铜驯化加剧了低温胁迫对大黄鱼的氧化损伤。从铜驯化相对对照组、低温胁迫相对对照组和铜驯化+低温胁迫相对低温胁迫中分别筛选到2288个、1425个和1382个差异基因。GO和KEGG分析发现差异基因主要富集在与脂肪酸代谢、糖类有氧代谢、谷胱甘肽代谢、内质网应激、自噬和凋亡等相关的通路中。聚类分析表明,低温胁迫上调了不饱和脂肪酸合成、内质网应激、自噬和凋亡等相关通路中的大部分基因表达,而铜驯化则对低温胁迫下大黄鱼的这些基因表达调控产生了拮抗效应,表明铜驯化通过抑制不饱和脂肪酸合成、内质网应激、自噬和凋亡来降低大黄鱼的低温胁迫耐受性。研究结果为深入研究铜污染物对大黄鱼低温胁迫耐受性的影响及其分子机制提供科学依据。
关键词大黄鱼    低温胁迫    铜污染物    转录组    信号通路    
Effects of Cu acclimation on oxidative damage in the large yellow croaker under cold stress based on transcriptome analysis
ZENG Lin1,3,WANG Yonghong1,3,SONG Wei,2,3,XIE ZhengLi4,ZHANG Hui3    
1. School of Food and Biological Engineering, Bengbu University, Bengbu 233030, China
2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
3. National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
4. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
Abstract:The large yellow croaker Larimichthys crocea is an important marine fish species. The output of this fish is the highest among the sea cage-cultured fishes in recent years in China, however, this species is susceptible to Cryptocaryon irritans, which causes a high death rate. Although CuSO4 is currently the best treatment for C. irritans, it can lead to Cu pollution in aquaculture water bodies. At the same time, low temperatures have resulted in mass mortality during overwintering. To evaluate the effects of Cu acclimation on oxidative damage and gene expression in the liver of large yellow croaker under cold stress, fish (74.6 ± 4.2 g) were pre-exposed to 0 and 10 μg Cu/L for 14 d and subsequently subjected to cold stress (8 ℃) for 24 h. The results indicated that cold stress enhanced reactive oxygen species (ROS) and lipid peroxidation (LPO), indicating that cold stress had a negative effect on fish. Although Cu acclimation had no effect on ROS and LPO, Cu acclimation with cold stress increased ROS and LPO compared with cold stress alone, suggesting that Cu acclimation exacerbated cold stress-induced oxidative damage. A total of 2288, 1425, and 1382 differentially expressed genes (DEGs) were obtained from the Cu acclimation group vs. control, cold stress group vs. control, and Cu acclimation with cold stress group vs. cold stress group, respectively. The results of GO functional enrichment and KEGG pathway enrichment showed that DEGs were significantly enriched in the PPAR signaling pathway, fatty acid elongation, unsaturated fatty acid biosynthesis, glycolysis/gluconeogenesis, oxidative phosphorylation, glutathione metabolism, endoplasmic reticulum protein processing, FoxO signaling pathway, regulation of autophagy, MAPK signaling pathway, and apoptosis, highlighting the adaptive mechanism of fish in response to Cu and cold stresses involved in fatty acid metabolism, energy metabolism, antioxidant, endoplasmic reticulum stress, autophagy, and apoptosis. Cluster analysis showed that cold stress upregulated the majority of gene expression related to unsaturated fatty acid synthesis, endoplasmic reticulum stress, autophagy, and apoptosis. However, Cu acclimation had an antagonistic effect on the regulation of these genes under cold stress, indicating that Cu acclimation reduced the cold stress tolerance of the large yellow croaker by inhibiting unsaturated fatty acid synthesis, endoplasmic reticulum stress, autophagy, and apoptosis. These results provide a scientific basis for the study of the effects of Cu contamination on cold stress tolerance in the large yellow croaker and the underlying molecular mechanism.
Key words Larimichthys crocea     cold stress    Cu contamination    transcriptome    signaling pathway    

铜广泛运用于电子、化工和农药等多个领域,导致部分近河口和近海水域铜污染严重。潘科等[1]对我国近海和河口铜污染状况进行调查,发现锦州湾为13.2 μg Cu/L,九龙江口为74.9 μg Cu/L,渤海湾部分水域高达2 775 μg/L。另一方面,随着全球气候变化,寒流、寒潮等极端事件频发[2],在自然环境中,鱼类常遭受铜和低温胁迫的联合作用。铜暴露可能早于、同时或晚于低温胁迫作用于鱼类。目前,已有的研究主要集中于单因子(铜或低温)对鱼类生理功能的影响。而有关预先暴露于铜的鱼类对低温胁迫的响应机制研究未见相关报道。

铜是鱼类必需的微量元素,可以充当细胞色素C氧化酶、超氧化物歧化酶、金属硫蛋白(MTs)和铜蓝蛋白等辅助因子,参与线粒体电子传递、抗氧化应激反应和氧气运输等重要的生理活动[3]。然而,过量的铜将会对鱼类产生毒害效应,例如,铜可以干扰电子传递链载体(泛醌、细胞色素c)的电子传递功能,引起线粒体膜去极化和质子泄漏,从而导致机体氧化损伤[4]。水温骤降影响鱼类的生长、繁殖和抗胁迫能力,甚至导致死亡[5]。由于铜的生物学功能具有两面性,铜对鱼类胁迫的作用机制比较繁杂。我们最近的研究表明,低浓度铜驯化可以缓解高浓度铜胁迫下大黄鱼(Larimichthys crocea)的氧化损伤[6],但低浓度铜驯化却对低氧胁迫下大黄鱼的氧化损伤产生了协同效应[7]。探索铜驯化对低温胁迫下鱼类基因表达水平的影响有助于揭示铜污染对鱼类低温耐受性的作用机制。

转录组测序技术(RNA-Seq)具有灵敏度高和可靠性好等优点,可以高效、全面地检测环境胁迫对水生生物基因表达谱的影响。例如,采用RNA-Seq技术研究了黄姑鱼(Nibea albiflora) [2]、尼罗罗非鱼(Oreochromis niloticus)[8]和海参(Holothuria leucospilota)[9]对低温胁迫的响应机制,中华锯齿米虾(Neocaridina denticulate sinensis)[10]和日本金枪鱼(Marsupenaeus japonicus)[11]对铜应激的响应机制。然而,有关低温和铜联合作用对水生生物基因表达谱的影响研究极其匮乏。

