2. 上海海洋大学,上海市水产养殖工程技术研究中心,上海 201306
3. 上海海洋大学,水产科学国家级实验教学示范中心,上海 201306
2. Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
3. Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
锯齿新米虾(Neocaridina denticulata)隶属甲壳纲(Crustacea)、十足目(Decapoda)、匙指虾科(Atyidae)、新米虾属(Neocaridina), 对环境适应性强, 是一种广泛分布于亚洲淡水水域的小型杂食性虾类, 主要以有机碎屑、动植物残体、藻类为食[1]。在自然水体中锯齿新米虾是一些小型肉食性鱼类如刀鲚(Coilia nasus)等的天然饵料[2-3]。通过人工选育获得的多种不同体色锯齿新米虾也是目前较受欢迎的观赏虾[4]。此外, 锯齿新米虾具有生长迅速、生存力顽强、生长周期短、繁殖力强、容易饲养等特点, 也常作为生态学、生理学、毒理学功能基因组学研究的实验材料[5-6]。锯齿新米虾耐受能力的研究主要集中在对环境毒物如氯丹、林丹、敌敌畏等农药[7-8]与铜等重金属[9]等的毒理学研究, 对低氧胁迫耐受能力的研究未见公开报道。
虾类是典型的变温动物, 在一定温度范围内随着环境温度的升高, 其代谢水平增强, 体内与呼吸相关酶活性增强, 耗氧率升高[10-11]。水体溶解氧对水生动物的生长、发育和能量代谢等方面有重要影响。长时间的缺氧胁迫会对机体造成不可逆的损伤, 使其能量供应失衡, 代谢紊乱最终造成死亡[12-15]。多数虾类随着水温升高也表现出对低氧耐受能力下降、窒息点升高的现象[10,16-17]。有关温度对锯齿新米虾的影响, 仅见温度影响其胚胎发育的报道[18]。本研究对不同温度下锯齿新米虾对低溶解氧的耐受能力及其生理响应进行分析, 以期为锯齿新米虾高密度养殖提供理论依据。
1 材料与方法 1.1 实验材料锯齿新米虾采自上海海洋大学校园水系, 暂养于实验室500 L养殖水槽中, 以金鱼藻(Ceratophyllum demersum L.)作为附着物, 定期泼洒小球藻液, 每日投喂适量的人工配合饲料等, 每两周吸污换水50%, 养殖水温为25~26 ℃, 持续充气。实验前一天停止投喂, 随机挑选体长为(1.6 ± 0.1) cm, 体重为(0.106 ± 0.009) g, 健康、活力好的锯齿新米虾进行。
1.2 温度对锯齿新米虾耐低氧能力的影响设定20 ℃、25 ℃和30 ℃共3个实验温度, 每组3个平行。在100 mL锥形瓶中加入曝气自来水, 分别放入6尾米虾。锥形瓶注满后, 用带溶氧仪探头的橡胶塞密封。每隔0.5 h测定并记录水体溶解氧(DO)水平。测定溶解氧并计算锯齿新米虾的临界点、窒息点和耗氧率。将第一只米虾死亡的溶解氧水平记为临界点; 50%米虾死亡的溶解氧水平记为窒息点。用直线内插法求出6、4、2和0.5 mg/L溶氧浓度的时间, 计算8~6 mg/L、6~ 4 mg/L、4~2 mg/L、2~0.5 mg/L、0.5~0.1 mg/L各个溶氧区段的耗氧率。耗氧率按以下公式[19]计算。
耗氧率 = ΔDO × V/Δt × m
式中, ΔDO为每个溶氧区段前后DO差值、V为水体体积、Δt为每个溶氧区段的时间间隔、m为米虾总体重。
1.3 温度对锯齿新米虾呼吸相关酶及超氧化物歧化酶活性的影响分别在20 ℃、25 ℃和30 ℃温度下, 设置低氧胁迫组与富氧对照组, 每组3个平行。富氧对照组: 锯齿新米虾于300 mL烧杯中, 连续充气使水体溶解氧维持在7 mg/L以上。低氧胁迫组: 锯齿新米虾于100 mL锥形瓶中(实验实际注水容积为130 mL), 用带溶氧仪探头的橡胶塞密封至水体溶解氧降低至0.2 mg/L以下。分别取低氧胁迫组与富氧对照组锯齿新米虾, 用液氮速冻后转移至–80 ℃冰箱保存, 用于细胞色素c氧化酶(COX)、琥珀酸脱氢酶(SDH)、乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)活性的测定。
1.4 样品酶活性测定将各组样品按1∶9 (m∶V)加入一定量0.86% NaCl溶液, 冰浴下匀浆制成10%的组织匀浆液, 4 ℃下2000 r/min离心10 min, 上清作为粗酶液用于酶活测定。
粗酶液蛋白浓度采用考马斯亮蓝法测定, 以牛血清白蛋白作蛋白浓度标准曲线。
COX活性测定参照Affonso[20]方法改进, 先将细胞色素c (氧化型>95%)用磷酸缓冲溶液(PBS, pH 7.0)溶解并配制0.1 mg/mL细胞色素c溶液, 将抗坏血酸用PBS溶液溶解并配制0.05 mg/mL 抗坏血酸溶液, 然后将配制的细胞色素c溶液和抗坏血酸溶液按照10∶1的体积比配制成细胞色素c-抗坏血酸工作液。取100 μL粗酶液加入3 mL工作液中, 混合均匀后立即于550 nm测定1 min内吸光度值变化。
计算公式: COX活性(U/mg)=(ΔOD550×3.1)/ (0.0185×1×mg protein)。
式中, ΔOD550为细胞色素c在550 nm下1 min内吸光度的变化; 3.1为反应体系体积3.1 mL; 0.0185为1 μmol的细胞色素c的消光系数; 1为反应时间1 min; mg protein为0.1 mL粗酶液的蛋白含量。
SDH、LDH和SOD活性测定采用南京建成生物工程研究所试剂盒按说明书测定。所有测定设3个平行。
1.5 数据分析数据以平均值±标准误表示; 采用IBM SPSS Statistics 26软件进行单因素方差分析(one-way ANOVA)和Duncan多重比较,分析不同温度对耗氧率、窒息点、相关酶活性的影响; 采用双因素方差分析(Two-way ANOVA)溶氧水平与温度之间的交互作用; 采用独立样本T检验分析急性胁迫对相关酶活性的影响, 以P<0.05作为差异显著性水平。