大黄鱼是我国最重要的经济鱼类之一,已有福建、浙江和广东等南方海域进行了大规模养殖,2019年全国养殖产量已达22.55万t[12]。由于网箱布局不合理,养殖密度过高,导致大黄鱼在养殖过程中病害问题(尤其是寄生虫病)频发[13]。含CuSO4的鱼药防治鱼类寄生虫病具有高效、价廉等优点,已广泛运用于水产养殖业中[14-15],但易造成水体铜污染。采用铜网衣、铜围网进行“仿野生养殖”大黄鱼是最近几年兴起的养殖设施,但在养殖过程中会有铜离子不断释放到海水中[16]。另一方面,大黄鱼在越冬期间因受到低温胁迫出现大规模死亡,给养殖户带来巨大经济损失[2]。因此,在实践养殖生产中,铜暴露后的大黄鱼还常遭受低温胁迫。本实验通过RNA-Seq技术检测铜驯化对低温胁迫下大黄鱼的基因表达谱,筛选相关的功能基因及其信号通路,为研究铜暴露经历对鱼类低温胁迫适应性的作用机制提供理论依据,也为准确评估铜污染对低温胁迫下鱼类氧化损伤的影响提供基础数据。

1 材料与方法 1.1 实验设计及样本采集

实验大黄鱼(体重48.92 g±3.62 g)来自中国水科院东海水产研究所福建福鼎研究中心。将鱼放入12个容积为400 L的钢化玻璃桶中暂养2周,20尾/桶。然后将养殖桶随机分为2组(6桶/组),分别采用铜浓度为0和10 μg/L过滤海水暴露14 d,水温为20 ℃。10 μg Cu/L与自然海域的铜污染浓度相近。参照Zeng等[17]采用CuSO4·5H2O(国药集团上海化学试剂公司)配制养殖用水。暂养和铜暴露期间,采用加热棒将水温维持在20 ℃。然后每个处理组在铜浓度不变的前提下,将3个养殖桶的水温继续维持在20 ℃,另外3个养殖桶的水温以2 ℃/d速度降至8 ℃,并将水温维持24 h。此时,实验鱼可分为对照组(C组)、铜驯化组(Cu组)、低温组(L组)和铜驯化+低温组(CuL组),每个处理组3个平行(图1)。其他水质参数:盐度(26.12± 0.52)、pH (7.54±0.31)、溶解氧(7.43± 0.36) mg/L、总氨氮为(0.16±0.02) ~ (0.22±0.03) mg/L。实验结束后,每桶随机取4尾鱼肝脏用于活性氧(reactive oxygen species, ROS)和脂质过氧化物(lipid peroxidation, LPO)分析,另取1尾鱼肝脏用于RNA提取。所有样本均先放入液氮48 h后,然后再转移到超低温冰箱中贮存。

图1  实验组示意图 Fig. 1  Schematic diagram of experimental groups
1.2 ROS和LPO含量检测

参照我们最近的研究方法[18],采用缓冲液[80 mmol Tris、1 mmol苯甲脒、1 mmol 4-(2-氨甲基)苯磺酰氟盐酸、2 mmol DTT和5 mmol EDTA, pH7.6]对肝脏样本进行匀浆,提取上清液。然后使用试剂盒(南京建成)采用分光光度法测量ROS和LPO的含量。

1.3 RNA提取、文库构建和高通量测序

参照Zeng等[18]方法提取肝脏RNA,采用琼脂糖凝胶电泳法来检测RNA的完整性,采用Nanodrop来检测RNA的纯度和浓度。使用 TruSeqTM RNA sample preparation Kit (Illumina, San Diego,美国)试剂盒进行cDNA文库构建。在高通量测序平台Illumina Hiseq 2500上进行转录组测序。

1.4 数据处理和分析

使用SeqPrepv1.3.2软件对原始数据(Raw Date)进行过滤,获得高质量数据(clean reads)。然后采用HISAT2软件将过滤后clean reads与我们课题组的大黄鱼基因组数据库进行比对与功能注释[19]

使用DESeq2软件采用FPKM计算方法将clean data标准化,以差异倍数|Log2 fold change|≥1且P<0.05为标准筛选差异表达基因(differentially expressed genes, DEGs) [20]。然后分别采用Goatools和KOBAS3.0软件将DEGs与GO数据库和KEGG数据库进行比对,从而获得GO功能注释和KEGG通路富集分析。

1.5 RT-qPCR验证

随机挑选出10个基因,参照Zeng等[18]方法进行RT-qPCR检测。使用Trizol (Invitrogen)试剂盒提取肝脏总RNA,使用first-strand cDNA synthesis kit (Fermentas)构建cDNA文库。根据大黄鱼基因组数据库中的基因序列设计实时荧光定量引物(表1)[19]。使用2×QuantiFast SYBR Green Master Mix 试剂盒(Qiagen)在荧光定量PCR仪上(Applied Biosystems Prism 7500 Sequence Detection System)进行RT-qPCR检测。采用2-ΔΔCT方法对目的基因表达水平进行统计分析[21]。使用SPSS 18.0软件进行单因素方差分析(P<0.05)。

表1  实时荧光定量PCR引物 Tab. 1  Primers used for real-time PCR analysis
2 结果与分析 2.1 ROS和LPO含量

低温组的ROS和LPO含量显著高于对照组(P<0.05)。与对照组相比,低盐驯化组的ROS和LPO含量变化不显著,但低盐驯化+低温组的ROS和LPO含量显著高于低温组(图2)。

2.2 转录组测序结果

表2所示,肝脏样本经过高通量测序、原始数据过滤后获得有效数据(clean reads)超过3.88× 107条,有效数据的质量得分Q30均在96.19以上,GC含量在47.13~49.32。表明转录组测序数据可靠,可用于后续分析。

2.3 差异基因分析

L组相对C组共诱导1425个差异基因,其中上调差异基因793个,下调差异基因632个;Cu组相对C组共诱导2288个差异基因,其中上调差异基因1294个,下调差异基因994个;CuL组相对L组共诱导1382个差异基因,其中上调差异基因369个,下调差异基因1013个。将两两比对后的差异基因进行韦恩分析(图3),有44个重叠的差异表达基因;L组相对C组、Cu组相对C组和CuL组相对L组的特异性差异基因分别有740个、1717个和836个。