2 结果与分析 2.1 温度对锯齿新米虾耗氧率与临界点、窒息点的影响锯齿新米虾耗氧率随温度和水体溶解氧含量变化如图1所示。在水体溶解氧为4~8 mg/L的范围内, 锯齿新米虾的耗氧率随着水温的升高均呈显著(P<0.05)升高(图1a, 图1b); 当水体溶解氧低于4 mg/L后, 30 ℃组锯齿新米虾的耗氧率显著(P<0.05)高于20 ℃和25 ℃组, 但20 ℃和25 ℃组耗氧率无显著差异(图1c, 图1d, 图1e)。随着水体溶解氧的下降, 锯齿新米虾的耗氧率呈现显著(P<0.05)下降, 且水温越高, 下降越明显(图1f)。
![]() |
图1 不同溶氧水平下温度对锯齿新米虾耗氧率的影响 Fig. 1 Effects of temperature on oxygen consumption rate of Neocaridina denticulata under different DO levelsa–e: 溶氧水平分别为8~6 mg/L、6~4 mg/L、4~2 mg/L、2~0.5 mg/L、0.5~0.1 mg/L; f: 水体溶解氧、温度对耗氧率的综合影响. 字母不同表示差异显著(P<0.05).@@a–e: DO levels at 8–6 mg/L, 6–4 mg/L, 4–2 mg/L, 2–0.5 mg/L and 0.5–0.1 mg/L, respectively; f: combined effects of dissolved oxygen and temperature on oxygen consumption rate). Different letters mean significant difference (P<0.05). |
通过双因素方差分析(表1)可知, 温度和水体溶解氧含量均能显著(P<0.05)影响锯齿新米虾的耗氧率, 且温度与水体溶解氧之间存在显著(P< 0.05)的交互作用。30 ℃组锯齿新米虾的临界点为0.16 mgO2/L, 20 ℃和25 ℃组的临界点均小于0.1 mgO2/L; 在20~30 ℃的范围内, 锯齿新米虾的窒息点均小于0.1 mgO2/L (表2)。
2.2 不同温度下急性缺氧胁迫对锯齿新米虾呼吸相关酶活性的影响温度显著(P<0.05)影响锯齿新米虾呼吸代谢相关酶的活性。在富氧水体中, 锯齿新米虾的SDH、COX与LDH活性均随水温的升高而增加(图2a); 在低氧胁迫条件下, 其SDH活性随水温的升高无显著变化, 其COX与LDH活性随水温的升高而增加(图2b)。
与富氧水体相比, 处于低氧胁迫下锯齿新米虾不同温度下的SDH活性均显著降低(P<0.05) (图3a); COX活性均无显著差异(P>0.05)(图3b); 但LDH活性均显著升高(P<0.05)(图3c)。
![]() |
表1 溶氧水平与温度对锯齿新米虾耗氧率的双因素方差分析 Tab. 1 Two-way ANOVA of dissolved oxygen level and temperature on oxygen consumption rate of Neocaridina denticulata |
![]() |
表2 温度对锯齿新米虾临界点、窒息点的影响 Tab. 2 Effects of temperature on critical dissolved oxygen level and lethal dissolved oxygen level of Neocaridina denticulatan=3; $\bar{x}\pm \text{SE}$ |
温度显著(P<0.05)影响锯齿新米虾的超氧化物歧化酶活性。在富氧水体中, 锯齿新米虾的SOD活性随温度的升高先上升后下降; 在低氧胁迫条件下, SOD活性随温度的升高而下降。对比富氧水体和低氧胁迫下锯齿新米虾的超氧化物歧化酶活性, 可知, SOD活性在30 ℃组中显著降低(P<0.05), 20 ℃和25 ℃组无显著差异(图4)。
![]() |
图2 温度对富氧(DO>7 mg/L, a)和低氧胁迫(DO<0.2 mg/L, b)下锯齿新米虾琥珀酸脱氢酶(SDH)、细胞色素c氧化酶(COX)和乳酸脱氢酶(LDH)活性的影响字母不同表示差异显著(P<0.05). Fig. 2 Effects of temperature on activities of Succinate Dehydrogenase (SDH), Cytochrome c Oxidase (COX) and Lactic Dehydrogenase (LDH) in Neocaridina denticulata under oxygen-enriched level (DO>0.7 mg/L, a) and hypoxia stress (DO<0.2 mg/L, b)Different letters indicate significant difference (P<0.05). |
![]() |
图3 不同温度下低氧胁迫(DO<0.2 mg/L)对锯齿新米虾琥珀酸脱氢酶(SDH)、细胞色素c氧化酶(COX)和乳酸脱氢酶(LDH)活性的影响“*”表示差异显著(P<0.05), “**”表示差异极显著(P<0.01). Fig. 3 Effects of hypoxia stress (DO<0.2 mg/L) on the activities of Succinate Dehydrogenase (SDH), Cytochrome c Oxidase (COX) and Lactic Dehydrogenase (LDH) in Neocaridina denticulata under different temperatures“*” means significant difference (P<0.05); “**” means extremely significant difference (P<0.01). |
![]() |
图4 不同温度下富氧(DO>7 mg/L)水平和低氧胁迫(DO<0.2 mg/L)下锯齿新米虾超氧化物歧化酶(SOD)活性比较“*”表示差异显著(P<0.05). Fig. 4 Comparison of Superoxide dismutase (SOD) activities in Neocaridina denticulata between oxygen-enriched state (DO>7 mg/L) and hypoxia stress state (DO<0.2 mg/L) under different temperatures“*” means significant difference (P<0.05). |
不同水生动物对低溶解氧的耐受能力与种类有关, 同时也受到个体规格、生理状态和环境温度等环境因素的影响。鱼类等脊椎动物体内氧气主要依靠血红蛋白运输, 而甲壳动物等无脊椎动物体内氧气运输主要依靠血蓝蛋白[21]。总体上, 甲壳动物的血蓝蛋白与鱼类等脊椎动物的血红蛋白相比, 其氧亲和能力较低且易受到如pH、无机离子、乳酸等因素的影响, 其结构存在易变性[22-23]。因此, 总体而言大多数水生甲壳动物耐低溶解氧的能力弱于鱼类。绝大多数水生甲壳动物如罗氏沼虾(Macrobrachium rosenbergii)、脊尾白虾(Exopalaemon carinicauda)、墨吉对虾(Penaeus merguiensis)等随着温度的升高或体型的增大其窒息点均会提高(表3); 而能短暂离水的克氏原螯虾(Procambarus clarkii)则不同, 随着体形增大其窒息点明显下降, 耐低氧能力增强。本研究中锯齿新米虾呈现出极强的耐低氧能力, 在水温20~30 ℃的范围内, 锯齿新米虾的窒息点均小于0.1 mgO2/L, 远远低于大多数虾类, 仅有成年的大规格克氏原螯虾的窒息点与其接近。锯齿新米虾表现出的强耐低氧能力或许与其自然生活环境和习性有关。锯齿新米虾主要生活于淡水小水体中, 是一种底栖型虾类, 喜静。淡水小水体易受到环境的影响, 水体经常会出现间歇性缺氧。锯齿新米虾这种超强耐低氧的能力可能是为适应这种溶解氧多变甚至是溶解氧极低的环境长期进化的结果。
已有研究表明, 在面对低氧胁迫时, 甲壳动物一方面可以通过采取提高鳃的活动频率、气体交换量、脉搏输入量的策略来提高对氧气的获取[24]。另一方面, 甲壳动物也可以通过提高血蓝蛋白的合成或提高血蓝蛋白对氧气的亲和性来提升氧气运输能力以适应低氧环境。对南美白对虾(Litopenaeus vannamei)的研究发现经过了低氧胁迫后对虾血淋巴中血蓝蛋白含量升高[25]。首长黄道蟹(Cancer magister)能通过提高血蓝蛋白的含量以及改变血蓝蛋白亚基的结构提高对氧的亲和能力以应对长期的缺氧胁迫[26]。此外, 面对缺氧胁迫后, 生物体氧气摄入相对减少, 不可避免造成有氧呼吸供能受限, 甲壳动物会适当地增强其无氧呼吸能力以维持机体供能, 同时也会减少运动以降低机体的能量消耗[14]。锯齿新米虾喜静, 运动较少, 在缺氧环境中, 可以观察到锯齿新米虾依附于附着物基本不动, 这可能也是其应对缺氧环境的一种降低能量消耗策略。
在水生动物高密度养殖过程中, 残饵与粪便的腐败分解会消耗水体中大量氧气, 这也造成高密度养殖的水体常处于低氧甚至是缺氧状态, 而锯齿新米虾这种极强的耐低氧能力为其高密度养殖提供可能。
3.2 温度对锯齿新米虾呼吸代谢及抗氧化的影响虾类等甲壳动物是典型的变温动物, 其调节自身体温的能力较弱, 环境温度会直接影响到虾类能量的代谢。在本研究中, 温度直接影响到了锯齿新米虾的耗氧率, 随着温度升高, 耗氧率呈现显著的升高, 这与在罗氏沼虾[10]、克氏原螯虾[16]等的研究结果相似。SDH和COX是线粒体内膜上参与有氧呼吸电子传递链的重要关键酶, SDH位于电子传递链的前端, 催化琥珀酸生成富马酸并生成FADH, 是线粒体功能的标志酶; COX是位于电子传递链细胞色素系统的末端, 将呼吸底物的电子经过细胞色素系统直接传递给分子态氧, 实现自动氧化的过程, 是有氧呼吸的限速酶。因此SDH和COX活性在一定程度上可以反映机体有氧呼吸代谢的强度。在本研究中, 在富氧水体中随着水温从25 ℃升高到30 ℃, 锯齿新米虾的SDH和COX活性显著增强, 表明其细胞有氧呼吸代谢随水温升高而增强, 这与锯齿新米虾耗氧率随温度升高而增加的表现相一致。而在低氧胁迫条件下, 随着水温从25 ℃升高到30 ℃, 仅有SDH活性显著升高, 而COX活性无显著变化, 表明在低氧胁迫条件下, 温度升高提升了线粒体功能但不能实现细胞有氧呼吸水平的提升。LDH在无氧条件下能催化丙酮酸生成乳酸并伴随着少量ATP生成, 可作为机体和细胞无氧呼吸的标志酶。有研究表明, 三疣梭子蟹(Portunus trituberculatus)的LDH活性随着温度的升高会增大, 推测可能与三疣梭子蟹缓冲有氧呼吸代谢活力下降而出现能量危机有关[35]。另有学者发现, 在夏季水温高溶解氧低的水体中, 虾夷扇贝(Mizuhopecten yessoensis)可以通过提高无氧呼吸、提升LDH活性以应对由于溶解氧降低引起有氧呼吸减弱而造成能量供应减少的状况[36]。在本研究中, 无论是富氧状态还是低氧胁迫状态, 锯齿新米虾LDH活性随着水温升高也呈现升高的趋势。自然情况下, 水体中溶解氧饱和度随温度的升高而降低, 因此水温升高促使锯齿新米虾同时提升无氧呼吸酶的活力以应对可能会出现的低氧状态, 以此保证自身能量供应。
![]() |
表3 虾类对低氧的耐受能力 Tab. 3 Tolerance to hypoxia of some shrimp |
抗氧化相关的指标可以在一定程度反映出虾类等甲壳动物对于胁迫环境的适应能力[14], 机体在正常生命活动中, 会不断产生自由基和活性氧(reactive oxygen species, ROS), 随即又不断地被抗氧化酶体系清除, SOD是其中一种重要的抗氧化酶[37]。本研究中随着温度的升高锯齿新米虾的SOD活性呈现先上升后下降的趋势, 这种现象表明适当的升温, 可以增强虾体抗氧化的能力, 增加其抵抗胁迫的能力, 但温度过高时可能会引起机体代谢紊乱而导致抗氧化酶活性降低, 30 ℃可能已超出了锯齿新米虾适宜温度范围。