图2  铜和低温胁迫对大黄鱼肝脏ROS和LPO含量的影响不同字母表示存在显著差异(P<0.05). Fig. 2  Effects of Cu and cold stress on ROS and LPO content in the liver of Larimichthys croceaDifferent letters denote significant differences (P<0.05).
表2  测序数据统计 Tab. 2  Statistics of sequencing data
图3  转录组中差异表达基因韦恩图 Fig. 3  Venn diagram of differentially expressed genes in the transcriptome
2.4 GO功能富集分析

对所有差异基因进行了GO功能富集分析。如图4所示,L相对C诱导的差异基因显著富集在生物过程类别中的基因表达的昼夜节律调节、RNA聚合酶Ⅱ启动子的转录负调控和昼夜节律等,分子功能类别中的转录因子结合、转录调控区序列特异性DNA结合和金属氨基肽酶活性等,以及细胞组分类别中的核、核质和细胞质等。Cu组相对C组诱导的差异基因显著富集在囊泡介导的内质网到高尔基体转运、中性粒细胞脱粒和先天免疫反应等,分子功能类别中的微管蛋白-谷氨酸连接酶活性、金属氨基肽酶活性和RNA结合等,以及细胞组分类别中的内质网膜、细胞外囊泡外泌体和内质网等。CuL组相对L组诱导的差异基因显著富集在生物过程类别中的RNA聚合酶Ⅱ启动子的转录正调控、二羧酸分解代谢过程和甲基化等,分子功能类别中的配体激活的序列特异性DNA结合RNA聚合酶Ⅱ转录因子活性、蛋白质丝氨酸/苏氨酸激酶活性和琥珀酰-CoA水解酶活性等,以及细胞组分类别中的胞质溶胶、细胞内膜结合细胞器和细胞质等。

图4  转录组差异基因的GO分析(a) 1. 基因表达的昼夜节律调节;2. RNA聚合酶Ⅱ启动子的转录负调控;3. 昼夜节律;4. RNA聚合酶II启动子的转录正调控;5. RNA聚合酶II启动子的转录调控;6. 蛋白质折叠;7. 对光刺激的反应;8. 骨髓细胞分化;9. 光周期对生物钟的影响;10. 经典糖酵解;11. 转录因子结合;12. 转录调控区序列特异性DNA结合;13. 金属氨基肽酶活性;14. DNA结合;15. RNA聚合酶Ⅱ核心启动子近端区序列特异性DNA结合;16. 配体激活的序列特异性DNA结合RNA聚合酶II转录因子活性;17. 葡萄糖结合;18. 酶原结合;19. 锰离子结合;20. E-box绑定;21. 核;22. 核质;23. 细胞质;24. 分泌颗粒管腔;25. 内质网腔;26. 内质网伴侣复合物;27. 肌浆网腔;28. 核染色质;29. 细胞外囊泡外泌体;30. 寡糖基转移酶复合物. (b) 1. 囊泡介导的内质网到高尔基体转运;2. 中性粒细胞脱粒;3. 先天免疫反应;4. 靶向内质网的蛋白质;5. RNA剪接;6. T细胞介导的细胞毒性负调控;7. 内质网相关的泛素依赖性蛋白分解代谢过程;8. 调节病毒进入宿主细胞;9. 蛋白酶体泛素依赖性蛋白质分解代谢过程的调节;10. 睫状体转运;11. 微管蛋白-谷氨酸连接酶活性;12. 金属氨基肽酶活性;13. RNA结合;14. 蛋白酶体激活ATP酶活性;15. 苏氨酸型内肽酶活性;16. 氨酰-tRNA编辑活性;17. 血红素结合;18. 未折叠蛋白结合;19. 7S RNA结合;20. 微管蛋白结合;21. 内质网膜;22. 细胞外囊泡外泌体;23. 内质网;24. 线粒体;25. 胞质溶胶;26. 血红蛋白复合物;27. 结合珠蛋白血红蛋白复合物;28. 内质网-高尔基中间室;29. 线粒体内膜;30. COPI囊泡外套. (c) 1. RNA聚合酶II启动子的转录正调控;2. 二羧酸分解代谢过程;3. 甲基化;4. 突触小泡脱膜;5. 硫化物氧化,使用硫化物:醌氧化还原酶;6. 蛋白质磷酸化;7. Rho蛋白信号转导;8. 前肾小球发育;9. 脂肪酸代谢过程;10. RNA聚合酶II启动子的转录负调控;11. 配体激活的序列特异性DNA结合RNA聚合酶II转录因子活性;12. 蛋白质丝氨酸/苏氨酸激酶活性;13. 琥珀酰-CoA水解酶活性;14. 戊二酰辅酶A水解酶活性;15. 血红素结合;16. 氧转运蛋白活性;17. 胰岛素受体结合;18. 氧结合;19. 蛋白激酶结合;20. DNA(胞嘧啶-5-)-甲基转移酶活性,作用于CpN底物;21. 胞质溶胶;22. 细胞内膜结合细胞器;23. 细胞质;24. 核质;25. 过氧化物酶体;26. 高尔基体;27. 细胞质的核周区;28. 线粒体基质;29. 膜;30. 线粒体. Fig. 4  Gene ontology analyses of differentially expressed genes in the transcriptome(a): 1. circadian regulation of gene expression; 2. negative regulation of transcription from RNA polymerase II promoter; 3. circadian rhythm; 4. positive regulation of transcription from RNA polymerase II promoter; 5. regulation of transcription from RNA polymerase II promoter; 6. protein folding; 7. response to light stimulus; 8. myeloid cell differentiation; 9. entrainment of circadian clock by photoperiod; 10. canonical glycolysis; 11. transcription factor binding; 12. Transcription regulatory region sequence-specific DNA binding; 13. metalloaminopeptidase activity; 14. DNA binding; 15. RNA polymerase II core promoter proximal region sequence-specific DNA binding; 16. ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity; 17. glucose binding; 18. zymogen binding; 19. manganese ion binding; 20. E-box binding; 21. nucleus; 22. nucleoplasm; 23. cytoplasm; 24. secretory granule lumen; 25. endoplasmic reticulum lumen; 26. endoplasmic reticulum chaperone complex; 27. sarcoplasmic reticulum lumen; 28. nuclear chromatin; 29. extracellular vesicular exosome; 30. oligosaccharyltransferase complex. (b), 1. ER to Golgi vesicle-mediated transport; 2. neutrophil degranulation; 3. innate immune response; 4. protein targeting to ER; 5. RNA splicing; 6. negative regulation of T cell mediated cytotoxicity; 7. ER-associated ubiquitin-dependent protein catabolic process; 8. regulation of viral entry into host cell; 9. regulation of proteasomal ubiquitin-dependent protein catabolic process; 10. intraciliary transport; 11. tubulin- glutamic acid ligase activity; 12. metalloaminopeptidase activity; 13. RNA binding; 14. proteasome-activating ATPase activity; 15. threonine-type endopeptidase activity; 16. aminoacyl-tRNA editing activity; 17. heme binding; 18. unfolded protein binding; 19. 7S RNA binding; 20. tubulin binding; 21. endoplasmic reticulum membrane; 22. extracellular vesicular exosome; 23. endoplasmic reticulum; 24. mitochondrion; 25. cytosol; 26. hemoglobin complex; 27. haptoglobin-hemoglobin complex; 28. endoplasmic reticulum-Golgi intermediate compartment; 29. mitochondrial inner membrane; 30. COPI vesicle coat. (c), 1. positive regulation of transcription from RNA polymerase II promoter; 2. dicarboxylic acid catabolic process; 3. methylation; 4. synaptic vesicle uncoating; 5. sulfide oxidation, using sulfide:quinone oxidoreductase; 6. protein phosphorylation; 7. Rho protein signal transduction; 8. pronephric glomerulus development; 9. fatty acid metabolic process; 10. negative regulation of transcription from RNA polymerase II promoter; 11. ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity; 12. protein serine/threonine kinase activity; 13. succinyl-CoA hydrolase activity; 14. glutaryl-CoA hydrolase activity; 15. heme binding; 16. oxygen transporter activity; 17. insulin receptor binding; 18. oxygen binding; 19. protein kinase binding; 20. DNA (cytosine-5-)-methyltransferase activity, acting on CpN substrates; 21. cytosol; 22. intracellular membrane-bounded organelle; 23. cytoplasm; 24. nucleoplasm; 25. peroxisome; 26. Golgi apparatus; 27. perinuclear region of cytoplasm; 28. mitochondrial matrix; 29. membrane; 30. mitochondrion.
2.5 KEGG富集通路分析