3.3 锯齿新米虾对低氧的响应Winkle等[38]将无脊椎动物耗氧类型分为氧顺应型(耗氧率随氧分压或溶解氧含量的下降而降低)和氧调节型(在溶解氧含量大于临界氧水平时, 耗氧率不随氧分压或溶解氧含量的下降而降低)。Leiva等[39]对幽灵虾(Neotrypaea uncinata)的研究中发现其耗氧率在缺氧的环境中显著低于在富氧的环境。Paterson等[40]发现穴居虾(Trypaea australiensis)的耗氧率随着氧分压的降低其耗氧率呈现先上升后下降的趋势。Rosas等[41]研究认为白对虾(Penaeus setiferus)的耗氧类型属于氧调节型, 其耗氧率随水体溶解氧含量的降低呈现先平缓后下降的趋势, 当溶解氧含量低于临界氧水平后, 耗氧率降低。而崔莹等[42]对南美白对虾的研究发现其耗氧率随溶解氧的减低而升高, 其耗氧类型不属于氧顺应型。在本研究中, 随着水体溶氧水平的下降, 锯齿新米虾的耗氧率明显下降, 其耗氧类型属于典型的氧顺应型。不同虾类其耗氧类型不尽相同, 可能与实验的温度、盐度、pH等环境条件以及个体的活动状态、生理情况有关[43]。当机体的耗氧率下降, 可以认为机体摄入的氧减少, 这意味着有氧呼吸减弱, 机体有氧呼吸供能降低[41]。管越强等[12]发现日本沼虾在缺氧胁迫的条件下, SDH、COX等与有氧呼吸相关的酶活性降低, 无氧呼吸相关的LDH活性增强。对干露胁迫下的日本囊对虾[44]和脊尾白虾[45]的研究中也有相似的现象。在本研究中, 锯齿新米虾在经历短期缺氧胁迫后, 锯齿新米虾的SDH活性显著的减低, 而LDH活性显著升高, 同时可以观察到随着溶解氧的减低其活动减少, 在低氧胁迫的环境中锯齿新米虾基本保持不动, 这与其耗氧率的变化保持一致, 表明在缺氧环境中锯齿新米虾有氧呼吸在缺氧的条件下受到了限制, 机体通过减少运动、增强无氧呼吸的水平, 以维持机体对能量供需的平衡。但在本研究中, 低氧胁迫后COX活性并无显著性变化, 这可能是与低氧胁迫时间较短且COX位于有氧呼吸链的末端有关。
已有研究[12-13,46-47]发现经历短期缺氧胁迫能够激活虾体的抗氧化系统, 以应对由于胁迫造成的机体内活性氧(ROS)的升高, 如孙盛明等[13]报道了日本沼虾的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)等抗氧化酶在经历缺氧胁迫后有显著升高的现象。同时, 虾体在低氧胁迫下抗氧化酶活性的变化存在一定的组织特异性, 相比于肌肉、鳃等组织而言, 肝胰腺的抗氧化酶活性最高, 也表明肝胰腺对外界胁迫反应最早、最敏感、也最容易出现损伤的组织[14]。本研究中, 相比富氧水体, 20 ℃和25 ℃组锯齿新米虾SOD活性在低氧胁迫下无显著性变化, 但在30 ℃组, 经历缺氧胁迫后锯齿新米虾SOD活性显著降低, 这可能是由于30 ℃对于锯齿新米虾已经不适, 同时也表明其对抗低氧胁迫能力也明显降低, 这也与锯齿新米虾在30 ℃时, 临界点明显升高的显现一致。
综上所述, 锯齿新米虾具有很强的耐低溶解氧能力, 其窒息点小于0.1 mgO2/L。温度升高会提升其呼吸代谢相关酶的活性。锯齿新米虾通过降低有氧呼吸酶活性、增加无氧呼吸酶活性, 降低运动来应对低氧胁迫。但低氧胁迫是否也促进锯齿新米虾血蓝蛋白合成或提高血蓝蛋白对氧气的亲和性仍需进一步的研究。
[1] |
Jiang J, Wen F N, Deng S, et al. Population dynamics, annual production and trophic basis analysis of the dominant species neocardina denticulata sinensis (kemp) in hujiaxi stream[J]. Acta Hydrobiologica Sinica, 2010, 34(3): 569-574. [江晶, 温芳妮, 邓山, 等. 胡家溪中华新米虾种群动态、周年生产量及营养基础分析[J]. 水生生物学报, 2010, 34(3): 569-574.].》Google Scholar
|
[2] |
Suh H L, Oh C W, Hartnoll R, et al. Reproduction and population dynamics of the temperate freshwater shrimp, Neocaridina denticulata denticulata (De Haan, 1844), in a Korean stream[J]. Crustaceana, 2003, 76(8): 993-1015..》Google Scholar
|
[3] |
Li L, Du R, Liu Q G, et al. The ontogenetic dietary shift of Japanese grenadier anchovy (Coilia nasus) in the Qingcaosha Reservoir near the Yangtze River Estuary[J]. Journal of Fishery Sciences of China, 2019, 26(4): 765-773. [李丽, 杜蓉, 刘其根, 等. 长江口青草沙水库刀鲚食性转变[J]. 中国水产科学, 2019, 26(4): 765-773.].》Google Scholar
|
[4] |
Huang Y Y, Lu X Q, Zhang L L, et al. Effect of carotenoid additive on body color of red cherry shrimp[J]. Feed Research, 2020, 43(5): 28-31. [黄永裕, 卢锡琴, 张丽莉, 等. 饲料中添加类胡萝卜素对樱花虾体色的影响[J]. 饲料研究, 2020, 43(5): 28-31.].》Google Scholar
|
[5] |
Mykles D L, Hui J H L. Neocaridina denticulata: A decapod crustacean model for functional genomics[J]. Integrative and Comparative Biology, 2015, 55(5): 891-897..》Google Scholar