对所有差异基因进行了KEGG富集通路分析,如图5所示,Cu组相对C组诱导的差异基因显著富集在内质网蛋白加工(43个)、内吞作用(27个)、溶酶体(20个)、氧化磷酸化(19个)、嘌呤代谢(19个) 和细胞因子-细胞因子受体相互作用(18个)等。L相对C诱导的差异基因显著富集在MAPK信号通路(28个)、FoxO信号通路(22个)、内质网蛋白加工(19个)、胰岛素信号通路(17个)、自噬调节(16个)、细胞凋亡(15个)和mTOR信号通路(15个)等。CuL相对L诱导的差异基因显著富集在MAPK信号通路(38个)、内吞作用(36个)、胰岛素信号通路(23个)、自噬调节(23个)、mTOR信号通路(20个)和FoxO信号通路(19个)等。

2.6 聚类分析

为了更深刻地理解低盐驯化对大黄鱼低盐胁迫耐受性的影响,实验对一些关键通路中的差异基因进行了聚类分析。PPAR信号通路、脂肪酸延长和不饱和脂肪酸的生物合成通路中的大部分基因表达不受Cu相对C的影响;L相对C上调了这些通路中的大部分基因表达;CuL相对L下调了这些通路中的大部分基因表达(图6)。L相对C下调了糖酵解/糖异生、氧化磷酸化和谷胱甘肽代谢通路中的大部分基因表达;Cu相对C和CuL相对L上调了这些通路中的大部分基因表达。L相对C上调了内质网蛋白加工、FoxO信号通路、自噬调节、MAPK信号通路和细胞凋亡通路中的大部分基因表达;Cu相对C下调了内质网蛋白加工和自噬调节通路中的大部分基因表达;CuL相对L下调了这些通路中的大部分基因表达。

2.7 qRT-PCR验证

通过qRT-PCR技术相对定量法检测了10个差异基因在CuL相对L中的表达水平,如图7所示,这些基因的表达模式与转录组测序获得的结果基本一致,两种检测方法所获得的结果相关性(R2)为0.9765,表明转录组测序结果准确可信。

3 讨论

ROS和LPO作为氧化损伤标志物,低温胁迫导致大黄鱼ROS和LPO大量产生,表明低温胁迫诱导机体氧化损伤[22]。铜驯化不影响ROS和LPO含量,表明大黄鱼产生适应性反应来应对低浓度铜诱导的氧化应激。然而,铜驯化增加了低温胁迫下大黄鱼的ROS和LPO含量,表明铜驯化加剧了低温胁迫对机体的氧化损伤。我们最近的研究结果表明,铜驯化对低氧胁迫下大黄鱼的氧化损伤产生协同效应[7]。我们推测铜驯化影响了一系列功能基因和信号通路的生物学功能,从而导致大黄鱼的低温胁迫耐受性降低。于是,我们利用RNA-Seq技术从整体水平来探索铜驯化对大黄鱼低温适应性的影响及其分子机制。

低温抑制细胞(器)膜的流动性,阻碍膜及其结合蛋白的功能发挥,同时影响膜内外的物质交换,最终影响鱼类的低温胁迫耐受性。细胞膜的流动性与脂肪酸中的不饱和脂肪酸(尤其是长链不饱和脂肪酸)含量密切相关[5]。不饱和脂肪酸含量越高,生物膜的流动性越好。本实验中,L相对C的差异基因显著富集在脂肪细胞因子信号通路、胰岛素信号通路和PPAR信号通路(图5); CuL相对L的差异基因显著富集在脂肪酸代谢过程(图4),胰岛素信号通路、磷脂酰肌醇信号系统和脂肪细胞因子信号通路(图5)。已有研究表明,PPAR在促进脂质生成,抑制脂肪酸的β-氧化等方面发挥重要作用[23]。脂肪细胞因子激活胰岛素信号通路来降低血糖,同时促进脂质合成与积聚。胰岛素介导的磷脂酰肌醇-3-激酶信号通路能够促进糖原、脂质和蛋白质合成,抑制脂肪酸β-氧化[24]。在聚类图中(图6), L相对C提高了PPAR 信号通路、不饱和脂肪酸的生物合成和脂肪酸伸长通路中的大部分基因表达;Cu相对C对这些通路中的大部分基因表达不产生影响;CuL相对L显著降低了这些通路中的大部分基因表达。这表明大黄鱼通过合成不饱和脂肪酸和抑制脂肪酸的β-氧化,从而提高不饱和脂肪酸的含量来应对低温胁迫。尽管铜驯化对脂类代谢的影响不显著,但铜驯化抑制了低温胁迫下大黄鱼不饱和脂肪酸的合成,影响生物膜的流动性及其功能,从而导致铜驯化降低了大黄鱼的低温胁迫耐受性。