|
[6] |
Xing K F, Liu Y J, Yan C C, et al. Transcriptome analysis of Neocaridina denticulate sinensis under copper exposure[J]. Gene, 2021, 764: 145098..》Google Scholar
|
[7] |
Huang D J, Chen H C, Wu J P, et al. Reproduction obstacles for the female green Neon shrimp (Neocaridina denticulata) after exposure to chlordane and lindane[J]. Chemosphere, 2006, 64(1): 11-16..》Google Scholar
|
[8] |
Zhu Y, Cao Y, Zhang Y H, et al. Toxicity of organophosphorus pesticides to Neocaridina denticulate and species sensitivity analysis[J]. China Environmental Science, 2017, 37(2): 745-753. [朱岩, 曹莹, 张亚辉, 等. 有机磷农药对锯齿新米虾的毒性及敏感性分析[J]. 中国环境科学, 2017, 37(2): 745-753.].》Google Scholar
|
[9] |
Kim N Y, Jeom E J, Jung S H, et al. Gene expression profiling and expression analysis of freshwater shrimp (Neocaridina denticulata denticulata) using expressed sequence tags and short-term exposure to copper[J]. Journal of Environmental Biology, 2018, 39(1): 51-57..》Google Scholar
|
[10] |
Chen J C, Kou T T. Effects of temperature on oxygen consumption and nitrogenous excretion of juvenile Macrobrachium rosenbergii[J]. Aquaculture, 1996, 145(1-4): 295-303..》Google Scholar
|
[11] |
Chen J C, Nan F H. Effects of temperature, salinity and ambient ammonia on lethal dissolved oxygen of Penaeus chinensis juveniles[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 101(3): 459-461..》Google Scholar
|
[12] |
Guan Y Q, Li L, Wang H C, et al. Effects of hypoxia on respiratory metabolism and antioxidant capability of Macrobrachium nipponense[J]. Journal of Hebei University (Natural Science Edition), 2010, 30(3): 301-306. [管越强, 李利, 王慧春, 等. 低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J]. 河北大学学报(自然科学版), 2010, 30(3): 301-306.].》Google Scholar
|
[13] |
Yang M, Sun S M, Fu H T, et al. Hypoxia and reoxygenation on antioxidant enzyme activities and histological structure of Macrobrachium nipponense[J]. Journal of Fishery Sciences of China, 2019, 26(3): 493-503. [杨明, 孙盛明, 傅洪拓, 等. 低氧和复氧对日本沼虾抗氧化酶活力及组织结构的影响[J]. 中国水产科学, 2019, 26(3): 493-503.].》Google Scholar
|
[14] |
Sun S M, Zhu M R, Pan F Y, et al. Research progress on the effects of hypoxia stress on crustacean and its molecular regulation[J]. Journal of Fisheries of China, 2020, 44(4): 690-704. [孙盛明, 祝孟茹, 潘方艳, 等. 低氧对甲壳动物的影响及其分子调控研究进展[J]. 水产学报, 2020, 44(4): 690-704.].》Google Scholar
|
[15] |
Sun S M, Yang M, Fu H T, et al. Altered intestinal microbiota induced by chronic hypoxia drives the effects on lipid metabolism and the immune response of oriental river prawn Macrobrachium nipponense[J]. Aquaculture, 2020, 526: 735431..》Google Scholar