图5  差异表达基因富集的前20条KEGG 通路1. FoxO信号通路;2. 内质网蛋白加工;3. 半乳糖代谢;4. 脂肪细胞因子信号通路;5. 糖酵解/糖异生;6. 胰岛素信号通路;7. 果糖和甘露糖代谢;8. 自噬调节;9. 氨基糖和核苷酸糖代谢;10. MAPK信号通路;11. TGF-β信号通路;12. 细胞凋亡;13. 谷胱甘肽代谢;14. 细胞周期;15. 布泰罗辛和新霉素的生物合成;16. mTOR信号通路;17. 戊糖磷酸途径;18. PPAR信号通路;19. 甘氨酸、丝氨酸和苏氨酸代谢;20. p53信号通路. (b) 1. 内质网蛋白加工;2. 蛋白酶体;3. 氨酰-tRNA生物合成;4. 氧化磷酸化;5. N-聚糖生物合成;6. 蛋白质输出;7. 氨基糖和核苷酸糖代谢;8. 溶酶体;9. 范可尼贫血通路;10. 卟啉和叶绿素代谢;11. 吞噬体;12. 嘌呤代谢;13. 内吞作用;14. 半乳糖代谢;15. 硫代谢;16. 果糖和甘露糖代谢;17. 乙醛酸和二羧酸代谢;18. 谷胱甘肽代谢;19. 药物代谢——细胞色素P450; 20. 细胞因子-细胞因子受体相互作用. (c) 1. 细胞色素P450对异生素的代谢;2. 丙酸代谢;3. 内吞作用;4. ErbB信号通路;5. 胰岛素信号通路;6. 自噬调节;7. 药物代谢——细胞色素P450; 8. MAPK信号通路;9. 糖酵解/糖异生;10. VEGF信号通路;11. 乙醛酸和二羧酸代谢;12. 磷脂酰肌醇信号系统;13. 谷胱甘肽代谢;14. mTOR信号通路;15. FoxO信号通路;16. 脂肪细胞因子信号通路;17. 孕酮介导的卵母细胞成熟;18. 肌动蛋白细胞骨架的调节;19. 硫代谢;20. 缬氨酸、亮氨酸和异亮氨酸降解. Fig. 5  Top 20 KEGG enriched pathway of differential expressed genes(a) 1. FoxO signaling pathway; 2. Protein processing in endoplasmic reticulum; 3. Galactose metabolism; 4. Adipocytokine signaling pathway; 5. Glycolysis / Gluconeogenesis; 6. Insulin signaling pathway; 7. Fructose and mannose metabolism; 8. Regulation of autophagy; 9. Amino sugar and nucleotide sugar metabolism; 10. MAPK signaling pathway; 11. TGF-beta signaling pathway; 12. Apoptosis; 13. Glutathione metabolism; 14. Cell cycle; 15. Butirosin and neomycin biosynthesis; 16. mTOR signaling pathway; 17. Pentose phosphate pathway; 18. PPAR signaling pathway; 19. Glycine, serine and threonine metabolism; 20. p53 signaling pathway. (b) 1. Protein processing in endoplasmic reticulum; 2. Proteasome; 3. Aminoacyl-tRNA biosynthesis; 4. Oxidative phosphorylation; 5. N-Glycan biosynthesis; 6. Protein export; 7. Amino sugar and nucleotide sugar metabolism; 8. Lysosome; 9. Fanconi anemia pathway; 10. Porphyrin and chlorophyll metabolism; 11. Phagosome; 12. Purine metabolism; 13. Endocytosis; 14. Galactose metabolism; 15. Sulfur metabolism; 16. Fructose and mannose metabolism; 17. Glyoxylate and dicarboxylate metabolism; 18. Glutathione metabolism; 19. Drug metabolism - cytochrome P450; 20. Cytokine-cytokine receptor interaction. (c) 1. Metabolism of xenobiotics by cytochrome P450; 2. Propanoate metabolism; 3. Endocytosis; 4. ErbB signaling pathway; 5. Insulin signaling pathway; 6. Regulation of autophagy; 7. Drug metabolism - cytochrome P450; 8. MAPK signaling pathway; 9. Glycolysis / Gluconeogenesis; 10. VEGF signaling pathway; 11. Glyoxylate and dicarboxylate metabolism; 12. Phosphatidylinositol signaling system; 13. Glutathione metabolism; 14. mTOR signaling pathway; 15. FoxO signaling pathway; 16. Adipocytokine signaling pathway; 17. Progesterone-mediated oocyte maturation; 18. Regulation of actin cytoskeleton; 19. Sulfur metabolism; 20. Valine, leucine and isoleucine degradation.

鱼类对胁迫的适应主要通过合成相关的酶和蛋白来实现,这一过程需要消耗大量的能量[25]。低温会阻碍鱼类心脏的收缩功能,导致组织和细胞缺氧,从而影响细胞的能量代谢效率[26]。因此,鱼类的能量代谢与其低温胁迫耐受性密切相关。在本实验中,L相对C的差异基因显著富集在经典糖酵解(图4)、糖酵解/糖异生和戊糖磷酸途径(图5)等,Cu相对C的差异基因显著富集在氧化磷酸化(图5), CuL相对L差异基因显著富集在琥珀酰-CoA水解酶活性、戊二酰辅酶A水解酶活性(图4)、丙酸代谢和糖酵解/糖异生等(图5)。在聚类图中(图6), L相对C降低了糖酵解/糖异生和氧化磷酸化通路中的大部分基因表达,表明低温胁迫抑制了大黄鱼的糖类分解代谢途径,从而降低了能量代谢效率。Cu相对C和CuL相对L提高了糖酵解/糖异生和氧化磷酸化通路中的大部分基因表达,如细胞色素c氧化酶亚基6B1 (cox6b1),表明铜驯化改善了低温胁迫下大黄鱼的糖类有氧代谢效率。这可能与铜驯化促进了低温胁迫下鱼类的氧气输送能力有关。铜是细胞色素c氧化酶的辅酶,细胞色素c氧化酶可以通过细胞色素系统将呼吸链中的电子直接传递给O2来产生能量[27-28]。Cu相对C和CuL相对L诱导的差异基因显著富集在血红素结合、血红蛋白复合物和结合珠蛋白血红蛋白复合物等(图4)进一步证实了上述观点。

低温胁迫会破坏细胞线粒体的结构和功能,产生大量的ROS。若过量的ROS得不到及时有效的控制,将会导致机体氧化应激反应,从而影响鱼类的生理功能[6]。抗氧化系统在清除ROS,维持机体氧化还原等方面发挥重要作用。谷胱甘肽是抗氧化系统的重要组成部分。在本实验中,L相对C和Cu 相对C的差异基因均显著富集在谷胱甘肽代谢通路中,CuL相对L的差异基因显著富集在谷胱甘肽代谢和过氧化物酶体通路中(图4, 图5)。在聚类图中(图5), L相对C降低了谷胱甘肽代谢通路中的基因表达,表明谷胱甘肽代谢在清除ROS,提高大黄鱼低温胁迫耐受性中发挥重要作用。但由于ROS大量积累,不能被及时有效清除,从而抑制谷胱甘肽的生成[29]。Cu相对C和CuL相对L均上调谷胱甘肽代谢通路中的基因表达。已有研究表明,适量的铜可促进谷胱甘肽代谢,从而提高机体的抗氧化能力[30]

当机体内的ROS过度积累时,鱼类将会通过内质网应激阻碍有害蛋白聚集,并维持蛋白质正确折叠[31];通过自噬或程序性死亡(细胞凋亡)来清除氧化损伤的细胞,从而增强鱼类的胁迫耐受性。自噬可以将氧化损伤的细胞器降解成小分子物质,不但可以降低氧化应激,还能为细胞提供重构和能量代谢原料[32]。转录因子FoxO可以激活靶基因来诱导细胞自噬[18]。P53可以通过参与染色质重塑和碱基切除等来修复DNA损伤,也具有调控细胞凋亡的功能[33]。MAPK可被环境因子诱导表达,从而激活靶基因来调控细胞的增殖、分化、凋亡和炎症反应等[34]。MTOR在调节细胞的非特异性免疫、生长、凋亡和自噬等方面具有重要作用[35]。在本实验中,L相对C的差异基因显著富集在FoxO信号通路、内质网蛋白加工、自噬调节、MAPK信号通路、细胞凋亡和p53信号通路等,Cu相对C的差异基因显著富集在内质网蛋白加工和吞噬体等,CuL相对L的差异基因显著富集在自噬调节、MAPK信号通路、mTOR信号通路和FoxO信号通路等(图5)。在聚类图中(图6), L相对C增加了内质网蛋白加工、FoxO信号通路、自噬调节、MAPK信号通路和凋亡中的大部分基因表达,表明大黄鱼通过激活内质网应激、自噬和凋亡来应对过量的ROS,从而增强低温耐受性。Cu相对C则下调内质网蛋白加工和自噬调节通路中大部分基因表达,CuL相对L下调了这些通路中的大部分基因表达(图6),表明铜驯化对低温胁迫下大黄鱼的内质网应激、自噬和凋亡能力产生了拮抗效应,使机体不能及时清除受损细胞和有害物质,从而导致铜驯化降低了大黄鱼的低温胁迫耐受性。