|
[16] |
Wen X B, Ku Y M, Luo J B. Studies on the oxygen consumption rate and asphyxiant point of the red swamp crawfish, Procambrus clarkii[J]. Journal of Dalian Fisheries University, 2003, 18(3): 170-174. [温小波, 库夭梅, 罗静波. 克氏原螯虾耗氧率及窒息点的研究[J]. 大连水产学院学报, 2003, 18(3): 170-174.].》Google Scholar
|
[17] |
Tian X L, Dong S L, Wang F, et al. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck[J]. Journal of Experimental Marine Biology and Ecology, 2004, 310(1): 59-72..》Google Scholar
|
[18] |
Wang Z F, Cui X D, Gong H X, et al. Study on the effective accumulative temperature and biological zero degree of Neocaridina denticulate sinensis[J]. Hebei Fisheries, 2014, (2): 10-12. [王战芳, 崔晓东, 巩海雪, 等. 中华锯齿米虾生物学零度及有效积温的研究[J]. 河北渔业, 2014, (2): 10-12.].》Google Scholar
|
[19] |
Xu B, Wei K J, Zhu X Y, et al. Effects of MS-222 and clove oil on oxygen consumption rate, ammonia excretion rate and asphyxial point of red swamp crayfish Procambarus clarkii [J]. Journal of Dalian Ocean University, 2018, 33(4): 455-459. [徐滨, 魏开金, 朱祥云, 等. MS-222和丁香酚对克氏原螯虾幼虾耗氧率、排氨率及窒息点的影响[J]. 大连海洋大学学报, 2018, 33(4): 455-459.].》Google Scholar
|
[20] |
Affonso E G, Polez V L P, Corrêa C F, et al. Physiological responses to sulfide toxicity by the air-breathing catfish, Hoplosternum littorale (Siluriformes, Callichthyidae)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2004, 139(4): 251-257..》Google Scholar
|
[21] |
Pan L Q, Jin C X. A review on hemocyanins of crustacean[J]. Journal of Fisheries of China, 2008, 32(3): 484-491. [潘鲁青, 金彩霞. 甲壳动物血蓝蛋白研究进展[J]. 水产学报, 2008, 32(3): 484-491.].》Google Scholar
|
[22] |
Giomi F, Beltramini M. The molecular heterogeneity of hemocyanin: Its role in the adaptive plasticity of Crustacea[J]. Gene, 2007, 398(1-2): 192-201..》Google Scholar
|
[23] |
Bridges C R. Modulation of haemocyanin oxygen affinity: Properties and physiological implications in a changing world[J]. The Journal of Experimental Biology, 2001, 204(Pt 5): 1021-1032..》Google Scholar
|
[24] |
McMahon B R. Respiratory and circulatory compensation to hypoxia in crustaceans[J]. Respiration Physiology, 2001, 128(3): 349-364..》Google Scholar
|
[25] |
Huang T G, Jin C X, Pan L Q. The influence of hypoxia on the contents of hemocyanin and free amino acids and the transport of Cu2+ of Litopenaeus vannamei[J]. Transactions of Oceanology and Limnology, 2015(2): 16-22. [黄天鸽, 金彩霞, 潘鲁青. 低氧胁迫对凡纳滨对虾血蓝蛋白、自由氨基酸含量和体内Cu2+转运的影响[J]. 海洋湖沼通报, 2015(2): 16-22.].》Google Scholar
|
[26] |
Head J M. The effects of hypoxia on hemocyanin regulation in Cancer magister: Possible role of Hypoxia-Inducible Factor-1[J]. Journal of Experimental Marine Biology and Ecology, 2010, 386(1-2): 77-85..》Google Scholar