图6  关键通路中的基因表达变化基因表达上调显示红色,基因表达下调显示绿色. plin2:人围脂滴蛋白2; acsl1a:酰基辅酶A合成酶长链家族成员1a; ppara:过氧化物酶体增殖物激活受体a; fbp3:脂肪酸结合蛋白 3,肌肉和心脏;elovl5: ELOVL脂肪酸延伸酶5; adh8a:乙醇脱氢酶 8a; hacd3: 3-羟酰基-CoA脱水酶3; elovl8b: ELOVL脂肪酸延伸酶8b; zgc:92749:超长链脂肪酸蛋白质的延伸;acot16:酰基辅酶A硫酯酶16; aldh9a1b:醛脱氢酶 9 家族,成员 A1b; pfkla:磷酸果糖激酶,肝a; pdha1a:丙酮酸脱氢酶E1亚基α1a; cox6b1:细胞色素 c 氧化酶亚基 6B1; atp6v0b: ATPase H+ 转运 V0 亚基 b; ndufs4: NADH:泛醌氧化还原酶亚基 S4; sdhda:琥珀酸脱氢酶复合物,亚基D,整合膜蛋白a; anpepa:丙氨酰(膜)氨基肽酶样b; zgc:152830:未表征的 LOC104921637; mgst2:微粒体谷胱甘肽 S-转移酶 2; gpx4b:谷胱甘肽过氧化物酶 4b; canx:钙连接蛋白;calr3b:钙网蛋白 3b; atxn3: ataxin 3; skp2: S期激酶相关蛋白2, E3泛素蛋白连接酶;mdm2: MDM2原癌基因;agap2:具有 GTPase 结构域、锚蛋白重复和 PH 结构域 2 的 ArfGAP; klf2b: Kruppel 样因子 2b; atg4db:自噬相关 4D,半胱氨酸肽酶 b; prkaal:蛋白激酶,AMP 激活的,α 1 催化亚基;pik3r1:磷酸肌醇-3-激酶,调节亚基 1 (alpha); rps6kal:核糖体蛋白S6激酶a,如;vegfaa:血管内皮生长因子 Aa; dusp4:双特异性磷酸酶 4; mych:骨髓细胞瘤癌基因同源物;ern2:内质网到细胞核信号2; ctsh:组织蛋白酶 H; jun: Jun原癌基因,AP-1转录因子亚基. Fig. 6  Changes in the gene expressions involved in key pathwayGenes shown in red are up-regulated, and those shown in green are down-regulated. plin2: perilipin 2; ppara: peroxisome proliferator-activated receptor alpha a; acsl1a: acyl-CoA synthetase long chain family member 1a; ppara: peroxisome proliferator-activated receptor a; fabp3: fatty acid binding protein 3, muscle and heart; elovl5: ELOVL fatty acid elongase 5; adh8a: alcohol dehydrogenase 8a; hacd3: 3-hydroxyacyl-CoA dehydratase 3; elovl8b: ELOVL fatty acid elongase 8b; zgc:92749: elongation of very long chain fatty acids protein; acot16: acyl-CoA thioesterase 16; aldh9a1b: aldehyde dehydrogenase 9 family, member A1b; pfkla: phosphofructokinase, liver a; pdha1a: pyruvate dehydrogenase E1 subunit alpha 1a; cox6b1: cytochrome c oxidase subunit 6B1; atp6v0b: ATPase H+ transporting V0 subunit b; ndufs4: NADH:ubiquinone oxidoreductase subunit S4; sdhda: succinate dehydrogenase complex, subunit D, integral membrane protein a; anpepa: alanyl (membrane) aminopeptidase-like b; zgc:152830: uncharacterized LOC104921637; mgst2: microsomal glutathione S-transferase 2; gpx4b: glutathione peroxidase 4b; canx: calnexin; calr3b: calreticulin 3b; atxn3: ataxin 3; skp2: S-phase kinase-associated protein 2, E3 ubiquitin protein ligase; mdm2: MDM2 proto-oncogene; agap2: ArfGAP with GTPase domain, ankyrin repeat and PH domain 2; klf2b: Kruppel-like factor 2b; atg4db: autophagy related 4D, cysteine peptidase b; prkaal: protein kinase, AMP-activated, alpha 1 catalytic subunit; pik3r1: phosphoinositide-3-kinase, regulatory subunit 1 (alpha); rps6kal: ribosomal protein S6 kinase a, like; vegfaa: vascular endothelial growth factor Aa; dusp4: dual specificity phosphatase 4; mych: myelocytomatosis oncogene homolog; ern2: endoplasmic reticulum to nucleus signaling 2; ctsh: cathepsin H; jun: Jun proto-oncogene, AP-1 transcription factor subunit.
图7  qRT-PCR与转录组测量基因差异倍数的比较分析1. tlr8: toll样受体8; 2. tlr3: toll样受体3; 3. c-jun: jun原癌基因;4. slc20a2:溶质载体家族 20 成员2; 5. il17a:白细胞介素 17a; 6. foxo3b:叉头盒O3b; 7. fas: Fas细胞表面死亡受体;8. mdm2:小鼠双微体2同源物;9. il10:白细胞介素 10; 10. elovl5: ELOVL 家族成员5,极长链脂肪酸延伸酶蛋白家族. Fig. 7  Comparative analysis of differentially expressed genes by qRT-PCR and transcriptome1. tlr8: toll like receptor 8; 2. tlr3: toll-like receptor 3; 3. c-jun: jun proto-oncogene AP-1 transcription factor subunit; 4. slc20a2: solute carrier family 20 member 2; 5. il17a: interleukin 17a; 6. foxo3b: forkhead box O3b; 7. fas: Fas cell surface death receptor; 8. mdm2: murine double mimute 2; 9. il10: interleukin 10; 10. elovl5: ELOVL family member 5, elongation of very-long-chain fatty acids.
4 结论

本研究首次采用转录组学方法研究铜驯化对大黄鱼低温胁迫耐受性的影响。低温胁迫诱导机体产生大量的ROS,大黄鱼通过提高不饱和酸合成、内质网应激、自噬和凋亡来产生适应性反应;铜驯化对低温胁迫下大黄鱼的不饱和酸合成、内质网应激、自噬和凋亡产生拮抗效应,进一步加剧氧化损伤,为铜驯化降低大黄鱼低温胁迫耐受性的分子机制提供了新的见解。

参考文献
[1]
Pan K, Zhu A J, Xu Z B, et al. Copper contamination in coastal and estuarine waters of China[J]. Asian Journal of Ecotoxicology, 2014, 9(4): 618-631. [潘科,朱艾嘉,徐志斌,等. 中国近海和河口环境铜污染的状况[J]. 生态毒理学报,2014, 9(4): 618-631.].》Google Scholar
[2]
Jiao S, Nie M M, Song H B, et al. Physiological responses to cold and starvation stresses in the liver of yellow drum (Nibea albiflora) revealed by LC-MS metabolomics[J]. Science of the Total Environment, 2020, 715: 136940..》Google Scholar
[3]
Mandil R, Prakash A, Rahal A, et al. In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol [J]. BMC Pharmacology and Toxicology, 2020, 21(1): 29..》Google Scholar
[4]
Yang F, Liao J Z, Yu W L, et al. Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken (Gallus gallus) livers[J]. Journal of Hazardous Materials, 2021, 408: 124888..》Google Scholar
[5]
Long Y, Ge G D, Li X X, et al. Regulation mechanisms for cold stress responses of fish[J]. Acta Hydrobiologica Sinica, 2021, 45(6): 1405-1414. [龙勇,葛国栋,李西西,等. 鱼类低温应激反应的调控机制[J]. 水生生物学报,2021, 45(6): 1405-1414.].》Google Scholar
[6]
Zeng L, Zhang J S, Zheng J L, et al. Pre-acclimation to low copper mitigated immunotoxic effects in spleen and head- kidney of large yellow croaker (Pseudosciaena crocea) when exposed subsequently to high copper[J]. Ecotoxicology and Environmental Safety, 2017, 144: 54-61..》Google Scholar
[7]
Zeng L, Ai C X, Zheng J L, et al. Cu pre-exposure alters antioxidant defense and energy metabolism in large yellow croaker Larimichthys crocea in response to severe hypoxia [J]. Science of the Total Environment, 2019, 687: 702-711..》Google Scholar
[8]
Zhou T, Gui L, Liu M L, et al. Transcriptomic responses to low temperature stress in the Nile Tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2019, 84: 1145-1156..》Google Scholar
[9]
Li C L, Zhao W, Qin C X, et al. Comparative transcriptome analysis reveals changes in gene expression in sea cucumber (Holothuria leucospilota) in response to acute temperature stress[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 40: 100883..》Google Scholar
[10]
Xing K F, Liu Y J, Yan C C, et al. Transcriptomic analysis of Neocaridina denticulate sinensis hepatopancreas indicates immune changes after copper exposure[J]. Fish & Shellfish Immunology, 2022, 121: 23-30..》Google Scholar
[11]
Ren X Y, Xu Y, Zhang Y B, et al. Comparative accumulation and transcriptomic analysis of juvenile Marsupenaeus japonicus under cadmium or copper exposure[J]. Chemosphere, 2020, 249: 126157..》Google Scholar
[12]
Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Promotion Station, China Fisheries Society. 2020 China Fishery Statistical Yearbook[M]. Beijing: China Agricultural Press, 2020, 22. [农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会. 2020中国渔业统计年鉴[M]. 北京:中国农业出版社,2020, 22.].》Google Scholar
[13]
Gui J F, Zhou L, Zhang X J. Research advances and prospects for fish genetic breeding[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 932-939. [桂建芳,周莉,张晓娟. 鱼类遗传育种发展现状与展望[J]. 中国科学院院刊,2018, 33(9): 932-939.].》Google Scholar
[14]
Yin F, Bao P B, Liu X, et al. Antiparasitic effect of copper alloy surface on Cryptocaryon irritans in aquaculture of Larimichthys crocea[J]. Applied and Environmental Microbiology, 2019, 85(3): e01982-e01918..》Google Scholar
[15]
Tavares-Dias M. Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture[J]. Aquaculture, 2021, 535: 736350..》Google Scholar
[16]
Song T, Huang T, Zhang C J, et al. Effects of two kinds of dissolved copper on growth and immune function of Litopenaeus vannamei[J]. Journal of Shanghai Ocean University, 2019, 28(1): 75-83. [宋泰,黄艇,张晨捷,等. 养殖水体中二种溶解态铜对凡纳滨对虾生长和免疫功能的影响[J]. 上海海洋大学学报,2019, 28(1): 75-83.].》Google Scholar
[17]
Zeng L, Li W C, Zhang H, et al. Hypoxic acclimation improves mitochondrial bioenergetic function in large yellow croaker Larimichthys crocea under Cu stress[J]. Ecotoxicology and Environmental Safety, 2021, 224: 112688..》Google Scholar
[18]
Zeng L, Ai C X, Zhang J S, et al. Pre-hypoxia exposure inhibited copper toxicity by improving energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea[J]. Science of the Total Environment, 2020, 708: 134961..》Google Scholar
[19]
Wu C W, Zhang D, Kan M Y, et al. The draft genome of the large yellow croaker reveals well-developed innate immunity [J]. Nature Communications, 2014, 5: 5227..》Google Scholar
[20]
Leng N, Dawson J A, Thomson J A, et al. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments[J]. Bioinformatics, 2013, 29(8): 1035-1043..》Google Scholar
[21]
Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29(9): e45..》Google Scholar
[22]
Jin S R, Wang L, Li X X, et al. Integrating antioxidant responses and oxidative stress of ornamental discus (Symphysodon spp.) to decreased temperatures: Evidence for species-specific thermal resistance[J]. Aquaculture, 2021, 535: 736375..》Google Scholar
[23]
Ji R L, Xu X, Turchini G M, et al. Adiponectin’s roles in lipid and glucose metabolism modulation in fish: Mechanisms and perspectives[J]. Reviews in Aquaculture, 2021, 13(4): 2305-2321..》Google Scholar
[24]
Wang D D, Wu F, Zhang L Y, et al. Effects of dietary n-3 PUFA levels in early life on susceptibility to high-fat-diet- induced metabolic syndrome in adult mice[J]. The Journal of Nutritional Biochemistry, 2021, 89: 108578..》Google Scholar
[25]
Xiong Y H, Dong S L, Huang M, et al. Growth, osmoregulatory response, adenine nucleotide contents, and liver transcriptome analysis of steelhead trout (Oncorhynchus mykiss) under different salinity acclimation methods[J]. Aquaculture, 2020, 520: 734937..》Google Scholar
[26]
Filice M, Imbrogno S, Gattuso A, et al. Hypoxic and thermal stress: Many ways leading to the NOS/NO system in the fish heart[J]. Antioxidants (Basel, Switzerland), 2021, 10(9): 1401..》Google Scholar
[27]
Kolbe F, Safarian S, Piórek Ż, et al. Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase[J]. Nature Communications, 2021, 12: 6903..》Google Scholar
[28]
Pacheu-Grau D, Wasilewski M, Oeljeklaus S, et al. COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria[J]. Journal of Molecular Biology, 2020, 432(7): 2067-2079..》Google Scholar
[29]
Lushchak V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquatic Toxicology, 2011, 101(1): 13-30..》Google Scholar
[30]
Li L, Hou M J, Cao L, et al. Glutathione S-transferases modulate Cu tolerance in Oryza sativa[J]. Environmental and Experimental Botany, 2018, 155: 313-320..》Google Scholar
[31]
Li H Y, Xu W J, Wu L Y, et al. Differential regulation of endoplasmic reticulum stress-induced autophagy and apoptosis in two strains of gibel carp (Carassius gibelio) exposed to acute waterborne cadmium[J]. Aquatic Toxicology, 2021, 231: 105721..》Google Scholar
[32]
Lu D L, Ma Q, Wang J, et al. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy[J]. The Journal of Physiology, 2019, 597(6): 1585-1603..》Google Scholar
[33]
Trivedi S P, Ratn A, Awasthi Y, et al. In vivo assessment of dichlorvos induced histological and biochemical impairments coupled with expression of p53 responsive apoptotic genes in the liver and kidney of fish, Channa punctatus (Bloch, 1793)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 245: 109032..》Google Scholar
[34]
Chu P, Wang T, Sun Y R, et al. Effect of cold stress on the MAPK pathway and lipidomics on muscle of Takifugu fasciatus[J]. Aquaculture, 2021, 540: 736691..》Google Scholar
[35]
Yu X J, Wu Z H, Guo J S, et al. Replacement of dietary fish meal by soybean meal on growth performance, immunity, anti-oxidative capacity and mTOR pathways in juvenile abalone Haliotis discus Hannai Ino[J]. Aquaculture, 2022, 551: 737914..》Google Scholar