|
[27] |
Liang H F, Du G P, Liu S Y. Oxygen consumption and asphyxiated point in lobster Panulirus stimpsoni[J]. Fisheries Science, 2011, 30(10): 635-637. [梁华芳, 杜国平, 刘顺羽. 中国龙虾耗氧率及窒息点的研究[J]. 水产科学, 2011, 30(10): 635-637.].》Google Scholar
|
[28] |
Jiang Y Q, Han Z P, Yang W X. Comparision on the oxygen consumption between Macrobrachium nipponensis and Exopalaemon modestus[J]. Fisheries Science, 2003, 22(2): 15-17. [姜叶琴, 韩志萍, 杨万喜. 日本沼虾和秀丽白虾耗氧率的比较[J]. 水产科学, 2003, 22(2): 15-17.].》Google Scholar
|
[29] |
Li M Y, Bao J M, Wu C E. Experimental observation on suffocation point and oxygen consumption rate of Exopalaemon carinicauda[J]. Marine Fisheries, 1992, 13(6): 251-253. [李明云, 包坚敏, 吴春娥. 脊尾白虾窒息点与耗氧率的实验观察 [J]. 海洋渔业, 1992, 13(6): 251-253.].》Google Scholar
|
[30] |
Chen Q, Huang J, Wang Y. Determination of the oxygen consumption rate and suffocation point of Macrobrachium rosenbergii larvae[J]. Journal of Hubei Agricultural College, 2002(1): 33-35. [陈琴, 黄景, 王邕. 罗氏沼虾仔虾耗氧率与窒息点的初步测定[J]. 湖北农学院学报, 2002(1): 33-35.].》Google Scholar
|
[31] |
Wang H, Lai Q F, Fang W H. Effects of different K+ concentrations on survival, oxygen consumption rate and suffocation point of juvenile Fenneropenaeus chinensis[J]. Journal of Fishery Sciences of China, 2007, 14(3): 493-497. [王慧, 来琦芳, 房文红. K+对中国明对虾幼虾生存及耗氧率、窒息点的影响[J]. 中国水产科学, 2007, 14(3): 493- 497.].》Google Scholar
|
[32] |
Chen J C, Nan F H. Effects of temperature, salinity and ambient ammonia on lethal dissolved oxygen of Penaeus chinensis juveniles[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 101(3): 459-461..》Google Scholar
|
[33] |
Jiang J N. Study of oxygen consumption rate, CO2 exhaust, respiratory quotient and tolerance to low dissolved oxygen in four shrimps species[J]. Journal of Zhanjiang Ocean University, 1999, 19(1): 10-16..》Google Scholar
|
[34] |
Ma H J, Zang W L, Cui Y. Effect of water temperature on the instantaneous rate of oxygen consumption of Litnpenaeus vannamei and the dissolved oxygen level[J]. Journal of Shanghai Fisheries University, 2004, 13(1): 52-55. [马海娟, 臧维玲, 崔莹. 温度对南美白对虾瞬时耗氧速率与溶氧水平的影响[J]. 上海水产大学学报, 2004, 13(1): 52-55.].》Google Scholar
|
[35] |
Lu Y L, Wang F, Dong S L. Energy response of swimming crab Portunus trituberculatus to thermal variation: Implication for crab transport method[J]. Aquaculture, 2015, 441: 64-71..》Google Scholar
|
[36] |
Liu C, Wu F C, Que H Y, et al. Relationships of growth and mortality to enzymatic activity, and the relative mRNA expression of cultured scallops Patinopecten yessoensis in the Yellow Sea, China[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1409-1422..》Google Scholar
|
[37] |
Winston G W. Oxidants and antioxidants in aquatic animals [J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100(1-2): 173-176..》Google Scholar
|
[38] |
van Winkle W, Mangum C. Oxyconformers and oxyregulators: A quantitative index[J]. Journal of Experimental Marine Biology and Ecology, 1975, 17(2): 103-110..》Google Scholar
|
[39] |
Leiva F P, Niklitschek E J, Paschke K, et al. Tide-related biological rhythm in the oxygen consumption rate of ghost shrimp (Neotrypaea uncinata)[J]. The Journal of Experimental Biology, 2016, 219(Pt 13): 1957-1960..》Google Scholar
|
[40] |
Paterson B D, Thorne M J. Measurements of oxygen uptake, heart and gill bailer rates of the callianassid burrowing shrimp Trypaea australiensis Dana and its responses to low oxygen tensions[J]. Journal of Experimental Marine Biology and Ecology, 1995, 194(1): 39-52..》Google Scholar
|
[41] |
Rosas C, Martinez E, Gaxiola G, et al. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles[J]. Journal of Experimental Marine Biology and Ecology, 1999, 234(1): 41-57..》Google Scholar
|
[42] |
Cui Y, Zang W L, Ma H J. Studies on the correlation between the instantaneous rate of consumed oxygen of Litnpenaeus vannamei and the dissolved oxygen level as well as seawater salinity[J]. Journal of Shanghai Fisheries University, 2003, 12(1): 76-79. [崔莹, 臧维玲, 马海娟. 南美白对虾瞬时耗氧速率与溶氧水平和海水盐度的相关关系[J]. 上海水产大学学报, 2003, 12(1): 76-79.].》Google Scholar
|
[43] |
Grieshaber M K, Hardewig I, Kreutzer U, et al. Physiological and metabolic responses to hypoxia in invertebrates [J]. Reviews of Physiology, Biochemistry and Pharmacology, 1994, 125: 43-147..》Google Scholar
|
[44] |
Duan Y F, Dong H B, Wang Y, et al. Respiratory metabolic enzyme activities and RNA/DNA ratio of Marsupenaeus japonicus after desiccation[J]. Marine Fisheries, 2016, 38(1): 42-50. [段亚飞, 董宏标, 王芸, 等. 干露胁迫对日本囊对虾呼吸代谢酶活性和RNA/DNA比值的影响[J]. 海洋渔业, 2016, 38(1): 42-50.].》Google Scholar
|
[45] |
Lian C N, Li J, Li J T, et al. Effects of dry exposure on the respiratory metabolism-related enzymes of Exopalaemon carinicauda[J]. Progress in Fishery Sciences, 2017, 38(4): 53-60. [连春盎, 李健, 李吉涛, 等. 干露胁迫对脊尾白虾(Exopalaemon carinicauda)呼吸代谢相关酶的影响[J]. 渔业科学进展, 2017, 38(4): 53-60.].》Google Scholar
|
[46] |
Li Y Q, Li J, Wang Q Y. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis[J]. Aquaculture, 2006, 256(1-4): 608-616..》Google Scholar
|
[47] |
Li Y H, Wei L, Cao J R, et al. Oxidative stress, DNA damage and antioxidant enzyme activities in the Pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation[J]. Chemosphere, 2016, 144: 234-240..》Google Scholar
|